1
|
Rautela R, Sharma A, Prakash Ranjan V, Rathika K, Pratap V, Ram Yadav B, Kumar S. Turning Solid Waste into Catalysts: A Path for Environmental Solutions. Chempluschem 2024:e202400246. [PMID: 39215748 DOI: 10.1002/cplu.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Waste, often overlooked, stands out as a prime source of valuable products, meeting the demand for natural resources. In the face of environmental challenges, this study explores the crucial role of waste-derived catalysts in sustainable practices, emphasizing the transformative potential of solid waste materials. Carbon-based catalysts sourced from agricultural, municipal, and industrial waste streams can be transformed into activated carbon, biochar, and hydrochar which are extensively used adsorbents. Furthermore, the paper also highlights the potential of transition metal-based catalysts derived from spent batteries, electronic waste, and industrial byproducts, showcasing their efficacy in environmental remediation processes. Calcium-based catalysts originating from food waste, including seashells, eggshells, bones, as well as industrial and construction waste also find an extensive application in biodiesel production, providing a comprehensive overview of their promising role in sustainable and eco-friendly practices. From mitigating pollutants to recovering valuable resources, waste-derived catalysts exhibit a versatile role in addressing waste management challenges and promoting resource sustainability. By transforming waste into valuable catalysts, this study champions a paradigm shift towards a more sustainable and resource-efficient future.
Collapse
Affiliation(s)
- Rahul Rautela
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Apurva Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
| | - K Rathika
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
2
|
Li S, Li X, Li S, Xu P, Liu Z, Yu S. In-situ preparation of lignin/Fe 3O 4 magnetic spheres as bifunctional material for the efficient removal of metal ions and methylene blue. Int J Biol Macromol 2024; 259:128971. [PMID: 38161011 DOI: 10.1016/j.ijbiomac.2023.128971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In this paper, magnetic composite of lignin/Fe3O4 spheres were synthesized via a straightforward one-step in-situ solvothermal method showing good capacity for adsorbing heavy metal ions and dyes. The physicochemical properties of lignin/Fe3O4 spheres are analyzed using a range of techniques such as SEM, XRD, FTIR, VSM, TG, and BET. Lignin/Fe3O4 spheres exhibited high adsorption capacities of 100.00, 353.36 and 223.71 and 180.18 mg/g for Cu (II), Ni (II) and Cr (VI) metal ions and methylene blue (MB) with equilibrium attained within 60 min. After the recycling experiments, lignin/Fe3O4 spheres still possesses excellent superparamagnetic properties and displays high adsorption capacity. The lignin/Fe3O4 spheres are an efficient and continuous adsorbent to remove heavy metal ions of Cu (II), Ni (II), Cr (VI) and cationic dyes of methylene blue in wastewater, which proves the great potential in practical pollutants treatment applications for water systems.
Collapse
Affiliation(s)
- Suyao Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiang Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Sisi Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ping Xu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhigang Liu
- Centre of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Shihua Yu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
3
|
Wang L, Liu X, Wang Y, Wang X, Liu J, Li T, Guo X, Shi C, Wang Y, Li S. Stability and ecological risk assessment of nickel (Ni) in phytoremediation-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166498. [PMID: 37633368 DOI: 10.1016/j.scitotenv.2023.166498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Improper treatment of heavy metal-enriched biomass generated after phytoremediation might cause secondary pollution in soil and water. At present, the pyrolysis process is an effective method for the treatment of phytoremediation residue. In this study, Ni-enriched biomass was prepared using hydroponics method and further pyrolyzed at different temperatures (300-700 °C). At low pyrolysis temperatures (below 500 °C), carbonate precipitation was the main reason of Ni stabilization in biochar. Nevertheless, the formed phosphate and aluminosilicate were important factors for immobilizing Ni in biochar at high pyrolysis temperatures (above 500 °C). Moreover, the oxidizable (F3) and residual (F4) components of Ni in biochar increased with increasing pyrolysis temperature, which indicated that higher pyrolysis temperature could effectively reduce the bioavailability of Ni in biochar. The results of deionized water, acidification, oxidation, and toxic characteristic leaching procedure (TCLP) experiments showed that pyrolysis temperature was the dominant factor for Ni stabilization in biochar. The ecological risk assessments further proved that pyrolyzed Ni-enriched biochar could reduce the environmental toxicity and potential ecological risks of Ni. In the soil simulated experiment, the soil microenvironment gradually promoted the transformation of Ni in BCNiX from bioavailable fraction to stable fraction. Overall, this study would expose more reasonable reference for the long-term storage of phytoremediation residues.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Xunjie Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Yangyang Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Jin Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Tongtong Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xiaomeng Guo
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Chao Shi
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Ying Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Godvin Sharmila V, Kumar Tyagi V, Varjani S, Rajesh Banu J. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. BIORESOURCE TECHNOLOGY 2023; 387:129587. [PMID: 37549718 DOI: 10.1016/j.biortech.2023.129587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Wastewater disposal in the ecosystem affects aquatic and human life, which necessitates the removal of the contaminants. Eliminating wastewater contaminants using biochar produced through the thermal decomposition of lignocellulosic biomass (LCB) is sustainable. Due to its high specific surface area, porous structure, oxygen functional groups, and low cost, biochar has emerged as an alternate contender in catalysis. Various innovative advanced technologies were combined with biochar for effective wastewater treatment. This review examines the use of LCB for the synthesis of biochar along with its activation methods. It also elaborates on using advanced biochar-based technologies in wastewater treatment and the mechanism for forming oxidizing species. The research also highlights the use of machine learning in pollutant removal and identifies the obstacles of biochar-based catalysts in both real-time and cutting-edge technologies. Probable and restrictions for further exploration are discussed.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam 629171, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
5
|
Nickel/Biochar from Palm Leaves Waste as Selective Catalyst for Producing Green Diesel by Hydrodeoxygenation of Vegetable Oil. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2023. [DOI: 10.9767/bcrec.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The objective of this research was to prepare low-cost catalyst for green diesel conversion from vegetable oil. The catalyst of nickel-dispersed biochar (Ni/BC) was prepared by direct pyrolysis of nickel precursor with palm leaves waste under N2 stream at 500 °C. The obtained catalyst was examined by using x-ray diffraction, scanning electron microscope-energy dispersive x-ray, transmission electron microscopy, gas sorption analysis, FTIR and surface acidity examination. The catalytic activity testing was performed on rice bran oil hydrodeoxygenation at varied temperature and time of reaction. Based on analyses, the results showed the successful preparation of Ni/BC with the characteristic of single nickel nanoparticles decorated on surface. The increasing specific surface area of material was conclusively remarked the surface area enhancement by nickel dispersion along with the increased surface acidity, suggesting that the material can be applied for acid catalysis applications. The Ni/BC exhibited excellent catalytic conversion of rice bran oil with the high selectivity toward diesel fraction with 85.3% yield and 92.6% selectivity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
6
|
Sun Y, Wang T, Han C, Bai L, Sun X. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. BIORESOURCE TECHNOLOGY 2023; 369:128373. [PMID: 36423759 DOI: 10.1016/j.biortech.2022.128373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The lignin-based magnetic biochar (LMB) was fabricated with a facile one-step solvothermal method. The spherical Fe3O4 was successfully loaded on the lignin-based biochar. LMB could efficiently remove Cr(VI) and Congo red (CR) synergistically with the adsorption of biochar and the catalytic/reduction of Fe3O4. LMB showed a removal efficiency of 100 % for Cr(VI) (100 mg/L) at 30 min. The LMB could be a catalyst to activate persulfate (PS) to degrade CR. The LMB + PS system showed a removal efficiency of 94.3 % for CR at 60 min. Moreover, LMB could simultaneously remove 41.5 % of Cr(VI) and 91.5 % of CR in the mixed Cr(VI) and CR solution. The simulated wastewater studies showed that LMB exhibited superior high Cr(VI) (100 %) and CR (82 %) removal efficiencies with the coexistent of anions, cations, and organic matter. LMB can be effectively applied to remove Cr(VI) and CR and purify different contaminated water bodies.
Collapse
Affiliation(s)
- Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Tingting Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Caohui Han
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Lu Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xiaoyin Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| |
Collapse
|
7
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|
8
|
Abdulbaki Danhassan U, Zhang X, Qi R, Ali MM, Sheng K, Lin H. Nickel-Catalyzed mesoporous biochar for enhanced adsorptive oxidation of aqueous Sulfide: An investigation of influencing factors and mechanisms. BIORESOURCE TECHNOLOGY 2022; 362:127877. [PMID: 36049710 DOI: 10.1016/j.biortech.2022.127877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) is a low-cost and electroactive adsorbent for removing sulfide in aqueous media, which toxifies aquatic organisms and corrodes water treatment facilities. However, it lacks a pore structure for sulfide ion (S2-) mass transfer to active sites. Herein, it is shown that nickel-modified biochar (BC-Ni) adsorbed S2- 2.72-fold faster than BC alone and attained a 1244 ± 252 mg-sulfide/g maximum adsorption capacity due to markedly increased mesopores, while BC attained 583 ± 250 mg-sulfide/g. Factors influencing S2-sorption and theoretical sorption kinetics and isotherms models were evaluated. Structural and surface compositions of BC and BC-Ni were examined using state-of-the-art characterizations. The results suggest that S2- was adsorbed via pore diffusion, pore filling, and cation bridging and oxidized to elemental sulfur and sulfate with quinone and hydrogen peroxide generated from dehydrogenation of hydroquinone on the BC-Ni by metallic nickel in the carbon matrix. This study would spur biomass valorization and desulfurization.
Collapse
Affiliation(s)
- Umar Abdulbaki Danhassan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Department of Agricultural and Bio-Environmental Engineering, SCA/DAC Ahmadu Bello University, Zaria 810107, Nigeria
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Riying Qi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
9
|
Zhao Y, Yang H, Xia S, Wu Z. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57773-57789. [PMID: 35352229 DOI: 10.1007/s11356-022-19870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Thalia dealbata Fraser-derived biochar was prepared at different carbonization temperatures to remove nutrients in aqueous solution. Thermogravimetry/differential thermogravimetry (TG/DTG) was used to analyze the carbonization and decomposition procedure of Thalia dealbata Fraser. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential, and N2 adsorption-desorption isotherms were employed to characterize the prepared biochar. The carbonization temperature obviously effected the physical and chemical properties of biochar. The adsorption efficiency of ammonia (NH4+-N), nitrate (NO3--N), and phosphate (PO43-) adsorption on biochar was tested. Pseudo-first-order kinetic, pseudo-second-order kinetic, and intra-particle diffusion kinetic models were used to fit adsorption kinetic. Langmuir and Freundlich models were used to fit adsorption isotherms. The theoretical adsorption capacity of NH4+-N, NO3--N, and PO43- on biochar was 5.8 mg/g, 3.8 mg/g, and 1.3 mg/g, respectively. This study provides the insights for effect of carbonization temperature on biochar preparation and application.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| |
Collapse
|
10
|
Agrawal R, Kumar A, Singh S, Sharma K. Recent advances and future perspectives of lignin biopolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|