1
|
Wan P, Liu Y, Li B, Yu X, Jiang L, Lv W. Yeast-enhanced activated sludge for improved nitrogen removal in wastewater treatment: Focus on dissolved organic nitrogen degradation. ENVIRONMENTAL RESEARCH 2024; 263:120181. [PMID: 39424030 DOI: 10.1016/j.envres.2024.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Dissolved organic nitrogen (DON) in effluent of wastewater treatment plants (WWTP), particularly hydrophilic DON, is usually more effective than dissolved inorganic nitrogen (DIN) in stimulating phytoplankton growth and increases the risk of eutrophication in receiving waterbodies. Proteins, amino acids, and nucleic acids, which are the main sources of DON in the effluent, are produced during the hydrolysis of extracellular polymeric substances (EPS) in activated sludge. Herein, a yeast strain Candida tropicalis O2, which was highly efficient in degrading DON in EPS was screened. Within 48-h batch experiments, the DON removal rates of the extracted hydrophilic and hydrophobic EPS reached 68.26% and 59.27%, respectively. During the continuous 35-day operation of sequencing batch bioreactor (SBR) fed with synthetic wastewater, the yeast-enhanced activated sludge (AS-Y) reactor demonstrated a marked improvement in removing various pollutants compared to the traditional activated sludge (AS) reactor. Specifically, DON removal increased by 1.53 mg/L (24.75%), hydrophilic DON by 1.24 mg/L (27.13%), hydrophobic DON by 0.28 mg/L (12.08%), and COD removal by 4.04 mg/L (6.48%). Although the DIN removal decreased by 0.38 mg/L (3.86%), it did not attenuate the overall TN removal from the system, and an additional TN reduction of 1.15 mg/L (7.13%) was achieved. Metagenomic analysis showed that adding strain O2 slightly inhibited the DIN metabolism, and the relative abundances of napB, nirK/S, norB/C, and nosZ involved in denitrification somewhat decreased. Kyoto Encyclopedia of Genes and Genomes and Carbohydrate-Active Enzymes annotations revealed that adding strain O2 promoted amino acid and carbohydrate metabolism. The increased relative abundance of Candida indicated that strain O2 was able to colonize the sludge in AS-Y reactor, which was conducive to synergistic interactions with other microorganisms. This study provided a novel method for in situ improving nitrogen removal in WWTP and reducing the eutrophication risk of the effluent to receiving waterbodies.
Collapse
Affiliation(s)
- Pengfei Wan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Ying Liu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Bo Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Xiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Wenzhou Lv
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Wang L, Li X, Huang J, Tuo J, Li X, Qian X, Abolfath S. The operating performance of Modified Basalt Fibers (MBF) bio-nest reactor exposed to nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136042. [PMID: 39378593 DOI: 10.1016/j.jhazmat.2024.136042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Biological nests made of Modified Basalt Fiber (MBF bio-nests) serve as effective carriers for enhancing wastewater treatment. However, little is known about their performance when exposed to nano-plastics. This study investigates the decontamination efficiency and microbial functionality of four types of MBF and traditional Basalt Fibers (BF) as carriers in contact oxidation reactors. Compared to BF, MBF demonstrated superior growth effects and biocompatibility within the bio-nest. Ca-MBF and Mn-MBF bio-nests exhibited the highest and most uniform absorption capacities, respectively, alongside increased secretion of total Extracellular Polymeric Substances (EPS) and higher Protein to Sugar (PN/PS) ratios. In sewage environments, all MBF groups displayed stable performance in removing NH4+-N and COD. Significant removal of TN and TP was notably observed in Mn-MBF treatments. Mn and Ca treatments predominantly influenced the Proteobacteria and Bacteroidetes phyla, crucial for nitrogen and phosphorus removal. Following exposure to nano-plastics, Mn-MBF and Ca-MBF treatments maintained high decontamination efficiency, particularly for TP and COD (48.64 % to 57.78 % and 90.91 % to 92.89 %, respectively). The significant removal of NH4+-N and TP only occurred in Mn-MBF and Ca-MBF treatments, which stimulated the growth of bacteria resistant to nano-plastics. Key genera such as Zoogloea and Meganema were identified as dominant, contributing to organic matter decomposition, EPS secretion, biofilm condensation, and enhanced microbial attachment. The findings underscore the structural stability enhancement of Mn-MBF and Ca-MBF bio-nests in contact oxidation reactors, demonstrating their resilience against nano-plastic pollution.
Collapse
Affiliation(s)
- Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co. Ltd., Nanjing 210019, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Jing Tuo
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xinwei Li
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Soroush Abolfath
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
3
|
Qian X, Huang J, Li X, Cao C, Yao J. Novel insights on ecological responses of short- and long-chain perfluorocarboxylic acids in constructed wetlands coupled with modified basalt fiber bio-nest. CHEMOSPHERE 2024; 365:143384. [PMID: 39306106 DOI: 10.1016/j.chemosphere.2024.143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
The first investigation based on constructed wetlands coupled with modified basalt fiber bio-nest (MBF-CWs) was performed under exposure of short- and long-chain perfluorocarboxylic acids (PFCAs). In general, both perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) caused significant decline of chemical oxygen demand removal by 10.83 % and 4.73 %. However, only PFOA led to marked inhibition on total phosphorus removal by 12.51 % in whole duration. Suppression of removal performance resulted from side impacts on microbes by PFOA. For instance, activities of key enzymes like dehydrogenase (DHA), urease (URE), and phosphatase (PST) decreased by 52.77 %, 40.70 %, and 56.94 % in maximum under PFOA stress, while URE could alleviate over time. By contrast, distinct inhibition was only found on PST in later phases with PFBA exposure. PFCAs had adverse influence on alpha diversity of MBF-CWs, particularly long-chain PFOA. Both PFCAs caused enrichment of Proteobacteria, owing to increase of Gammaproteobacteria and Plasticicumulans by 22.04-35.79 % and 22.91-219.77 %. Nevertheless, some dominant phyla (like Bacteroidota and Acidobacteriota) and genera (like SC-I-84, Thauera, Subgroup_10, and Ellin6067) were only suppressed by PFOA, causing more hazards to microbial decontamination than PFBA did. As for plants, chlorophyll contents tend to decrease with PFOA treatment. Whereas, higher antioxidase activities and more lipid peroxidation products were uncovered in PFOA group, demonstrating more reactive oxygen species brought by long-chain PFCAs. This work offered new findings about ecological effects of MBF-CWs under PFCAs exposure, evaluating stability and sustainability of MBF-CW systems to treat sewage containing complex PFCAs.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Xinwei Li
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
4
|
Han NN, Yang JH, Fan NS, Jin RC. Mechanistic insight into microbial interaction and metabolic pattern of anammox consortia on surface-modified biofilm carrier with extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2024; 407:131092. [PMID: 38986879 DOI: 10.1016/j.biortech.2024.131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The extremely slow growth rate of anaerobic ammonia oxidation (anammox) bacteria limits full-scale application of anammox process worldwide. In this study, extracellular polymeric substances (EPS)-coated polypropylene (PP) carriers were prepared for biofilm formation. The biomass adhesion rate of EPS-PP carrier was 12 times that of PP carrier, and EPS-PP achieved significant enrichment of E. coli BY63. The 120-day continuous flow experiment showed that the EPS-PP carrier accelerated the formation of anammox biofilm, and the nitrogen removal efficiency increased by 10.5 %. In addition, the abundance of Candidatus Kuenenia in EPS-PP biofilm was 27.1%. Simultaneously, amino acids with high synthesis cost and the metabolites of glycerophospholipids related to biofilm formation on EPS-PP biofilm were significantly up-regulated. Therefore, EPS-PP carriers facilitated the rapid formation of anammox biofilm and promoted the metabolic activity of functional bacteria, which further contributed to the environmental and economic sustainability of anammox process.
Collapse
Affiliation(s)
- Na-Na Han
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Qian X, Huang J, Cao C, Yao J, Wu Y, Wang L, Wang X. Modified basalt fiber filled in constructed wetland-microbial fuel cell: Comparison of performance and microbial impacts under PFASs exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135179. [PMID: 39003811 DOI: 10.1016/j.jhazmat.2024.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Basalt fiber (BF) with modification of iron (Fe-MBF) and calcium (Ca-MBF) were filled into constructed wetland-microbial fuel cell (CW-MFC) for innovative comparison of improved performance under perfluorooctanoic acid (PFOA) exposure. More enhancement on nitrogen and phosphorus removal was observed by Fe-MBF than Ca-MBF, with significant increase of ammonium (NH4+-N) removal by 3.36-5.66 % (p < 0.05) compared to control, even under PFOA stress. Markedly higher removal efficiency of PFOA by 4.76-8.75 % (p < 0.05) resulted from Fe-MBF, compared to Ca-MBF and control BF groups. Besides, superior electrochemical performance was found in Fe-MBF group, with maximum power density 28.65 % higher than control. Fe-MBF caused higher abundance of dominant microbes on electrodes ranged from phylum to family. Meanwhile, ammonia oxidizing bacteria like Nitrosomonas was more abundant in Fe-MBF group, which was positively correlated to NH4+-N and total nitrogen removal. Some other functional genera involved in denitrification and phosphorus-accumulation were enriched by Fe-MBF on electrodes and MBF carrier, including Dechloromonas, Candidatus_Competibacter, and Pseudomonas. Additionally, there were more biomarkers in Fe-MBF group, like Pseudarcobacter and Acidovorax, conducive to nitrogen and iron cycling. Most functional genes of nitrogen, carbon, and sulfur metabolisms were up-regulated with Fe-MBF filling, causing improvement on nitrogen removal.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Dong H, Tian Y, Lu J, Zhao J, Tong Y, Niu J. Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater. BIORESOURCE TECHNOLOGY 2024; 404:130916. [PMID: 38823560 DOI: 10.1016/j.biortech.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.
Collapse
Affiliation(s)
- Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China.
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
7
|
Qian X, Huang J, Ji X, Yan C, Cao C, Wu Y, Wang X. Modified basalt fibers boost performance of constructed wetlands: Comparison between surface coating and chemical grafting. BIORESOURCE TECHNOLOGY 2024; 397:130492. [PMID: 38408500 DOI: 10.1016/j.biortech.2024.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Modified basalt fiber (MBF) is a potential material that has been applied in wastewater treatment fields. In this study, superior performances of MBFs by calcium (Ca-MBF) and polyethyleneimine modification (PEI-MBF) were compared in constructed wetlands (CWs). Via chemical grafting, higher biofilm contents were observed on the surface of PEI-MBF, compared to Ca-MBF. Moreover, MBF increased key enzyme activities particularly in lower substrate layer, contributing to positive responses of microbial community in CWs. For instance, PEI-MBF boosted microbial richness and diversity and improved the abundances of denitrifying functional bacteria and biomarkers like Thauera, Vulcanibacillus, and Maritimimonas, probably promoting nitrate removal compared with Ca-MBF group. By contrast, Ca-MBF enriched more functional genera involved in nutrients removal, with the highest removal of ammonium (43.9 %), total nitrogen (66.2 %), and total phosphorus (37.1 %). Overall, this work provided new findings on improved performance of CWs with MBF.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaoyu Ji
- Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd, Shanghai 744000, China
| | - Chunni Yan
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Fang X, Yan Y, Xu Y, Huang H, Ren H. Advanced electrolysis sulfur-based biofiltration for simultaneous total nitrogen removal and estrogen toxicity reduction from low carbon-to-nitrogen ratio wastewater. BIORESOURCE TECHNOLOGY 2024; 396:130418. [PMID: 38325611 DOI: 10.1016/j.biortech.2024.130418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
A sulfur-based biofilter enhanced by phosphate modified activated carbon as particle electrodes was constructed to simultaneously remove total nitrogen (TN) and estrogen from low carbon-to-nitrogen ratio (C/N) wastewater containing 1 mg/L 17-alpha-ethinylestradiol (EE2). Results showed that the enhanced biofilter achieved outstanding performance in EE2 removal (93.2 %) and TN reduction (effluent < 5 mg/L), demonstrating robustness against C/N fluctuations. It was noteworthy that it successfully reduced both acute toxicity (59.5 %) and estrogenic activity (88.6 %). Comprehensive characterization investigations and microbial community structure analysis revealed that enhanced electron transfer and increased microbial abundance likely contributed to improved biofilter performance. Core microorganisms, such as Pseudomonas and Chryseobacterium were identified as key contributors to synergistic estrogen degradation and denitrification. This study presented a feasible and promising strategy of combined process with three-dimensional electrodes and sulfur-based biofilter, highlighting substantial potential for advanced purification and safe reuse of wastewater.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujie Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
9
|
Tripathi P, Tiwari S, Sonwani RK, Singh RS. Assessment of biodegradation kinetics and mass transfer aspects in attached growth bioreactor for effective treatment of Brilliant green dye from wastewater. BIORESOURCE TECHNOLOGY 2023; 381:129111. [PMID: 37137445 DOI: 10.1016/j.biortech.2023.129111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
In this study, Bacillus licheniformis immobilized with low-density polyethylene (LDPE) was employed to degrade Brilliant Green (BG) dye from wastewater in a packed bed bioreactor (PBBR). Bacterial growth and extracellular polymeric substance (EPS) secretion were also assessed under different concentrations of BG dye. The impacts of external mass transfer resistance on BG biodegradation were also evaluated at different flow rates (0.3 - 1.2 L/h). A new mass transfer correlation [Formula: see text] was proposed to study the mass transfer aspects in attached-growth bioreactor. The intermediates, namely 3- dimethylamino phenol, benzoic acid, 1-4 benzenediol, and acetaldehyde were identified during the biodegradation of BG and, subsequently degradation pathway was proposed. Han - Levenspiel kinetics parameters μmax and Ks were found to be 0.185 per day and 115 mg/L, respectively. The new insight into mass transfer and kinetics support the design of efficiently attached growth bioreactor to treat a wide range of pollutants.
Collapse
Affiliation(s)
- Pranjal Tripathi
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sonam Tiwari
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|