1
|
Qin ZH, Siddiqui MA, Xin X, Mou JH, Varjani S, Chen G, Lin CSK. Identification of microplastics in raw and treated municipal solid waste landfill leachates in Hong Kong, China. CHEMOSPHERE 2024; 351:141208. [PMID: 38219986 DOI: 10.1016/j.chemosphere.2024.141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 μm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.
Collapse
Affiliation(s)
- Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiayin Xin
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Rywińska A, Tomaszewska-Hetman L, Lazar Z, Juszczyk P, Sałata P, Malek K, Kawecki A, Rymowicz W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. Int J Mol Sci 2024; 25:1475. [PMID: 38338753 PMCID: PMC10855631 DOI: 10.3390/ijms25031475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Citric acid and erythritol are obtained on an industrial scale using biotechnological methods. Due to the growing market demand for these products, research is underway to improve the process economics by introducing new microorganisms, in particular of the species Yarrowia lipolytica. The aim of this study was to evaluate transformants of Y. lipolytica for growth and ability to overproduce citric acids and erythritol from glycerol. The transformants were constructed by overexpressing glycerol kinase, methylcitrate synthase and mitochondrial succinate-fumarate transporter in the mutant Wratislavia 1.31. Next, strains were assessed for biosynthesis of citrate (pH 5.5; nitrogen limitation) and erythritol (pH 3.0; high osmotic pressure) from glycerol. Regardless of culture conditions strains, 1.31.GUT1/6 and 1.31.GUT1/6.CIT1/3 exhibited high rates of substrate utilization. Under conditions favoring citrate biosynthesis, both strains produced several percent more citrates, accompanied by higher erythritol production compared to the parental strain. During erythritol biosynthesis, the strain 1.31.GUT1/6.CIT1/3.E34672g obtained as a result of co-expression of all three genes stood out, producing 84.0 g/L of erythritol with yield and productivity of 0.54 g/g and 0.72 g/Lh, respectively, which places it in the group of the highest-ranked producers of erythritol among Y. lipolytica species.
Collapse
Affiliation(s)
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (P.S.); (A.K.); (W.R.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Ran M, Zhao G, Jiao L, Gu Z, Yang K, Wang L, Cao X, Xu L, Yan J, Yan Y, Xie S, Yang M. Copper Ion Mediates Yeast-to-Hypha Transition in Yarrowia lipolytica. J Fungi (Basel) 2023; 9:249. [PMID: 36836363 PMCID: PMC9966917 DOI: 10.3390/jof9020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Copper is an essential element that maintains yeast physiological function at low concentrations, but is toxic in excess. This study reported that Cu(II) significantly promoted the yeast-to-hypha transition of Yarrowia lipolytica in dose-dependent manner. Strikingly, the intracellular Cu(II) accumulation was drastically reduced upon hyphae formation. Moreover, we investigated the effect of Cu(II) on the physiological function of Y. lipolytica during the dimorphic transition and found that cellular viability and thermomyces lanuginosus lipase (TLL) were both influenced by the Cu(II)-induced yeast-to-hypha transition. Overall, hyphal cells survived better than yeast-form cells with copper ions. Furthermore, transcriptional analysis of the Cu(II)-induced Y. lipolytica before and after hyphae formation revealed a transition state between them. The results showed multiple differentially expressed genes (DEGs) were turned over between the yeast-to-transition and the transition-to-hyphae processes. Furthermore, gene set enrichment analysis (GSEA) identified that multiple KEGG pathways, including signaling, ion transport, carbon and lipid metabolism, ribosomal, and other biological processes, were highly involved in the dimorphic transition. Importantly, overexpression screening of more than thirty DEGs further found four novel genes, which are encoded by YALI1_B07500g, YALI1_C12900g, YALI1_E04033g, and YALI1_F29317g, were essential regulators in Cu-induced dimorphic transition. Overexpression of each of them will turn on the yeast-to-hypha transition without Cu(II) induction. Taken together, these results provide new insight to explore further the regulatory mechanism of dimorphic transition in Y. lipolytica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Yu Y, Zhou Y, Wang K, Sun T, Lin L, Ledesma-Amaro R, Ji XJ. Metabolic and Process Engineering for Producing the Peach-Like Aroma Compound γ-Decalactone in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:110-120. [PMID: 36579964 DOI: 10.1021/acs.jafc.2c07356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to its strong and unique peach-like aroma, γ-decalactone is widely used in dairy products and other foods or beverages. The oleaginous yeast Yarrowia lipolytica, which is generally regarded as safe, has shown great potential in the production of this flavor compound. Recently, the development of metabolic and process engineering has enabled the application of Y. lipolytica for the production of γ-decalactone. This Review summarizes the relevant biosynthesis and degradation pathways of Y. lipolytica, after which the related metabolic engineering strategies to increase the accumulation of γ-decalactone are summarized. In addition, the factors affecting γ-decalactone accumulation in Y. lipolytica are introduced, and corresponding process optimization strategies are discussed. Finally, the current research needs are analyzed to search for remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
5
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
6
|
New roles for Yarrowia lipolytica in molecules synthesis and biocontrol. Appl Microbiol Biotechnol 2022; 106:7397-7416. [PMID: 36241927 DOI: 10.1007/s00253-022-12227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
Reprogramming of host metabolism is a common strategy for improving desired compounds in host cells and is essential to generate overproducing strains in biotechnology. As a promising feedstock converter, Yarrowia lipolytica has been engineered to extend its bioproduction ability related to the synthesis of new value-added molecules relevant to human food and disease treatment. New synthetic tools have been reported and new enzymes with biotechnological importance are recovered. Additionally, metabolic events occurring during substrate utilization and recombinant protein production have been elucidated. Its contributions as feed and in controlling disease in the food industry have also been provided. Likewise, the recent abilities of Yarrowia lipolytica in the bioconversion of food waste into single-cell protein have been reported. These aforementioned events made the novelty of this review compared to the existing ones on this oleaginous yeast. KEY POINTS: • The production of biolipids by the heterotrophic yeast Yarrowia lipolytica is examined. • A Summary of information concerning new value-added molecules has been highlighted. • Special focus on the importance of Yarrowia lipolytica in regulating the immune system has been provided.
Collapse
|
7
|
Synthesis of Secretory Proteins in Yarrowia lipolytica: Effect of Combined Stress Factors and Metabolic Load. Int J Mol Sci 2022; 23:ijms23073602. [PMID: 35408958 PMCID: PMC8998316 DOI: 10.3390/ijms23073602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
While overproduction of recombinant secretory proteins (rs-Prots) triggers multiple changes in the physiology of the producer cell, exposure to suboptimal growth conditions may further increase that biological response. The environmental conditions may modulate the efficiency of both the rs-Prot gene transcription and translation but also the polypeptide folding. Insights into responses elicited by different environmental stresses on the rs-Prots synthesis and host yeast physiology might contribute to a better understanding of fundamental biology processes, thus providing some clues to further optimise bioprocesses. Herein, a series of batch cultivations of Yarrowia lipolytica strains differentially metabolically burdened by the rs-Prots overproduction have been conducted. Combinations of different stress factors, namely pH (3/7) and oxygen availability (kLa 28/110 h-1), have been considered for their impact on cell growth and morphology, substrate consumption, metabolic activity, genes expression, and secretion of the rs-Prots. Amongst others, our data demonstrate that a highly metabolically burdened cell has a higher demand for the carbon source, although presenting a compromised cell growth. Moreover, the observed decrease in rs-Prot production under adverse environmental conditions rather results from the emergence of a less-producing cell subpopulation than from the decrease of the synthetic capacity of the whole cell population.
Collapse
|
8
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|