1
|
Ma M, Jiang L, Xie Z, Liu M, Chen H, Yu Z, Pei H. Phosphorus-supplemented seawater-wastewater cyclic system for microalgal cultivation: Production of high-lipid and high-protein algae. BIORESOURCE TECHNOLOGY 2024; 398:130512. [PMID: 38437960 DOI: 10.1016/j.biortech.2024.130512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The reuse of wastewater after seawater cultivation is critically important. In this study, a phosphorus-supplemented seawater-wastewater cyclic system (PSSWCS) based on Chlorella pyrenoidosa SDEC-35 was developed. With the addition of phosphorus, the algal biomass and the ability to assimilate nitrogen and carbon were improved. At the nitrogen to phosphorus ratio of 20:1, the biomass productivity per mass of nitrogen reached 3.6 g g-1 (N) day-1 in the second cycle. After the third cycle the protein content reached 35.7% of dry mass, and the major metabolic substances in PSSWCS reached the highest content level of 89.5% (35.7% protein, 38.3% lipid, and 15.5% carbohydrate). After the fourth cycle the lipid content maintained at 40.1%. Furthermore, 100.0% recovery of wastewater in PSSWCS increased the nitrogen and carbon absorption to 15.0 and 396.8 g per tonne of seawater. This study achieved seawater-wastewater recycle and produced high-lipid and high-protein algae by phosphorus addition.
Collapse
Affiliation(s)
- Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| |
Collapse
|
2
|
Mubashar M, Zulekha R, Cheng S, Xu C, Li J, Zhang X. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120360. [PMID: 38377758 DOI: 10.1016/j.jenvman.2024.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaozhe Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cong Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Liu Y, Chen X, Wei D, Xing X. Breeding a novel chlorophyll-deficient mutant of Auxenochlorella pyrenoidosa for high-quality protein production by atmospheric room temperature plasma mutagenesis. BIORESOURCE TECHNOLOGY 2023; 390:129907. [PMID: 37866765 DOI: 10.1016/j.biortech.2023.129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
In the present work, a novel chlorophyll-deficient mutant of Auxenochlorella pyrenoidosa named A4-1 was generated by atmospheric room temperature plasma (ARTP) mutagenesis. Compared to the green wild type (WT) strain, the A4-1 mutant cultured in the dark displayed yellow colour with a 118-fold decrease of chlorophyll a and no detected chlorophyll b. Higher contents of protein (44.22 % DW), total amino acids (AAs, 34.84 % DW) and essential AAs (17.50 % DW) were also achieved, showing 31 %, 22 % and 30 % increases compared to the WT, respectively (p < 0.05). Metabolite profile analysis revealed that the chlorophyll biosynthesis pathway in the A4-1 mutant was probably inhibited in the dark, while more carbon skeletons might be utilized for de novo AAs synthesis. These results demonstrated that the A4-1 mutant not only has extremely low chlorophyll content, but also has higher protein content, making it a very promising candidate to produce microalgal protein for future foods.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Xiao Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Wushan Road 381, Guangzhou 510641, China.
| | - Xinhui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
4
|
Al-Obeidi WDM, Al-Rawi DF, Ali LH. Production of Single-Cell Oil from a Local Isolate Bacillus subtilis Using Palm Fronds. Int J Biomater 2023; 2023:8882842. [PMID: 37946858 PMCID: PMC10632059 DOI: 10.1155/2023/8882842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/02/2023] [Accepted: 10/03/2023] [Indexed: 11/12/2023] Open
Abstract
This study, conducted at the Department of Biology, University of Anbar, Iraq, focuses on addressing the escalating issue of contamination and aims to acquire microbial oils to alleviate the global shortage in plant and animal oil production, utilizing environmental waste as a carbon source to reduce global pollution and select efficient local bacterial isolates of Bacillus subtilis for the production of single-cell oil (SCO) using local soil and environmental waste as a carbon source. Four isolates were selected as the best in producing single-cell oil, with the isolate with code C4 standing out as it recorded the highest production. It is worth noting that all these isolates belong to the bacteria type Bacillus subtilis. Palm fronds were found to be the most suitable environmental residue for SCO production compared to other waste materials (wheat straw and wheat bran). Submerged cultures were used to improve SCO production, with optimal conditions determined as pH 7, a temperature of 30°C, carbon source concentration of 3 g/100 ml, inoculum volume of 3 ml/100 ml, inoculum density of 20 × 107 cells, and an incubation period of 72 hours. The Soxhlet extraction method was used to obtain the oil, which was found to contain high percentages of unsaturated fatty acids, particularly linoleic acid (46.030%) and palmitoleic acid (16.579%). The oil was highly soluble in chloroform and ethanol but insoluble in water. The saponification test indicated the potential for soap production from the oil. This comprehensive research addresses the need for locally sourced and sustainable SCO production, offering insights into the selection of efficient bacterial isolates, the optimization of cultivation conditions, and the valuable properties of the resulting SCO. The significance of this study lies in the production of single-cell oil from soil-isolated Bacillus subtilis bacteria for use in food applications.
Collapse
Affiliation(s)
| | - Dhafer F. Al-Rawi
- College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq
| | - Loay H. Ali
- College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq
| |
Collapse
|
5
|
Liu Y, Wei D. Enhancing carbon dioxide fixation and co-production of protein and lutein in oleaginous Coccomyxa subellipsoidea by a stepwise light intensity and nutrients feeding strategy. BIORESOURCE TECHNOLOGY 2023; 376:128885. [PMID: 36925078 DOI: 10.1016/j.biortech.2023.128885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
To achieve high-efficient CO2 fixation and co-production of protein and lutein, a stepwise light intensity and nutrients feeding strategy in two-phase cultivation was developed after optimization in one-phase culture of oleaginous C. subellipsoidea in this work. Results showed the incremental light intensity and CO2 feeding boosted biomass production in phase 1, then a decreased light intensity and CO2 feeding with nitrate addition enhanced protein and lutein synthesis in phase2. The highest biomass (9.40 g/L) and average CO2 fixation rate (1.4 g/L/d) were achieved with excellent content and productivity of protein (52.36% DW, 435.72 mg/L/d) and lutein (1.65 mg/g, 1.37 mg/L/d) with 40.27% of light-energy saved. While the highest contents of total amino acids (42.38% DW) and essential amino acids (17.65% DW) were obtained with an essential amino acid index (1.2) compared with FAO/WHO reference. This study provided a promising application scenario of oleaginous microalgae for carbon neutrality and multiple high-value compounds co-production.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
6
|
Chu G, Wang Q, Song C, Liu J, Zhao Y, Lu S, Zhang Z, Jin C, Gao M. Platymonas helgolandica-driven nitrogen removal from mariculture wastewater under different photoperiods: Performance evaluation, enzyme activity and transcriptional response. BIORESOURCE TECHNOLOGY 2023; 372:128700. [PMID: 36738978 DOI: 10.1016/j.biortech.2023.128700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The nitrogen removal performance and biological mechanism of Platymonas helgolandica var. Tsingtaoensis (P. helgolandica) were investigated in treating mariculture wastewater under different light: dark (L:D) photoperiods. The growth of P. helgolandica was positively correlated with the photoperiods from 6L:18D to 15L:9D, and the highest photosynthetic activity appeared under 6L:18D photoperiod on day 3. P. helgolandica exhibited the highest removal efficiencies of total nitrogen and COD at 89 % and 93 % under 15L:9D photoperiod, respectively. NH4+-N assimilation was proportional to the photoperiods from 6L:18D to 15L:9D and longer illumination promoted NO2--N removal. However, the highest NO3--N reduction rate was achieved under 12L:12D photoperiod. The different nitrogen-transformed enzymatic activities were affected by photoperiod. Transcriptome revealed that unigenes were enriched in nitrogen metabolism and photosynthesis pathways, of which the functional gene expression was up-regulated significantly. This study provides insights into the optimization of photoperiod for mariculture wastewater treatment by P. helgolandica.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chenguang Song
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuailing Lu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiming Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
High-efficient removal of ammonium and co-production of protein-rich biomass from ultrahigh-NH4+ industrial wastewater by mixotrophic Galdieria sulphuraria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Chen J, Dai L, Mataya D, Cobb K, Chen P, Ruan R. Enhanced sustainable integration of CO 2 utilization and wastewater treatment using microalgae in circular economy concept. BIORESOURCE TECHNOLOGY 2022; 366:128188. [PMID: 36309175 DOI: 10.1016/j.biortech.2022.128188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.
Collapse
Affiliation(s)
- Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Dmitri Mataya
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
9
|
Han T, Han X, Ye X, Xi Y, Zhang Y, Guan H. Applying mixotrophy strategy to enhance biomass production and nutrient recovery of Chlorella pyrenoidosa from biogas slurry: An assessment of the mixotrophic synergistic effect. BIORESOURCE TECHNOLOGY 2022; 366:128185. [PMID: 36307028 DOI: 10.1016/j.biortech.2022.128185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Using biogas slurry to cultivate microalgae can simultaneously obtain microalgal biomass and allow nutrient recovery. Mixotrophic microalgae are widely recognized for their high biomass accumulation and low light dependence, making it possible to overcome the drawbacks of photoautotrophy. In this study, three complete metabolic modes of photoautotrophy, heterotrophy, mixotrophy and two incomplete metabolic modes with the addition of diuron and rotenone were applied to investigate Chlorella pyrenoidosa growth in biogas slurry. The results showed that the mixotrophic group obtained 1.15 g/L biomass, 30 % starch content, 99.40 % ammonium removal and 81.69 % total phosphorus removal, which were highly promoted compared to the others. The decline in chlorophyll, the simultaneous downregulation of Rubisco and citrate synthase and the increase in the actual quantum yield of PSII under mixotrophy revealed a synergistic effect: the complementation of photophosphorylation and oxidative phosphorylation greatly contributed to maximizing energy metabolism efficiency and minimizing energy dissipation loss.
Collapse
Affiliation(s)
- Ting Han
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaotan Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaomei Ye
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Yonglan Xi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yingpeng Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Huibo Guan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Mubashar M, Zhang J, Liu Q, Chen L, Li J, Naveed M, Zhang X. In-situ removal of aquaculture waste nutrient using floating permeable nutrient uptake system (FPNUS) under mixotrophic microalgal scheme. BIORESOURCE TECHNOLOGY 2022; 363:128022. [PMID: 36167173 DOI: 10.1016/j.biortech.2022.128022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The current study investigated the in-situ aquaculture nutrient removal from fish tanks using mixotrophic Scenedesmus in a floating permeable nutrient uptake system (FPNUS) and compared with nutrient concentration in control, autotrophy, and bacterial nitrogen removal (BNR) treatments. In the first run, results were not as expected due to the missing PO4--P as the mixotrophic growth in flasks with PO4--P was 55.86% more than growth in aquaculture wastewater. With PO4--P addition in FPNUS, average and maximum removal rates under mixotrophy reached 2.53 and 10.96 mg/(L·d), respectively. The average mixotrophic removal rate was 40.31 and 81.42% higher than removal rates under autotrophy and BNR. Daily nutrient loading and removal were matched only in mixotrophy after fourth day of culture. These results show the great potential for nutrient removal using mixotrophic microalgae-based FPNUS due to its high efficiency, capability of in-situ treatment and nutrient recycling through biomass utilization.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junjie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingling Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
11
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
12
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
13
|
Bai Y, Li Y, Tang Y, Zhou R, Fan Y. Rhizopus oryzae fermentation wastewater nutrient removal coupling protein fodder production by employing Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2022; 362:127858. [PMID: 36037840 DOI: 10.1016/j.biortech.2022.127858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The scenario was to investigate feasibilities of employing Chlorella pyrenoidosa for Rhizopus oryzae fermentation wastewater nutrient removal coupling protein fodder production. Results stated that TN, TP, NH3-N, COD, BOD removal reached 99.79%, 94.70%, 98.80%, 97.60%, 99.60% to acquire discharge permit under fed-batch manipulation, whilst the peaked protein yield (19.94 g/L) was 6.04-fold more than batch manipulation. Rhizopus oryzae fermentation wastewater feeding C. pyrenoidosa was praised as high-quality protein not only with 26.78% essential amino acids and essential amino acids/nonessential amino acids value of 0.84 but also pathogenic bacteria and heavy metal loads complying with fodder standards. In vitro digestibility of dry matter, protein, lipid, and starch achieving 80.07%, 92.13%, 95.93%, 91.9% and bioavailability of polypeptides, triglycerides, free fatty acids, and oligosaccharides displaying 98.67%, 87.12%, 93.86%, 30.21%, which were roughly-equivalent to corn/soybean fodder. The findings formed exemplifications in utilizing other microalgal systems for wastewater nutrient removal coupling chemicals production.
Collapse
Affiliation(s)
- Yanan Bai
- Department of Food Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Yuqin Li
- Department of Food Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, China.
| | - Yufang Tang
- Department of Food Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Rong Zhou
- Department of Food Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Yiwen Fan
- Department of Food Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
14
|
Young EB, Reed L, Berges JA. Growth parameters and responses of green algae across a gradient of phototrophic, mixotrophic and heterotrophic conditions. PeerJ 2022; 10:e13776. [PMID: 35891646 PMCID: PMC9308967 DOI: 10.7717/peerj.13776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Many studies have shown that algal growth is enhanced by organic carbon and algal mixotrophy is relevant for physiology and commercial cultivation. Most studies have tested only a single organic carbon concentration and report different growth parameters which hampers comparisons and improvements to algal cultivation methodology. This study compared growth of green algae Chlorella vulgaris and Chlamydomonas reinhardtii across a gradient of photoautotrophic-mixotrophic-heterotrophic culture conditions, with five acetate concentrations. Culture growth rates and biomass achieved were compared using different methods of biomass estimation. Both species grew faster and produced the most biomass when supplied with moderate acetate concentrations (1-4 g L-1), but light was required to optimize growth rates, biomass yield, cell size and cell chlorophyll content. Higher acetate concentration (10 g L-1) inhibited algal production. The choice of growth parameter and method to estimate biomass (optical density (OD), chlorophyll a fluorescence, flow cytometry, cell counts) affected apparent responses to organic carbon, but use of OD at 600, 680 or 750 nm was consistent. There were apparent trade-offs among exponential growth rate, maximum biomass, and culture time spent in exponential phase. Different cell responses over 1-10 g L-1 acetate highlight profound physiological acclimation across a gradient of mixotrophy. In both species, cell size vs cell chlorophyll relationships were more constrained in photoautotrophic and heterotrophic cultures, but under mixotrophy, and outside exponential growth phase, these relationships were more variable. This study provides insights into algal physiological responses to mixotrophy but also has practical implications for choosing parameters for monitoring commercial algal cultivation.
Collapse
Affiliation(s)
- Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Lindsay Reed
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - John A. Berges
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| |
Collapse
|
15
|
Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, Bonnarme P, Minervini F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022; 11:2065. [PMID: 35885308 PMCID: PMC9319875 DOI: 10.3390/foods11142065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.
Collapse
Affiliation(s)
- Mariagrazia Molfetta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Etiele G. Morais
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Luisa Barreira
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Pascal Bonnarme
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| |
Collapse
|
16
|
Gao H, Manishimwe C, Yang L, Wang H, Jiang Y, Jiang W, Zhang W, Xin F, Jiang M. Applications of synthetic light-driven microbial consortia for biochemicals production. BIORESOURCE TECHNOLOGY 2022; 351:126954. [PMID: 35288267 DOI: 10.1016/j.biortech.2022.126954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microbial consortia provide a versatile and efficient platform for biochemicals production through the labor division. Especially, microbial communities composed of phototrophs and heterotrophs offer a promising alternative, as they can directly convert carbon dioxide (CO2) into chemicals. Within this system, photoautotrophic microbes can convert CO2 into organic carbon for microbial growth and metabolites synthesis by the heterotrophic partners. In return, heterotrophs can provide additional CO2 to support the growth of photoautotrophic microbes. However, the unmatched growing conditions, low stability and production efficiency of synthetic microbial consortia hinder their further applications. Thus, design and construction of mutualistic and stable synthetic light-driven microbial consortia are urgently needed. In this review, the progress of synthetic light-driven microbial consortia for chemicals production was comprehensively summarized. In addition, space-efficient synthetic light-driven microbial consortia in hydrogel system were reviewed. Perspectives on orderly distribution of light-driven microbial consortia associated with 3D printing technology in biomanufacturing were also addressed.
Collapse
Affiliation(s)
- Hao Gao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Clarisse Manishimwe
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lu Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hanxiao Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
17
|
Wang Q, Wei D, Luo X, Zhu J, Rong J. Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: From laboratory to pilot plant. BIORESOURCE TECHNOLOGY 2022; 348:126779. [PMID: 35104651 DOI: 10.1016/j.biortech.2022.126779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
To achieve ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella pyrenoidosa-based photo-fermentation, light-emitting diode (LED) spectrum was firstly evaluated in 5-L glass photo-fermenter with surrounding LED panels. Results showed that warm white LED was favorable to improve biomass yield and recovery rate of nutrients than mixed white LED. When scaling up from laboratory (50-L, 500-L) to pilot scale photo-fermenter with inner LED panels, the maximum recovery rates of NO3- (5.77 g L-1 d-1) and PO43- (0.44 g L-1 d-1) were achieved in 10,000-L photo-fermenter, along with high productivity of biomass (11.06 g L-1 d-1), protein (3.95 g L-1 d-1) and lipids (3.79 g L-1 d-1), respectively. This study demonstrated that photo-fermenter with inner warm white LED illumination is a superhigh-efficient system for nitrate and phosphate recovery with algal biomass coproduction, providing a promising application in pilot demonstration of wastewater bioremediation and facilitating novel facility development for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiaoying Luo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Junying Zhu
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| | - Junfeng Rong
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| |
Collapse
|
18
|
Zhou Y, He Y, Xiao X, Liang Z, Dai J, Wang M, Chen B. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species. BIORESOURCE TECHNOLOGY 2022; 343:125994. [PMID: 34757283 DOI: 10.1016/j.biortech.2021.125994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to establish the desired approach with two heterotrophic Chlorella species for ammonium sulfate (AS)-rich rare earth elements (REEs) wastewater treatment by heterotrophic cultivation. The results showed that these two Chlorella species treated by 6 g/L CaCO3 performed the best ability to remove NH4+-N and SO42- of REEs wastewater. Moreover, the established process performed similar features in REEs wastewater treatment by replacing CaCO3 with eggshell powder (ESP) and oyster shell powder (OSP) enriched in CaCO3. Furthermore, microalgae treated by ESP/OSP in a 10-L fermenter showed 837.39 mg/(L·d) NH4+-N and 1,820 mg/(L·d) SO42- removal rates. The developed kinetic models could be well fitted to the experimental data obtained by the 10-L fermenter. Taken together, the established process mediated with two Chlorella species and ESP/OSP by heterotrophic cultivation was the great potential for AS-rich REEs wastewater treatment in a cost-effective manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Zhibo Liang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China.
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| |
Collapse
|