1
|
Yu H, Li W, Feng S, Loo SCJ. Impacts of industrial food wastes on nutritional value of mealworm (Tenebrio molitor) and its gut microbiota community shift. BIOMATERIALS ADVANCES 2024; 165:214022. [PMID: 39226676 DOI: 10.1016/j.bioadv.2024.214022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The extensive investigation into the capacity of mealworms to digest diverse food by-products, as well as plastic wastes, has been a focal point in recent years. The transition from traditional diet sources like brans to food wastes has the potential to impact the physiological properties of mealworms. This study explored the utilization of various industrial food wastes such as okara, barley spent grain (BSG), sesame oil meal (SOM), and spent coffee grounds (SCG) as feed alternatives, and reports on their survival rate, biomass variations, and nutritional composition. In additional, the shift in their gut microbiota was also assessed. Among the range of industrial food wastes, mealworms exhibited the most robust growth performance when nourished with BSG. This particular group showed a survival rate of 98.33 % and a biomass increase of 23.06 %. In contrast, mealworms fed with SCG demonstrated the lowest survival rate and experienced a significant reduction in biomass. Although the groups fed with okara and SCG displayed moderate growth performance, both exhibited protein levels comparable to those observed in the oatmeal-fed group (used as the positive control). Notably, the inclusion of BSG in the mealworm diet exhibited the potential to enrich their omega-3 fatty acid content, suggesting potential benefits for applications as animal feed or even human consumption. Furthermore, an analysis of the gut microbiome was conducted to investigate the associations between specific diets and the composition of mealworm gut microbiota. In summary, food wastes such as BSG may be repurposed as feed substrates for mealworms before converting them into an alternative source of protein.
Collapse
Affiliation(s)
- Hong Yu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenrui Li
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shiliu Feng
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Say Chye Joachim Loo
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 67551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
2
|
Briones MJI, Álvarez-Otero R, Domínguez J. Growth media change Eisenia fetida epithelium thickness: implications for improving earthworm welfare in vermicomposting systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61283-61291. [PMID: 39412719 DOI: 10.1007/s11356-024-35310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Because the earthworm tegument represents their first barrier against environmental aggressions, we hypothesised that substrate-induced changes in earthworm growth would also alter the morphology of this protective layer. Therefore, a histological and morphometric study was performed on Eisenia fetida specimens that have been grown in five different organic residues: cow manure, horse manure, grape marc, coffee grounds, and a mixture of coffee grounds and cooking oil. The results showed that, across all treatments, both cuticle and epidermis were significantly thicker in the pre-clitellar region than after the clitellum, attributed to the fact that the former region is responsible for breaking up the soil. Notably, the growing media significantly altered the thickness of these two integumentary layers, and the greatest thicknesses were measured in grape marc and in the mixture coffee grounds + cooking oil, which makes them suitable organic residues for vermicomposting. By contrary, a significant epidermal thinning was observed when growing on coffee grounds alone, clearly indicating that it is a hostile environment for earthworms. Overall, these results reveal that tegument thickness can be used not only as a trait indicator of substrate quality but also of earthworm welfare, and it should be integrated in future toxicity assessment and captive breeding guidelines.
Collapse
Affiliation(s)
| | - Rosa Álvarez-Otero
- Departamento de Biología Funcional y Ciencias de La Salud, Universidad de Vigo, 36310, Vigo, Spain
| | - Jorge Domínguez
- Departamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, Spain
| |
Collapse
|
3
|
Bevilacqua E, Cruzat V, Singh I, Rose’Meyer RB, Panchal SK, Brown L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023; 15:nu15040994. [PMID: 36839353 PMCID: PMC9963703 DOI: 10.3390/nu15040994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.
Collapse
Affiliation(s)
- Elza Bevilacqua
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
| | - Indu Singh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Roselyn B. Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
4
|
Gebreeyessus GD. Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155113. [PMID: 35427619 DOI: 10.1016/j.scitotenv.2022.155113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Discovered in Ethiopia, coffee became a popular beverage in Asia, Europe, Latin America, Australia, Africa and the North America as a drink after water and the largest goods after petroleum. However, the coffee industry generates a huge biomass as its byproducts of which the spent coffee grounds (SCG) is concerning, especially in the production chain away from the farm. Therefore, the valorization and revalorization of the SCG has a huge impact on the socioeconomic and environmental sustainability of the industry, up to the realization of the circular bioeconomy. With the advancing biorefinery concept, even an almost complete recovery of the SCG is reported at an experimental level. Such kind of studies increased with time following the action of the Sustainable Development Goals by the United Nations Development Program promulgated in 2015. The current review highlights on the background, socioeconomic, environmental contexts of coffee production and the SCG valorization and revalorization studies. Refereeing to 154 screened articles published in over 30 years' time, the SCG revalorization efforts and its integrated biorefinery as a green management approach are uniquely addressed. Plenty of studies have reported the production of bio-products from the SCG, such as the derivation of adsorbents, biochar, bioethanol, biogas, biodiesel, bio-oil, compost, construction material aggregates, cosmetics, electricity and food ingredients. In conclusion, the recovery potential of the SCG is promising and can substantially contribute to a sustainable and green bioeconomy. Nevertheless, the recovery of bioactive materials through SCG fermentation is still lacking. Most studies are conducted on a lab scale, which needs to be piloted and commissioned. Furthermore, the link between climate change and variability vis-à-vis the sustainable management of the SCG remains unaddressed.
Collapse
Affiliation(s)
- Getachew Dagnew Gebreeyessus
- Department of Urban Environmental Management, Kotebe University of Education, P.O. Box 31248, Addis Ababa, Ethiopia; Africa Center of Excellence for Water Management at Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
6
|
Sánchez A. Decentralized Composting of Food Waste: A Perspective on Scientific Knowledge. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.850308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Composting has been demonstrated to be an effective and sustainable technology to treat a wide variety of organic wastes. A particular aspect of composting is the number of technological options that can be used, from full-scale plants to small composters. In this sense, the interest in composting at home or on a community scale is exponentially growing in recent years, as it permits the self-management of organic wastes and obtaining compost that can be used by the same producer. However, some questions about the quality of the obtained compost or the environmental impact of home composting are still in an early stage of development and provide little knowledge. In this review, the main points related to home and community composting are analysed in detail according to the current scientific knowledge by highlighting their advantages and possible drawbacks. Particularly, the composting process performance is analysed, with temperature stratification being one of the main problems related to small amounts of organic matter. Simultaneously, compost quality is determined using parameters such as stability and/or maturity, concluding that home compost can be similar to industrial compost in both aspects. However, sanitisation of home compost is not always achieved. Regarding its environmental impact, gaseous emissions, especially greenhouse emissions, are the most studied category and are generally low. Finally, the effects of pandemics on home composting are also preliminary commented, concluding that this strategy can be a good alternative to have cities that are more resilient.
Collapse
|
7
|
Hanc A, Dume B, Hrebeckova T. Differences of Enzymatic Activity During Composting and Vermicomposting of Sewage Sludge Mixed With Straw Pellets. Front Microbiol 2022; 12:801107. [PMID: 35082771 PMCID: PMC8784665 DOI: 10.3389/fmicb.2021.801107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
The study aims were focused on profiling eight hydrolytic enzymes by fluorescence method using a multifunctional modular reader and studying the proportion of basic microorganism groups during composting and vermicomposting of sewage sludge mixed with straw pellets in several proportions (0, 25, 50, 75, and 100%). The greatest decrease in enzymatic activity occurred in the first half of composting and vermicomposting. After 4 months of these processes, the least enzymatic activity was observed in the sludge with 50% and also 25% straw addition, indicating that straw is an important means for the rapid production of mature compost from sewage sludge. Enzymatic activity was usually less in the presence of earthworms than in the control treatment because some processes took place in the digestive tract of the earthworm. For the same reason, we observed reduced enzyme activity during fresh feedstock vermicomposting than precomposted material. The final vermicompost from fresh feedstocks exhibited less microbial biomass, and few fungi and G- bacteria compared to precomposted feedstock. The enzymatic activity during composting and vermicomposting of sewage sludge and their mixtures stabilized at the following values: β-D-glucosidase-50 μmol MUFG/h/g dw, acid phosphatase-200 μmol MUFP/h/g dw, arylsulphatase-10 μmol MUFS/h/g dw, lipase-1,000 μmol MUFY/h/g dw, chitinase-50 μmol MUFN/h/g dw, cellobiohydrolase-20 μmol MUFC/h/g dw, alanine aminopeptidase-50 μmol AMCA/h/g dw, and leucine aminopeptidase-50 μmol AMCL/h/g dw. At these and lesser values, these final products can be considered mature and stable.
Collapse
Affiliation(s)
- Ales Hanc
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Bayu Dume
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Tereza Hrebeckova
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|