1
|
Hou Z, Dong W, Wang H, Zhao Z, Li Y, Liu H, Shi K, Liang Q, Peng Y. Rapid start-up of mainstream partial denitrification /anammox and enhanced nitrogen removal through inoculation of precultured biofilm for treating low-strength municipal sewage. BIORESOURCE TECHNOLOGY 2024; 411:131320. [PMID: 39173960 DOI: 10.1016/j.biortech.2024.131320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study investigated the rapid start-up of mainstream partial denitrification coupled with anammox (PD/A) and nitrogen removal performance by inoculating precultured PD/A biofilm. The results showed mainstream PD/A in the anaerobic-anoxic-aerobic (A2O) process was rapidly established within 30 days. Nitrogen removal efficiency (NRE) improved by 23.8 % contrasted to the traditional A2O process. The mass balance showed that anammox contribution to total nitrogen (TN) removal were maintained at 37.9 %∼55.7 %, and reducing hydraulic retention time (HRT) strengthened simultaneously denitrification and anammox activity. The microbial community showed that the dominant bacteria such as denitrifying bacteria (DNBs) and glycogen accumulating organisms (GAOs) both in biofilm and flocculent sludge (floc), integrating with anammox bacteria (AnAOB) in biofilm might lead to enhanced nitrogen removal. Overall, this study offered a fast start-up strategy of mainstream PD/A with enhanced nitrogen removal, which are valuable for upgradation and renovation of existed municipal wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaiyuan Shi
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiyuan Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Ma Y, Li J, Zheng Z, Chen G, Wang H, Yue L, Li Q, Liu Y. Establishment and optimization of sulfur-based autotrophic-heterotrophic denitrification biofilters for advanced post-anaerobic treatment of effluent from kitchen wastewater and landfill leachate under low temperature. BIORESOURCE TECHNOLOGY 2024; 393:130155. [PMID: 38056681 DOI: 10.1016/j.biortech.2023.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Landfill leachate treatment is a major challenge in wastewater treatment. In this study, two sulfur-based autotrophic-heterotrophic denitrification biofilters (Ra biofilter with room-temperature molded filler and Rb biofilter with melt molded filler) were used to treat kitchen-landfill leachate at low temperatures. The effects of reflux ratio, concentrations of NaHCO3, and Na2S2O3 on the total nitrogen removal efficiency were analyzed, and based on response surface methodology, the optimum parameters were determined. After optimization, the total nitrogen removal efficiency for the Ra and Rb biofilters increased by 83% and 81%, respectively. Moreover, sulfur-based autotrophic denitrification accounted for more than 70% of the nitrogen removal in both biofilters. Based on high-throughput sequencing results, the functional bacteria exhibited high abundance in the Ra biofilter, indicating that the room-temperature molded filler favored the enrichment of functional bacteria. These findings were important for optimizing the operation of sulfur autotrophic-heterotrophic denitrification biofilters at low temperatures.
Collapse
Affiliation(s)
- Yuehua Ma
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Beijing University of Technology, Beijing 100124, China.
| | - Zhaoming Zheng
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Beijing University of Technology, Beijing 100124, China
| | - Gang Chen
- CUCDE Environmental Technology Co., Ltd, Beijing 100120, China
| | - Houbing Wang
- CUCDE Environmental Technology Co., Ltd, Beijing 100120, China
| | - Lei Yue
- CUCDE Environmental Technology Co., Ltd, Beijing 100120, China
| | - Qiang Li
- CUCDE Environmental Technology Co., Ltd, Beijing 100120, China
| | - Yifu Liu
- CUCDE Environmental Technology Co., Ltd, Beijing 100120, China
| |
Collapse
|
3
|
Cho K, Cho M, Kaiyrlinova S, Park J, Park S, Park N, Bae H. Improved regression model for anaerobic ammonium oxidation by repeated and prolonged batch assay under stressful salinity and pH conditions. BIORESOURCE TECHNOLOGY 2023; 390:129896. [PMID: 37863338 DOI: 10.1016/j.biortech.2023.129896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aim of this study was to propose repeated and prolonged batch (RPB) assay as a promising specific anammox activity (SAA) methodology assessing the anammox activity under stressed salinity and pH conditions. Response surface analysis (RSA) was used as a regression tool to evaluate statistical significance. The feasibility of RPB was investigated at 0 to 15 g-NaCl/L of salinity and pH 6 to 8 with reflecting the results of preliminary SAA. As a result, conventional SAA was statistically insignificant. In addition, the RSA results obtained from repeated batch did not meet the statistical significance despite ten times iterative reaction. Interestingly, the RPB assay (i.e., applied both repeated and prolonged reaction) was effective to obtain the reliable results. Candidadus Brocadia and Candidadus Jettenia were functional anammox microbiome during RPB. Outcomes of this study suggest that RPB assay can be applied to accurately determine the anammox activity under various stressful conditions.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Minkee Cho
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Shugyla Kaiyrlinova
- Department of Environmental Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Suin Park
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Nohback Park
- Marine and Fisheries Bio-resources Division, Ministry of Oceans and Fisheries, Government Complex, 5-Dong, 94, Dasom 2-Ro, Sejong 30110, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan-National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Yang D, Zuo J, Jiang C, Wang D, Gu L, Zhang S, Lu H, Wang D, Xu S, Bai Z, Zhuang X. Fast start-up of anammox process: Effects of extracellular polymeric substances addition on performance, granule properties, and bacterial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117836. [PMID: 37011530 DOI: 10.1016/j.jenvman.2023.117836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The slow startup is the major obstacle to the application of anaerobic ammonium oxidation (anammox) process in mainstream wastewater treatment. Extracellular polymeric substances (EPS) are one potential resource for stable anammox reactor operation. Response surface analysis was used to optimize the specific anammox activity (SAA) with the addition of EPS; SAA was maximum at a temperature of 35 °C and the EPS concentration of 4 mg/L. By comparing the nitrogen removal of anammox reactors with no EPS (R0), immobilized EPS (EPS-alginate beads) (R1), and liquid EPS (R2), we found that EPS-alginate beads significantly speed up the startup of anammox process and enable the start time to be shortened from 31 to 19 days. As a result of the higher MLVSS content, higher zeta potential, and lower SVI30, anammox granules of R1 exhibited a stronger capacity to aggregate. Moreover, EPS extracted from R1 had higher flocculation efficiencies than EPS derived from R0 and R2. Phylogenetic analysis of 16S rRNA genes revealed that the main anammox species in R1 is Kuenenia taxon. To clarify the relative significance of stochastic vs deterministic processes in the anammox community, neutral model and network analysis are employed. In R1, community assembly became more deterministic and stable than in other cultures. Our results show that EPS might inhibit heterotrophic denitrification and thereby promote anammox activity. This study suggested a quick start-up strategy for the anammox process based on resource recovery, which is helpful for environmentally sustainable and energy-efficient wastewater treatment.
Collapse
Affiliation(s)
- Dongmin Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jialiang Zuo
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danhua Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Likun Gu
- School of Environmental and Bioengineering, Henan Engineering University, Zhengzhou, 450052, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing, 100022, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu, 322000, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang P, Lu B, Chai X. Rapid start-up and long-term stable operation of the anammox reactor based on biofilm process: Status, challenges, and perspectives. CHEMOSPHERE 2023:139166. [PMID: 37295685 DOI: 10.1016/j.chemosphere.2023.139166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Anammox-biofilm processes have great potential for wastewater nitrogen removal, as it overcomes the slow growth and easy loss of AnAOB (anaerobic ammonium oxidation bacteria). Biofilm carrier is the core part of the Anammox-biofilm reactor and plays a key role in the start-up and long-term operation of the process. Therefore, the research on the biofilm carrier of Anammox-based process was summarized and discussed in terms of configurations and types. In the Anammox-biofilm process, fixed bed biofilm reactor is a relatively mature biofilm carrier configuration and has advantages in terms of nitrogen removal and long-term operational stability, while moving bed biofilm reactor has advantages in terms of start-up time. Although the long-term operational stability of fluidized bed biofilm reactor is good, its nitrogen removal performance needs to be improved. Among the different biofilm carrier categories, the inorganic biofilm carrier has an advantage in start-up time, due to the enhancement of the growth and metabolic of AnAOB by inorganic materials (such as carbon and iron). Anammox-based reactors using organic biofilm carriers, especially suspension carriers, are well-established and more stable in long-term operation. Composite biofilm carriers combine the advantages of several materials, but their complex preparation procedures lead to high costs. In addition, possible research directions for accelerating the start-up and keeping the long-term stable operation of Anammox reactor by biofilm process were highlighted. It is hoped to provide a possible pathway for the rapid start-up of Anammox-based process, and references for the optimization and promotion of process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Wang P, Lu B, Liu X, Chai X. Accelerating the granulation of anammox sludge in wastewater treatment with the drive of "micro-nuclei": A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160238. [PMID: 36402322 DOI: 10.1016/j.scitotenv.2022.160238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Anammox granule sludge (AnGS) has great potential in the field of wastewater nitrogen removal, but its development and promotion have been limited by the slow granulation speed and fragile operating stability. Based on the reviews about the AnGS formation mechanism in this paper, "micro-nuclei" was found to play an important role in the granulation of AnGS, and adding "micro-nuclei" directly into the reactor may be an efficient way to accelerate the formation of AnGS. Then, accelerating AnGS granulation with inert particles, multivalent positive ions, and broken granule sludge as "micro-nuclei" was summarized and discussed. Among inert particles, iron-based particles may be a more advantageous candidate for "micro-nuclei" due to their ability to provide attachment sites and release ferric/ferrous ions. The precipitations of multivalent positive ions are also a potential option for "micro-nuclei" that can be generated in-situ, but a suitable dosing strategy is necessary. About broken granular sludge, the broken active AnGS may have advantages in terms of anaerobic ammonium oxidation bacteria-affinity and granulation speed, while using inactive granular sludge as "micro-nuclei" can avoid interfering bacterial invasion and has a higher cost performance than broken active AnGS. In addition, possible research directions for accelerating the formation of AnGS by dosing "micro-nuclei" were highlighted. This paper is intended to provide a possible pathway for the rapid start-up of AnGS systems, and references for the optimization and promotion of the AnGS process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaoji Liu
- China Energy Conservation and Environmental Protection Group (CECEP) Feixi WTE Co., Ltd., Anhui 230000, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Wei Z, Li D, Li S, Hao T, Zeng H, Zhang J. Improving mechanical stability of anammox granules with organic stress by limited filamentous bulking. BIORESOURCE TECHNOLOGY 2023; 370:128558. [PMID: 36587769 DOI: 10.1016/j.biortech.2022.128558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Under organic stress, the limited filamentous bulking (FB) was demonstrated to improve anammox capability by inhibiting granule disintegration and washout. The accumulation of internal stress played a more important role than the adverse physicochemical properties (low viscoelasticity and hydrophobicity) of granules in limiting granular strength by consuming the granular elastic energy. Different from the floc-forming heterotrophic bacteria (HB) that stored its growth stress as internal stress by pushing the surrounded anammox micro-colonies outwards under the spatial constraint of elastic anammox "shell", the filamentous HB grew into a uniform network structure within granules, endowed granules low internal stress and acted as the granular skeleton due to its rich amyloid substance, which was benefited from the elimination of inhomogeneous growth and the consequent expansion competition for living space. Combined with the mechanical instability and sticking-spring models, controlling FB at limited level was effective for improving granular strength without affecting sludge-water separation.
Collapse
Affiliation(s)
- Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Wei Z, Li D, Li S, Hao T, Zeng H, Zhang J. Improving anammox performance by limited filamentous bulking for wastewater treatment with organic stress. BIORESOURCE TECHNOLOGY 2023; 369:128506. [PMID: 36535612 DOI: 10.1016/j.biortech.2022.128506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, the filamentous bulking was demonstrated to improve anammox capability and anammox bacteria (AnAOB) population density under organic stress. The selective heterotrophic bacteria (HB) washout that involved in shear detachment, enmeshment and biomass washout was triggered. The microbial spatial distribution and granular detachment properties revealed that the filamentous bulking transferred the "location advantage" of HB from granules interior to surface, and endowed granular surface low shear tolerance for shear detachment, ultimately resulted in selective HB detachment. The detached filaments-mediated enmeshment provided additional selective pressure for free HB-flocs, eventually achieving the retention time differentiation between AnAOB (34 - 141 days) and HB (3 - 15 days), and a high anammox population density. Controlling dissolved oxygen level was crucial for regulating sludge bulking. Collectively, the filamentous bulking was developed as an effective anti-organic stress strategy to broaden the application of granular anammox process in actual wastewater treatment.
Collapse
Affiliation(s)
- Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Zhang H, Zhang X, Wei D, Wen X, Zhou S, Li Y, Dong Y, Gong Y. Establishment of anammox coupled with sulfide-depending autotrophic denitrification process and its efficient pollutants removal performance. CHEMOSPHERE 2023; 313:137468. [PMID: 36481169 DOI: 10.1016/j.chemosphere.2022.137468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen and sulfur pollutants coexist in many industrial wastewaters, which may cause serious water pollution issues. In this study, Anammox coupled with sulfide-depending autotrophic denitrification process (coupling process) was established by adding sulfide to an Anammox system in a membrane bioreactor. Variations in nitrogen and sulfur removal performance, extracellular polymeric substances (EPS), key enzyme activities, and microbial components were analyzed. The sulfide in 25.0 mg L-1 successfully induced denitrification, and then helped establish the coupling process. This process achieved 96.1% TN removal and complete sulfide removal when the sulfide was increased to 100.0 mg L-1. The protein and polysaccharide in EPS gradually increased to 2.0 and 4.9 mg g-1 SS, respectively. The hydroxylamine oxidoreductase activity, Heme-c content, nitrite reductase activity, and nitrate reductase activity slightly decreased to 19.1 EU g-1 SS, 0.001 mmol g-1 SS, 0.002 μg min-1 mg-1 protein, and 0.005 μg min-1 mg-1 protein, respectively, indicating the slight suppression of sulfide in high concentration on the coupling process. However, after acclimatization, the Anammox and denitrifying bacteria interacted and cooperatively contributed to the simultaneous nitrogen and sulfur removal, with relative abundances of Thiobacillus-denitrifying bacteria and Candidatus Kuenenia-Anammox bacteria of 31.7% and 9.0%, respectively. The establishing strategy was proposed and then verified in another Anammox system, in which the coupling process was also established, with TN removal increasing from 73.4% to 82.5%.
Collapse
Affiliation(s)
- Hongli Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaoyu Wen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shijie Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yuqi Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yongen Dong
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yaoyao Gong
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| |
Collapse
|
11
|
The granular sludge membrane bioreactor: A new tool to enhance Anammox performance and alleviate membrane fouling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Xie J, Cao Q, An T, Mabruk A, Xie J, Chang Y, Guo M, Chen C. Small biochar addition enhanced anammox granular sludge system for practical wastewater treatment: Performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 363:127749. [PMID: 35940326 DOI: 10.1016/j.biortech.2022.127749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) granular sludge (AnGS) has poor strength and is prone to disintegration under complex environmental conditions, especially in the presence of complex organic carbon, which renders the Anammox process instable. Herein, with a mixture of landfill leachate and domestic sewage as wastewater, the effect on the properties of AnGS with two small particle size (0.1-0.2 mm) biochars (coconut and peach biochars) addition were investigated at different COD concentrations (150 mg·L-1, 200 mg·L-1, and 250 mg·L-1), as well as at different BOD/TN (B/N) (0.3 and 0.5). Results showed that the nitrogen removal efficiencies decreased from 89 % to 72 % as the COD concentration increased by 100 mg·L-1, while peach biochar reactor had better nitrogen removal performance. Excessive organic carbon supply inhibits AnAOB proliferation and B/N had the most significant effect on AnAOB (p < 0.05). The Polymerase Chain Reaction (PCR) indicated peach biochar reactor get higher activity of anammox-related functional genes (hzsA, hdh).
Collapse
Affiliation(s)
- Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianyi An
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Adams Mabruk
- School of Civil Engineering, National University of Ireland, Galway, GA, Ireland
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Menglei Guo
- Qingyuan County Sanitation Department, Lishui 323800, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Li D, Chen H, Gao X, Zhang J. Establishment and optimization of partial nitrification/anammox/partial nitrification/anammox (PN/A/PN/A) process based on multi-stage ammonia oxidation: Using response surface method as a tool. BIORESOURCE TECHNOLOGY 2022; 361:127722. [PMID: 35917857 DOI: 10.1016/j.biortech.2022.127722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The presence of nitrite-oxidizing bacteria (NOB) when treating low-strength ammonia wastewater was a challenge in the application of the PN/A process. The partial nitrification/ANAMMOX/partial nitrification/ANAMMOX (PN/A/PN/A) process based on multiple oxidations of ammonia was proposed to solve this problem. The influence of independent variables such as nitrite concentration was analyzed based on the response surface method (RSM). The model showed that nitrite concentration has an adverse impact on ammonia removal efficiency and nitrite accumulation rate. The model provided optimal parameters for the PN/A/PN/A process: the dissolved oxygen concentration was 0.60 mg/L, and the cycle duration was 90 min. Advanced nitrogen removal was achieved by maintaining the nitrite concentration below 10.0 mg/L. The nitrogen removal efficiency was 81.44 ± 4.15 %, and the nitrogen removal rate was 0.18 ± 0.02 kg N/(m3⋅d). Potential functions of microorganisms were analyzed by functional annotation of prokaryotic taxa (FAPROTAX) and the correlation network analysis was performed.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Hao Chen
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Xin Gao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Li D, Wei Z, Li S, Zeng H, Zhang J. Insight into dead space effects in granular anammox process with organic stress. BIORESOURCE TECHNOLOGY 2022; 359:127504. [PMID: 35738318 DOI: 10.1016/j.biortech.2022.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, the dead space was demonstrated to enhance the robustness of anammox nitrogen (N)-removal under organic stress. Different from the "yellow aggregates" that inhabit in mixing space were assembled by anammox and heterotrophic micro-colonies, the "red granules" that inhabit in dead space were formed by initial anammox aggregates that growing outward with higher anammox-activity, settleability and sludge stability, which endowed the dead space the role of "anammox-stabilizer" with prominent anammox N-removal contribution (63.8%) especially under high organic stress. The extracellular polymeric substances (EPS) dynamic balance test revealed that the high and stable EPS contents in dead space were attributed to the low EPS degradation rate and low proportion of heterotrophic bacteria (HB)-produced EPS, respectively. The weak hydrodynamic forces were the key to less HB-colonization and high granular stability in dead space. Retaining a certain dead space is necessary to prevent anammox bacteria (AnAOB) loss under organic stress.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|