1
|
Chauhan AS, Chen CW, Yadav H, Parameswaran B, Singhania RR, Dong CD, Patel AK. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2955-2967. [PMID: 37786601 PMCID: PMC10542083 DOI: 10.1007/s13197-023-05740-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 10/04/2023]
Abstract
Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.
Collapse
Affiliation(s)
- Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Hema Yadav
- Plant Quarantine Division, National Bureau of Plant Genetic Resources, ICAR-NBPGR, Pusa, New Delhi 110012 India
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| |
Collapse
|
2
|
Martinez-Burgos WJ, Porto de Souza Vandenberghe L, Karp SG, Murawski de Mello AF, Thomaz Soccol V, Soccol CR. Microbial lipid production from soybean hulls using Lipomyces starkeyi LPB53 in a circular economy. BIORESOURCE TECHNOLOGY 2023; 372:128650. [PMID: 36682478 DOI: 10.1016/j.biortech.2023.128650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Soybean hulls are lignocellulosic residuesgeneratedinthe industrial processing of soybean, representing about 5 % of the mass of the whole bean. This by-product isan importantsource of polymers suchas cellulose(34 %) and hemicellulose (11 %),which could bevalorizedvia biotechnology to improvethe economic returnof the oilseed chain. In the present work,soybean hulls were evaluated as a carbon sourcefor biolipid productionbyLipomycesstarkeyi LPB 53. Initially the hulls were treated physicochemically and enzymatically to obtain fermentable sugars. Subsequently, biomass growth was evaluated using different nitrogen sources andthe lipid production was optimized, reaching a maximum cell biomass concentration of 26.5 g/L with 42.5 % of lipids. Around 65 % of the xylose content was consumed.The obtained oil wasmajorlycomposed of oleic, palmitic, palmitoleic, linoleic and stearic fatty acids in a proportion of 54 %, 32 %, 4 %, 3 % and 2 %, respectively.
Collapse
Affiliation(s)
- Walter J Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Guo P, Dong L, Wang F, Chen L, Zhang W. Deciphering and engineering the polyunsaturated fatty acid synthase pathway from eukaryotic microorganisms. Front Bioeng Biotechnol 2022; 10:1052785. [DOI: 10.3389/fbioe.2022.1052785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important nutrients that play important roles in human health. In eukaryotes, PUFAs can be de novo synthesized through two independent biosynthetic pathways: the desaturase/elongase pathway and the PUFA synthase pathway. Among them, PUFAs synthesized through the PUFA synthase pathway typically have few byproducts and require fewer reduction equivalents. In the past 2 decades, numerous studies have been carried out to identify, analyze and engineer PUFA synthases from eukaryotes. These studies showed both similarities and differences between the eukaryotic PUFA synthase pathways and those well studied in prokaryotes. For example, eukaryotic PUFA synthases contain the same domain types as those in prokaryotic PUFA synthases, but the number and arrangement of several domains are different; the basic functions of same-type domains are similar, but the properties and catalytic activities of these domains are somewhat different. To further utilize the PUFA synthase pathway in microbial cell factories and improve the productivity of PUFAs, many challenges still need to be addressed, such as incompletely elucidated PUFA synthesis mechanisms and the difficult genetic manipulation of eukaryotic hosts. In this review, we provide an updated introduction to the eukaryotic PUFA synthase pathway, summarize the functions of domains and propose the possible mechanisms of the PUFA synthesis process, and then provide future research directions to further elucidate and engineer the eukaryotic PUFA synthase pathway for the maximal benefits of humans.
Collapse
|
4
|
Zeng S, Lu Y, Pan X, Ling X. A Novel Bioflocculant Produced by Cobetia marina MCCC1113: Optimization of Fermentation Conditions by Response Surface Methodology and Evaluation of Flocculation Performance when Harvesting Microalgae. Pol J Microbiol 2022; 71:341-351. [PMID: 36185026 PMCID: PMC9608167 DOI: 10.33073/pjm-2022-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/03/2022] [Indexed: 11/06/2022] Open
Abstract
A preliminary study was carried out to optimize the culture medium conditions for producing a novel microbial flocculant from the marine bacterial species Cobetia marina. The optimal glucose, yeast extract, and glutamate contents were 30, 10, and 2 g/l, respectively, while the optimal initial pH of the culture medium was determined to be 8. Following response surface optimization, the maximum bioflocculant production level of 1.36 g/l was achieved, which was 43.40% higher than the original culture medium. Within 5 min, a 20.0% (v/v) dosage of the yielded bioflocculant applied to algal cultures resulted in the highest flocculating efficiency of 93.9% with Spirulina platensis. The bioflocculant from C. marina MCCC1113 may have promising application potential for highly productive microalgae collection, according to the findings of this study. ![]()
Collapse
Affiliation(s)
- Siyu Zeng
- Department of Pharmacy and Laboratory, Huizhou Health Sciences Polytechnic , Huizhou , China
| | - Yinghua Lu
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Xueshan Pan
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Xueping Ling
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| |
Collapse
|
5
|
Hosseini H, Al-Jabri HM, Moheimani NR, Siddiqui SA, Saadaoui I. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review. J Basic Microbiol 2022; 62:1030-1043. [PMID: 35467037 DOI: 10.1002/jobm.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The increase in the human population causes an increase in the demand for nutritional supplies and energy resources. Thus, the novel, natural, and renewable resources became of great interest. Here comes the optimistic role of bioprospecting as a promising tool to isolate novel and interesting molecules and microorganisms from the marine environment as alternatives to the existing resources. Bioprospecting of marine metabolites and microorganisms with high biotechnological potentials has gained wide interest due to the variability and richness of the marine environment. Indeed, the existence of extreme conditions that increases the adaptability of marine organisms, especially planktons, allow the presence of interesting biological species that are able to produce novel compounds with multiple health benefits and high economical value. This review aims to provide a comprehensive overview of marine microbial bioprospecting as a growing field of interest. It emphasizes functional bioprospecting that facilitates the discovery of interesting metabolites. Marine bioprospecting was also discussed from a legal aspect for the first time, focusing on the shortcomings of international law. We also summarized the challenges facing bioprospecting in the marine environment including economic feasibility issues.
Collapse
Affiliation(s)
- Hoda Hosseini
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hareb M Al-Jabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Navid R Moheimani
- Algae R&D Centre, Harry Buttler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simil A Siddiqui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Soccol CR, Colonia BSO, de Melo Pereira GV, Mamani LDG, Karp SG, Thomaz Soccol V, Penha RDO, Dalmas Neto CJ, César de Carvalho J. Bioprospecting lipid-producing microorganisms: From metagenomic-assisted isolation techniques to industrial application and innovations. BIORESOURCE TECHNOLOGY 2022; 346:126455. [PMID: 34863851 DOI: 10.1016/j.biortech.2021.126455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, lipid-producing microorganisms have been obtained via conventional bioprospecting based on isolation and screening techniques, demanding time and effort. Thus, high-throughput sequencing combined with conventional microbiological approaches has emerged as an advanced and rapid strategy for recovering novel oleaginous microorganisms from target environments. This review highlights recent developments in lipid-producing microorganism bioprospecting, following (i) from traditional cultivation techniques to state-of-the-art metagenomics approaches; (ii) related topics on workflow, next-generation sequencing platforms, and knowledge bioinformatics; and (iii) biotechnological potential of the production of docosahexaenoic acid (DHA) by Aurantiochytrium limacinum, arachidonic acid (ARA) by Mortierella alpina and biodiesel by Rhodosporidium toruloides. These three species have been shown to be highly promising and studied in research articles, patents and commercialized products. Trends, innovations and future perspectives of these microorganisms are also addressed. Thus, these microbial lipids allow the development of food, feed and biofuels as alternative solutions to animal and vegetable oils.
Collapse
Affiliation(s)
- Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil.
| | | | | | - Luis Daniel Goyzueta Mamani
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Rafaela de Oliveira Penha
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Carlos José Dalmas Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Júlio César de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| |
Collapse
|