1
|
Khanjani MH, Sharifinia M, Akhavan-Bahabadi M, Emerenciano MGC. Probiotics and Phytobiotics as Dietary and Water Supplements in Biofloc Aquaculture Systems. AQUACULTURE NUTRITION 2024; 2024:3089887. [PMID: 39697821 PMCID: PMC11655148 DOI: 10.1155/anu/3089887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Biofloc technology (BFT) is a relatively new microbial-based cultivation system that can be adopted to accomplish more sustainable aquaculture and circularity goals. This review explores aspects of BFT integrating the utilization of probiotics and phytobiotics as dietary and water supplements. This scientific-based snapshot unpacks some physiological pathways and brings a literature review on how these supplements can boost water quality, as well as aquatic species' growth, health, and survival. Probiotics, live microorganisms that confer health benefits on the host when administered in adequate dosage, are noted for their ability to bolster animal defenses and sustain water quality in farming conditions. Recent studies showcased that selected bacteria, yeast, and fungi, once added into biofloc-based systems can enhance animal performance, act as a tool for water quality management and protect fish and crustaceans against diseases. On the other hand, phytobiotics are additives sourced from plants that normally are added into compounded feeds and are known for their health and growth benefits in aquatic animals. These additives contain plant-based substances/extracts that play a key role to suppress inflammation, pathogens, and can also act as antioxidants. These selected ingredients can promote healthy gut microbiota, improve feed efficiency, and turn on genes responsible for immunity improving disease resistance of fish/shrimp. According to this review, the adoption of probiotics and phytobiotics in BFT can greatly increase farm outputs by producing healthier animals, as well as promoting growth and consistent yields. Lastly, this review showcases the importance of proper section of probiotics and phytobiotics in order to achieve a functioning BFT. Despite its numerous advantages, BFT faces several challenges, especially related to microbial management. Probiotics and phytobiotics are practical tools that can play a crucial role to obtain a more stable environment with a desirable microbial population in water and gut. Future directions in the field should focus on optimizing the utilization of these supplements for a more resilient and sustainable BFT aquaculture.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohammad Akhavan-Bahabadi
- National Research Center of Saline-Waters Aquatics, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Yazd, Iran
| | - Maurício Gustavo Coelho Emerenciano
- Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Livestock and Aquaculture Program, Aquaculture Systems Team, Bribie Island Research Centre, Woorim, Australia
| |
Collapse
|
2
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
3
|
Zhou S, Zhou X, Hua X, Yong Q, Liu D, Xu Y. Advances and prospection in preparations, bio-actives and applications of functional xylo-oligosaccharide. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 60:103297. [DOI: 10.1016/j.bcab.2024.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Simović M, Banjanac K, Veljković M, Nikolić V, López-Revenga P, Montilla A, Moreno FJ, Bezbradica D. Sunflower Meal Valorization through Enzyme-Aided Fractionation and the Production of Emerging Prebiotics. Foods 2024; 13:2506. [PMID: 39200433 PMCID: PMC11353406 DOI: 10.3390/foods13162506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, there has been a burgeoning interest in harnessing the potential of biomass and industry byproducts for the development of novel products and materials. In particular, this study explored the efficient valorization of sunflower meal (SFM), an underutilized byproduct of the oil extraction industry, usually discarded or used as low-value animal feed through enzyme-aided fractionation, specifically targeting the extraction and conversion of its abundant carbohydrate component, xylan, into emerging prebiotic compounds-xylo-oligosaccharides (XOSs)-which are recognized as promotors of a healthy gut microbiome and overall human wellbeing. An enzymatic treatment using Alcalase® 2.4 L was implemented for facilitating the recovery of a highly pure hemicellulosic fraction (92.2% carbohydrates) rich in β-(1→4)-linked xylose residues with arabinose and glucuronic acid substitutions (DP-xylan). A further enzymatic treatment of this substrate, using ROHALASE® SEP-VISCO under optimized conditions (70 °C, pH 6, 0.005% v/v enzyme concentration), produced 52.3% of XOSs with a polymerization degree (DP) less than 20 after two hours. Further analyses demonstrated that the majority of the obtained product had a DP less than 6, predominantly consisting of di- and trisaccharides (XOS2 and XOS3) without the significant generation of xylose. These findings highlight the significant potential of SFM for the generation of valuable prebiotic compounds in a sustainable manner.
Collapse
Affiliation(s)
- Milica Simović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegieva 4, 11000 Belgrade, Serbia;
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy, Karnegieva 4, 11000 Belgrade, Serbia; (K.B.); (M.V.)
| | - Milica Veljković
- Innovation Center of Faculty of Technology and Metallurgy, Karnegieva 4, 11000 Belgrade, Serbia; (K.B.); (M.V.)
| | - Valentina Nikolić
- Department of Food Technology and Biochemistry, Maize Research Institute, Slobodana Bajića 1, 11000 Belgrade, Serbia;
| | - Paula López-Revenga
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Antonia Montilla
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Francisco Javier Moreno
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegieva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Manicardi T, Baioni e Silva G, Longati AA, Paiva TD, Souza JPM, Pádua TF, Furlan FF, Giordano RLC, Giordano RC, Milessi TS. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries' Portfolios. Foods 2023; 12:3007. [PMID: 37628006 PMCID: PMC10453364 DOI: 10.3390/foods12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Xylooligosaccharides (XOS) are nondigestible compounds of great interest for food and pharmaceutical industries due to their beneficial prebiotic, antibacterial, antioxidant, and antitumor properties. The market size of XOS is increasing significantly, which makes its production from lignocellulosic biomass an interesting approach to the valorization of the hemicellulose fraction of biomass, which is currently underused. This review comprehensively discusses XOS production from lignocellulosic biomass, aiming at its application in integrated biorefineries. A bibliometric analysis is carried out highlighting the main players in the field. XOS production yields after different biomass pretreatment methods are critically discussed using Microsoft PowerBI® (2.92.706.0) software, which involves screening important trends for decision-making. Enzymatic hydrolysis and the major XOS purification strategies are also explored. Finally, the integration of XOS production into biorefineries, with special attention to economic and environmental aspects, is assessed, providing important information for the implementation of biorefineries containing XOS in their portfolio.
Collapse
Affiliation(s)
- Tainá Manicardi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Gabriel Baioni e Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Andreza A. Longati
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thiago D. Paiva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - João P. M. Souza
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Thiago F. Pádua
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thais S. Milessi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
6
|
Valladares-Diestra KK, de Souza Vandenberghe LP, Vieira S, Goyzueta-Mamani LD, de Mattos PBG, Manzoki MC, Soccol VT, Soccol CR. The Potential of Xylooligosaccharides as Prebiotics and Their Sustainable Production from Agro-Industrial by-Products. Foods 2023; 12:2681. [PMID: 37509773 PMCID: PMC10379617 DOI: 10.3390/foods12142681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, concerns about a good-quality diet have increased. Food supplements such as prebiotics have great nutritional and health benefits. Within the diverse range of prebiotics, xylooligosaccharides (XOs) show high potential, presenting exceptional properties for the prevention of systemic disorders. XOs can be found in different natural sources; however, their production is limited. Lignocellulosic biomasses present a high potential as a source of raw material for the production of XOs, making the agro-industrial by-products the perfect candidates for production on an industrial scale. However, these biomasses require the application of physicochemical pretreatments to obtain XOs. Different pretreatment methodologies are discussed in terms of increasing the production of XOs and limiting the coproduction of toxic compounds. The advance in new technologies for XOs production could decrease their real cost (USD 25-50/kg) on an industrial scale and would increase the volume of market transactions in the prebiotic sector (USD 4.5 billion). In this sense, new patents and innovations are being strategically developed to expand the use of XOs as daily prebiotics.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| | - Patricia Beatriz Gruening de Mattos
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| |
Collapse
|
7
|
Wainaina S, Taherzadeh MJ. Automation and artificial intelligence in filamentous fungi-based bioprocesses: A review. BIORESOURCE TECHNOLOGY 2023; 369:128421. [PMID: 36462761 DOI: 10.1016/j.biortech.2022.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
By utilizing their powerful metabolic versatility, filamentous fungi can be utilized in bioprocesses aimed at achieving circular economy. With the current digital transformation within the biomanufacturing sector, the interest of automating fungi-based systems has intensified. The purpose of this paper was therefore to review the potentials connected to the use of automation and artificial intelligence in fungi-based systems. Automation is characterized by the substitution of manual tasks with mechanized tools. Artificial intelligence is, on the other hand, a domain within computer science that aims at designing tools and machines with the capacity to execute functions that would usually require human aptitude. Process flexibility, enhanced data reliability and increased productivity are some of the benefits of integrating automation and artificial intelligence in fungi-based bioprocesses. One of the existing gaps that requires further investigation is the use of such data-based technologies in the production of food from fungi.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | |
Collapse
|
8
|
Valladares-Diestra KK, Porto de Souza Vandenberghe L, Soccol CR. Integrated xylooligosaccharides production from imidazole-treated sugarcane bagasse with application of in house produced enzymes. BIORESOURCE TECHNOLOGY 2022; 362:127800. [PMID: 36007765 DOI: 10.1016/j.biortech.2022.127800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The application of biorefinery concepts to produce different value-added biomolecules such as xylooligosaccharides (XOs) generates economical competitive, sustainable and environmentally friendly processes. The objective of this work was to develop an efficient imidazole-pretreatment process of sugarcane bagasse (SB) and the use of the obtained hemicellulose fraction in the production of XOs with the application of in house produced xylanolytic enzymes using SB as substrate, under a biorefinery approach. SB imidazole pretreatment allowed the recovery of a hemicellulose rich fraction (34%) with 91.2% of delignification. Xylanase production by Aspergillus niger reached 53.1 U·mL-1 at 120 h. The application of produced xylanases in the enzymatic hydrolysis of extracted xylan, allowed the production of 6.06 g·L-1 of XOs, where xylotriose represented >70%. Great perspectives are viewed for the implementation of mixed processes in a sustainable closed cycle to produce biomolecules with concomitant valorization of subproducts from SB chain.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-980, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-980, Brazil.
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-980, Brazil
| |
Collapse
|
9
|
Nagarajan S, Ranade VV. Pretreatment of milled and unchopped sugarcane bagasse with vortex based hydrodynamic cavitation for enhanced biogas production. BIORESOURCE TECHNOLOGY 2022; 361:127663. [PMID: 35872276 DOI: 10.1016/j.biortech.2022.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion can potentially valorise sugarcane bagasse to biogas and fertiliser. Pretreatment is however required to overcome recalcitrance and enhance the biogas yields. Literature reporting the investigation of various biomass pretreatments often use milled biomass as substrate rather than as-received fibrous biomass. This does not establish the true influence of the pretreatment type on biogas generation. Additionally, milling energy is also ignored when calculating net energy gains from enhanced biogas yields and are thus misleading. In this work, a vortex-based hydrodynamic cavitation device was used to enhance the biomethane yields from fibrous as-received biomass for the first time. Clear justification on why milled biomass must not be used as substrates for demonstrating the effect of pretreatment on biogas production is also discussed. The net energy gain from milled hydrodynamic cavitation pre-treated bagasse can be similar to as-received bagasse only when the specific milling energy is ≤700 kWh/ton.
Collapse
Affiliation(s)
- Sanjay Nagarajan
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Sustainable Environment Research Centre, University of South Wales, CF37 4BB, UK
| | - Vivek V Ranade
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Bernal Institute, University of Limerick, V94T9PX, Ireland.
| |
Collapse
|
10
|
Yan F, Tian S, Du K, Xue X, Gao P, Chen Z. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: A comprehensive review. Front Nutr 2022; 9:977548. [PMID: 36176637 PMCID: PMC9513447 DOI: 10.3389/fnut.2022.977548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic activities, which originate from lignocellulosic biomass and have attracted extensive attention from scholars in recent years. This paper summarizes the strategies used in the production of XOS, and introduces the raw materials, preparation methods, and purification technology of XOS. In addition, the biological characteristics and applications of XOS are also presented. The most commonly recommended XOS production strategy is the two-stage method of alkaline pre-treatment and enzymatic hydrolysis; and further purification by membrane filtration to achieve the high yield of XOS is required for prebiotic function. At the same time, new strategies and technologies such as the hydrothermal and steam explosion have been used as pre-treatment methods combined with enzymatic hydrolysis to prepare XOS. XOS have many critical physiological activities, especially in regulating blood glucose, reducing blood lipid, and improving the structure of host intestinal flora.
Collapse
Affiliation(s)
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | | | | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
11
|
Antoniêto ACC, Nogueira KMV, Mendes V, Maués DB, Oshiquiri LH, Zenaide-Neto H, de Paula RG, Gaffey J, Tabatabaei M, Gupta VK, Silva RN. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int J Biol Macromol 2022; 221:456-471. [PMID: 36070819 DOI: 10.1016/j.ijbiomac.2022.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Vanessa Mendes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Hermano Zenaide-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES 29047-105, Brazil
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland; BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
12
|
Kaushal J, Arya SK, Khatri M, Singh G, Izyan Wan Azelee N, Rajagopal R, Woong Chang S, Ravindran B, Kumar Awasthi M. Efficacious bioconversion of waste walnut shells to xylotetrose and xylopentose by free xylanase (Xy) and MOF immobilized xylanase (Xy-Cu-BTC). BIORESOURCE TECHNOLOGY 2022; 357:127374. [PMID: 35623605 DOI: 10.1016/j.biortech.2022.127374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production.
Collapse
Affiliation(s)
- Jyoti Kaushal
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Malaysia
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 19, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 19, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical an d Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The transglycosylation behavior and capacity of two clan GH-D α-galactosidases, BoGal36A from the gut bacterium Bacteroides ovatus and Aga27A from the guar plant, was investigated and compared. The enzymes were screened for the ability to use para-nitrophenyl-α-galactoside (pNP-Gal), raffinose and locust bean gum (LBG) galactomannan as glycosyl donors with the glycosyl acceptors methanol, propanol, allyl alcohol, propargyl alcohol and glycerol using mass spectrometry. Aga27A was, in general, more stable in the presence of the acceptors. HPLC analysis was developed and used as a second screening method for reactions using raffinose or LBG as a donor substrate with methanol, propanol and glycerol as acceptors. Time-resolved reactions were set up with raffinose and methanol as the donor and acceptor, respectively, in order to develop an insight into the basic transglycosylation properties, including the ratio between the rate of transglycosylation (methyl galactoside synthesis) and rate of hydrolysis. BoGal36A had a somewhat higher ratio (0.99 compared to 0.71 for Aga27A) at early time points but was indicated to be more prone to secondary (product) hydrolysis in prolonged incubations. The methyl galactoside yield was higher when using raffinose (48% for BoGal36A and 38% for Aga27A) compared to LBG (27% for BoGal36A and 30% for Aga27A).
Collapse
|
14
|
Zhang L, Zhang X, Lei F, Jiang J, Ji L. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO 2-assisted seawater system. BIORESOUR BIOPROCESS 2022; 9:34. [PMID: 38647821 PMCID: PMC10991134 DOI: 10.1186/s40643-022-00525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abundant seawater resources can replace the shortage of freshwater resources. The co-production of xylo-oligosaccharides and glucose from sugarcane bagasse by subcritical CO2-assisted seawater pretreatment was studied in this paper. We investigated the effects of pretreatment conditions of temperature, CO2 pressure and reaction time on the yield of xylo-oligosaccharides in subcritical CO2-assisted seawater systems. The maximum xylo-oligosaccharide yield of 68.23% was obtained at 165 °C/2 MPa/5 min. After further enzymatic hydrolysis of the solid residue, the highest glucose yield of 94.45% was obtained. In this system, there is a synergistic effect of mixed ions in seawater and CO2 to depolymerize xylan into xylo-oligosaccharides with a lower degree of polymerization. At the same time, the addition of CO2 increased the pore size and porosity of sugarcane bagasse, improved the efficiency of enzymatic hydrolysis and increased the yield of glucose. Therefore, this study provides a more environmentally friendly and sustainable process for the co-production of xylo-oligosaccharides and glucose from sugarcane bagasse, and improves the utilization of seawater resources.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Chen SJ, Chen X, Zhu MJ. Xylose recovery and bioethanol production from sugarcane bagasse pretreated by mild two-stage ultrasonic assisted dilute acid. BIORESOURCE TECHNOLOGY 2022; 345:126463. [PMID: 34896260 DOI: 10.1016/j.biortech.2021.126463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/13/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Pretreatment can improve biomass biodegradability. Here, a novel sugarcane bagasse (SCB) pretreatment process based on two-stage ultrasonic assisted dilute H2SO4 (TUDA) under mild conditions was reported. After optimization, the pretreatment was shown to significantly degrade hemicellulose (92.40%) and remove lignin (57.41%) of SCB, leading to reduction of inhibitors and an ethanol fermentation efficiency of 93.37% by SSCF under cellulase 10 FPU/g SCB and 30% pretreated SCB loading. Physical characterization revealed that two-stage ultrasonic could better disrupt SCB than traditional ultrasonic by amplifying the collapse effect and synergistically promoting lignin removal through dilute H2SO4. Furthermore, xylose was also effectively recovered from pretreatment supernatant by biochar derived from bagasse. This study established a simple and efficient pretreatment process for high value-added recycling of SCB from solid residue to pretreatment liquid.
Collapse
Affiliation(s)
- Sheng-Jie Chen
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yark and Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi 844006, People's Republic of China.
| |
Collapse
|
16
|
Kley Valladares-Diestra K, Porto de Souza Vandenberghe L, Ricardo Soccol C. A biorefinery approach for pectin extraction and second-generation bioethanol production from cocoa pod husk. BIORESOURCE TECHNOLOGY 2022; 346:126635. [PMID: 34971781 DOI: 10.1016/j.biortech.2021.126635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
A biorefinery approach was applied for pectin extraction, xylooligosaccharides' (XOs) and bioethanol production from cocoa pod husk (CPH) using citric acid-assisted hydrothermal pretreatment. Under optimal conditions at 120° C, 10 min and 2% w.v-1 of citric acid a high pectin recovery (19.5%) with high content of uronic acids (41.9%) was obtained. In addition, the liquid fraction presented a XOs concentration of 50.4 mg.g-1 and 69.7 mg.g-1 of fermentable sugars. Enzymatic hydrolysis of solid fraction showed glucan conversion of 60%. Finally, the hydrothermal and enzymatic hydrolysates of CPH were used in bioethanol production by Candida tropicalis and Saccharomyces cerevisiae, reaching 30.9 g and 45.2 g of bioethanol per kg of CPH, respectively. An environmentally friendly and rapid pretreatment method was development for pectin extraction, XOS and second-generation bioethanol production from CPH with great perspectives for the application of these biomolecules in food and bioenergy industry.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil.
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil
| |
Collapse
|
17
|
Valladares-Diestra KK, Porto de Souza Vandenberghe L, Zevallos Torres LA, Zandoná Filho A, Lorenci Woiciechowski A, Ricardo Soccol C. Citric acid assisted hydrothermal pretreatment for the extraction of pectin and xylooligosaccharides production from cocoa pod husks. BIORESOURCE TECHNOLOGY 2022; 343:126074. [PMID: 34606920 DOI: 10.1016/j.biortech.2021.126074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The main purpose of this work was the development of a new citric acid assisted hydrothermal pretreatment of cocoa pod husks (CPH), which has not yet been exploited for pectin recovery. CPH́s pectin recovery was improved with concomitant production of xylooligosaccharides (XOS) through efficient enzymatic hydrolysis of the solid fraction. A central composite experimental design was planned to analyze the effect of pretreatment conditions. Under optimal conditions at 120 °C, 10 min and 2% w.v-1, the recovery of pectin accounted for 19.3% of the biomass submitted to pretreatment with 52.2% of methyl esterification degree. Additionally, 51.9 mg.g-1 of XOS were also produced. The enzymatic conversion efficiency of the cellulosic fraction was 58.9%, leading to a production of 92.4 kg of glucose per ton of CPH. Great perspectives were observed in the implementation of CPH hydrothermal pretreatment for the production of value-added biomolecules under a biorefinery concept.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil.
| | - Luis Alberto Zevallos Torres
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Arion Zandoná Filho
- Department of Chemical Engineering, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| |
Collapse
|
18
|
Potential application of dextranase produced by Penicillium aculeatum in solid-state fermentation from brewer's spent grain in sugarcane process factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Effect of Dietary Sugarcane Bagasse Supplementation on Growth Performance, Immune Response, and Immune and Antioxidant-Related Gene Expressions of Nile Tilapia ( Oreochromis niloticus) Cultured under Biofloc System. Animals (Basel) 2021; 11:ani11072035. [PMID: 34359162 PMCID: PMC8300095 DOI: 10.3390/ani11072035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Supplementation of agriculture by-product as functional feed additives in combination with biofloc technology (a sustainable and environmentally friendly technology) has recently gained much attention in aquaculture. In the present study, sugarcane bagasse powder can possibly be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression. Abstract We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB) on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at 10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg−1 for 8 weeks. Our results demonstrated that the dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg−1 significantly ameliorated FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes in FCR and survivability were observed between the SB supplemented diets and the control (basal diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005) in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control. However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP, and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05). IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression in Nile tilapia.
Collapse
|