1
|
Dong L, Wang W, Xie Q, Du X, Wang Y, Niu XZ, Cao G. Self-adaptable HAc/NaAc buffer system enhanced biohydrogen production from dark fermentation of cellulose. BIORESOURCE TECHNOLOGY 2025; 416:131738. [PMID: 39489314 DOI: 10.1016/j.biortech.2024.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
ThepHdecrease caused by potential accumulation and dissociation of organic acidsis considereda major challenge hindering stable and constant operation in hydrogen production. In this study, a self-adaptableHAc/NaAc buffer system was investigated based on batch dark fermentation hydrogen production (DFHP) metabolic typesto controlthe pH of fermentation process. Resultsshowedthat increasing substrate concentration resulted in lower H2 production yield, especially when the substrate concentration exceeded 10 g/L. A maximum H2yield of2326.25 mL/L was achieved at the HAc/NaAc-buffered group; productions were 2.84 times and 57.7 % higher than the control and NaOH control groups. Our buffersystem retardedthe decrease of pH, enhanced the selectivemetabolic flux of acetic acid production, promoted the growth of microorganisms, enhanced microbial secretion of cellulase, andregulatedthe ratio of NADH/NAD+. The research provided a preliminary understanding and reference for the buffer regulatory strategy on organic waste for DFHP.
Collapse
Affiliation(s)
- Lili Dong
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wanqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiulan Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Du
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuhao Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xi-Zhi Niu
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Guangli Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Elreedy A, Ali M, Moriwaki Y, Chijiwa N, Fujii M. Incorporating concrete waste as additive in acidic fermentation-A novel approach for enhanced biohydrogen production and concrete mass reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122944. [PMID: 39418715 DOI: 10.1016/j.jenvman.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/07/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Acidic fermentation (AF) of organic waste/wastewater generates valuable byproducts, including hydrogen, volatile fatty acids, and ethanol; however, its sensitivity to pH drops limits the stability and efficiency of the process. A reversal process, the acidic chemical treatment of concrete waste (CW) to recycle its aggregates, generates calcium hydroxide, which can serve as buffering agent. Meanwhile, integrating both processes can introduce a sustainable win-win approach, which is the aim of this study. To assess this approach, a series of batch AF experiments were conducted at 50 °C and pH 5.5, using glucose as the substrate. Cementitious specimen (1.5 × 1.5 × 0.8 cm) was supplemented to each 200 mL-fermenter. Unamended fermenters, with and without additional NaHCO3-buffering, were used as controls to compare with the amended ones. Introducing cementitious specimens to AF increased H2-production by 2-fold and 1.7-fold compared to controls with and without NaHCO3-addition, respectively, after three consecutive feed-cycles. The surface analysis of incorporated specimen confirmed the Ca, Al, Mg, and Si leaching. The AF efficiency and resulting cementitious mass reduction were further assessed at different organic loads and specimens' volume, surface area, and porosity (by changing water-to-cement [W/C] ratio). Increasing the organic load from 10 to 20 g-glucose/L resulted in lower H2-production, higher specimen mass reduction (up to ∼32%), and higher Ca2+ release (up to 2 g/L); however, no significant effect was observed when using specimens with higher W/C ratio or surface area. Moreover, the presence of cementitious specimens significantly influenced the microbial composition, leading to notable developments in the abundant genera Thermoanaerobacterium and Bacillus. This study presents a novel approach to sustainably enhancing AF process using CW as both an additive and a treatable substance, with reusable aggregates as a byproduct. It provides valuable insights for optimizing the process and guiding future practical applications. This includes considering various concrete compositions, adjusting organic load conditions, and evaluating long-term stability in larger-scale systems.
Collapse
Affiliation(s)
- Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, 21073, Germany; Sanitary Engineering Department, Alexandria University, Alexandria, 21544, Egypt
| | - Manal Ali
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Civil Engineering Department, Aswan University, Aswan, 81511, Egypt.
| | - Yoshiyuki Moriwaki
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Nobuhiro Chijiwa
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
3
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
4
|
An X, Xu Y, Dai X. Biohythane production from two-stage anaerobic digestion of food waste: A review. J Environ Sci (China) 2024; 139:334-349. [PMID: 38105059 DOI: 10.1016/j.jes.2023.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 12/19/2023]
Abstract
The biotransformation of food waste (FW) to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems. To this end, a promising technique is two-stage anaerobic digestion (TSAD), in which the FW is transformed to biohythane, a gaseous mixture of biomethane and biohydrogen. This review summarises the main characteristics of FW and describes the basic principle of TSAD. Moreover, the factors influencing the TSAD performance are identified, and an overview of the research status; economic aspects; and strategies such as pre-treatment, co-digestion, and regulation of microbial consortia to increase the biohythane yield from TSAD is provided. Additionally, the challenges and future considerations associated with the treatment of FW by TSAD are highlighted. This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
Collapse
Affiliation(s)
- Xiaona An
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Wang R, Zhang H, Zhang J, Zhou C, Zhang X, Yan X, Yu F, Zhang J. Comparison of calcium magnesium ferrite nanoparticles for boosting biohydrogen production. BIORESOURCE TECHNOLOGY 2024; 395:130410. [PMID: 38307484 DOI: 10.1016/j.biortech.2024.130410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Dark fermentation (DF) is an eco-friendly process that simultaneously achieves organic matter degradation and obtains hydrogen (H2). Nonetheless, low H2 yield mainly caused by poor activity of key microbes, is still a problem that requires being resolved. In this work, MgFe2O4 and Ca0.5Mg0.5Fe2O4 nanoparticles (NPs) were synthetized and served as additives to boost H2 form from DF. H2 productivity gradually increased with the rise of NPs, and declined when NPs exceeded their optimal dosages. The highest H2 yield was 183.6 ± 3.2 mL/g glucose at 100 mg/L of MgFe2O4 NPs, being 35.2 % higher than that of the control yield (135.8 ± 3.1 mL/g glucose). However, the highest H2 yield of 171.9 ± 2.5 mL/g glucose occurred at 400 mg/L of Ca0.5Mg0.5Fe2O4 NPs, increasing by 26.6 % over the control. Interestingly, the two NPs favored the butyric acid pathway for H2 synthesis. This provides guidance for multi-element oxide NPs used in DF.
Collapse
Affiliation(s)
- Ruixi Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Huiwen Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Yu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
6
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
7
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
8
|
Zhou C, Zhang J, Pei Y, Tian K, Zhang X, Yan X, Yang J. Molten salt strategy to activate biochar for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129466. [PMID: 37429558 DOI: 10.1016/j.biortech.2023.129466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Generally, dark fermentation (DF) of hydrogen (H2) synthesis has low H2 production from industrial-scale plant. In this study, campus greening wastes-ginkgo leaves were used to produce molten salt-modified biochar (MSBC) and nitrogen (N2)-atmosphere BC (NBC) in molten salt and N2 environment at 800 °C, respectively. MSBC showed excellent properties including high specific surface area and electron transfer ability. After supplementation with MSBC, H2 yield rose by 32.4% compared to the control group without carbon material. Electrochemical analysis revealed MSBC improved the electrochemical properties of sludge. Furthermore, MSBC optimized the microbial community structure and increased the relative abundance of dominant microbes, thus promoting H2 production. This work is provide the deep understanding of two carbons that play vital roles in increasing microbial biomass, supplementing trace element and favoring electron transfer in DF reactions. Salt recovery achieved 93.57% in molten salt carbonization, which has sustainability compared with N2-atmosphere pyrolysis.
Collapse
Affiliation(s)
- Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
9
|
Pei Y, Zhang J, Zhou C, Tian K, Zhang X, Yan X. Hydrothermal carbon microspheres and their iron salt modification for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129371. [PMID: 37348568 DOI: 10.1016/j.biortech.2023.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Dark fermentation (DF) for hydrogen (H2) evolution is often limited to industrial application due to its low H2 yield. In this work, hydrothermal carbon microspheres (HCM) and iron modified HCM (Fe-HCM) were prepared by hydrothermal process using waste corn cob. Subsequently, HCM and Fe-HCM were used in DF for more H2. The highest H2 yields amended with HCM and Fe-HCM at 600 mg/L were achieved to be 119 and 154 mL/g glucose (0.87 and 1.2 mol H2/mol glucose), respectively, being 24% and 59% higher than that of control yield. Soluble metabolites revealed HCM and Fe-HCM promoted butyric acid-based DF. Microbial composition depicted that HCM and Fe-HCM improved the abundance level of Firmicutes from 35% to 41% and 56%, while the abundance level of Clostridium_sensu_stricto_1 rose from 25% to 38% and 51%, respectively. This provides valuable guidance for hydrothermal carbon used in biofuel production.
Collapse
Affiliation(s)
- Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
10
|
Kovalev AA, Kovalev DA, Zhuravleva EA, Laikova AA, Shekhurdina SV, Vivekanand V, Litti YV. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. BIORESOURCE TECHNOLOGY 2023; 376:128919. [PMID: 36934902 DOI: 10.1016/j.biortech.2023.128919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.
Collapse
Affiliation(s)
- Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Alexandra A Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| |
Collapse
|
11
|
Chang H, Feng H, Wang R, Zhang X, Wang J, Li C, Zhang Y, Li L, Ho SH. Enhanced energy recovery from landfill leachate by linking light and dark bio-reactions: Underlying synergistic effects of dual microalgal interaction. WATER RESEARCH 2023; 231:119578. [PMID: 36645942 DOI: 10.1016/j.watres.2023.119578] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bioconversion of nutrients and energy from landfill leachate (LL) to biohydrogen and volatile fatty acids (VFAs) using dark fermentation (DF) is a promising technique for developing a sustainable ecosystem. However, poor performance of DF caused by vulnerable fermentative bacteria vitality and strong LL toxicity significantly hinder its commercialization. Herein, an integrated technique linking microalgae photosynthesis and DF was proposed, in which mixed microalgae were applied to robustly reclaim nutrients and chemical oxygen demand (COD) from LL. Then, microalgae biomass was fermented into biohydrogen and VFAs using the DF process. Underlying synergistic mechanisms of the interaction of Scenedesmus obliquus and Chlorella vulgaris resulting from the functioning of extracellular polymeric substances (EPS) were discussed in detail. For better absorption of nutrients from LL, the mixed microalgae secreted obviously more EPS than pure microalgae, which played vital roles in the assimilation of cellular nutrients by forming more negative zeta potential and secreting more tyrosine-/tryptophan-family proteins in EPS. Besides, mixed microalgae produced more intracellular proteins and carbohydrates than the pure microalgae, thereby providing more feedstock for DF and achieving higher energy yield of 10.80 kJ/L than 6.64 kJ/L that was obtained when pure microalgae were used. Moreover, the energy conversion efficiency of 7.75% was higher for mixed microalgae than 4.77% that was obtained for pure microalgae. This work may inspire efficient disposal of LL and production of bioenergy, together with filling the knowledge gaps of synergistic mechanisms of dual microalgal interactions.
Collapse
Affiliation(s)
- Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Haowen Feng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jinghan Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chunlan Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanbo Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Li
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
12
|
Li Z, Wang J, Tian K, Zhou C, Pei Y, Zhang J, Zang L. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production. ACS OMEGA 2022; 7:41594-41605. [PMID: 36406540 PMCID: PMC9670286 DOI: 10.1021/acsomega.2c05580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The positive effects of metal oxide nanoparticles (NPs) on dark fermentation (DF) for biohydrogen synthesis have been increased, and the mechanism still needs to be further revealed. In this study, nickel-cobalt oxide (NiCo2O4) NPs were prepared to increase H2 yield via DF. The highest (259.67 mL/g glucose) and the lowest (188.14 mL/g glucose) yields were achieved at 400 and 800 mg/L NiCo2O4 NPs added, respectively, with their corresponding 33.97% increase and 2.93% decrease compared with the control yield (193.82 mL/g glucose). Meanwhile, the microbial community further confirmed that NiCo2O4 NPs increased the abundance of the dominant H2-producing Clostridium sensu stricto 1 by 23.05%. The gene prediction also showed that NiCo2O4 NPs increased the abundance of genes encoding the rate-limiting enzyme pyruvate kinase in glycolysis, thus increasing the substrate conversion. Moreover, the gene abundance of key enzymes directly related to H2 evolution was also increased at different levels.
Collapse
Affiliation(s)
- Zhenmin Li
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Jiangmei Wang
- Shandong
Weifang Ecological Environment Monitoring Center, Weifang261041, China
| | - Kexin Tian
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Chen Zhou
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Yong Pei
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Jishi Zhang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Lihua Zang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| |
Collapse
|
13
|
Su K, Li X, Lu T, Mou Y, Liu N, Song M, Yu Z. Screening of the heterotrophic microalgae strain for the reclamation of acid producing wastewater. CHEMOSPHERE 2022; 307:136047. [PMID: 35977579 DOI: 10.1016/j.chemosphere.2022.136047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
For the sustainable development of the environment, to reduce the high cost and low productivity of microalgae biofuel, nine microalgae strains were screened to study the growh and nutrient removal properties under heterotrophic culture by using the waste carbon source of volatile fatty acids (VFAs). Chlorella sorokiniana (C.sorokiniana) was selected as the best strain with the highest biomass concentration of 0.77 g L-1, specific growth rate of 0.25 d-1, biomass productivity of 91.43 mg L-1 d-1, total nitrogen removal efficiency of 95.96% and total phosphorus removal efficiency of 93.42%. To study the utilization potential of acid-producing wastewater by heterotrophic microalgae, actual acid-producing wastewater was recycled three times for the utilization of C.sorokiniana. After the three utilization cultivation, the removal rates of COD, total nitrogen, ammonia nitrogen, and total phosphorus were 74.44%, 88.05%, 79.08%, and 82.69%, respectively. The total utilization rates of acetic acid, propionic acid, and butyric acid were 58.99%, 70.54%, and 81.52%, respectively. In addition, the highest lipid content of 39.15% and protein content of 42.43% achieved at the third cultivation. After the first cultivation, the composition and diversity of the microbial community structure changed dramatically, with Protebacteria, Bacteroidota, Hydrogenophaga, and Algoriphagus becoming enriched. These results showed a promising way of coupling wastewater treatment with biomass production for long-term sustainability of microalgae lipid production.
Collapse
Affiliation(s)
- Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xue Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Lee HS, Lee SY, Yoo K, Kim HW, Lee E, Im NG. Biohydrogen production and purification: Focusing on bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2022; 363:127956. [PMID: 36115508 DOI: 10.1016/j.biortech.2022.127956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Innovative technologies on green hydrogen production become significant as the hydrogen economy has grown globally. Biohydrogen is one of green hydrogen production methods, and microbial electrochemical cells (MECs) can be key to biohydrogen provision. However, MECs are immature for biohydrogen technology due to several limitations including extracellular electron transfer (EET) engineering. Fundamental understanding of EET also needs more works to accelerate MEC commercialization. Interestingly, studies on biohydrogen gas purification are limited although biohydrogen gas mixture requires complex purification for use. To facilitate an MEC-based biohydrogen technology as the green hydrogen supply this review discussed EET kinetics, engineering of EET and direct interspecies electron transfer associated with hydrogen yield and the application of advanced molecular biology for improving EET kinetics. Finally, this article reviewed biohydrogen purification technologies to better understand purification and use appropriate for biohydrogen, focusing on membrane separation.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju-si, Jeollanam-do, South Korea.
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Hyo Won Kim
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju-si, Jeollanam-do, South Korea
| | - Eunseok Lee
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju-si, Jeollanam-do, South Korea
| | - Nam Gyu Im
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju-si, Jeollanam-do, South Korea
| |
Collapse
|
15
|
Yu L, Cheng WX, Wang Q. The enhancement on biohydrogen production by the driving forces from extracellular iron oxide respiration. BIORESOURCE TECHNOLOGY 2022; 361:127679. [PMID: 35878766 DOI: 10.1016/j.biortech.2022.127679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biohydrogen productions from xylose and glucose under dark condition were enhanced by the presence of natural Fe3O4. The electron equivalent of H2 fractions accounted for 4.55 % and 5.69 % of the total given xylose and glucose in the experiments without Fe3O4, and that were correspondingly increased to 5.14 % and 6.50 % in the experiments with 100 mg/L of Fe3O4, respectively. Moreover, Fe3O4 increased the total intracellular NAD(H) concentrations by 8.84 % and 8.37 %, and boosted the ratios of NADH/NAD+ by 8.33 % and 17.72 % in xylose and glucose fermentation, respectively, comparing to the corresponding control experiments. The formation of electron couples of Fe(III)/Fe(II) during the iron oxide respiration and more generation of active extracellular polymeric substances components were determined as the important reasons for the improved biohydrogen production performance. Thus, a promotion mechanism of the internal "driving forces" from extracellular iron oxide respiration on the biohydrogen production was proposed.
Collapse
Affiliation(s)
- Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Xin Cheng
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Zhang J, Zhang H, Zhang J, Zhou C, Pei Y, Zang L. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127676. [PMID: 35872267 DOI: 10.1016/j.biortech.2022.127676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.
Collapse
Affiliation(s)
- Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
17
|
Mo H, Wang N, Ma Z, Zhang J, Zhang J, Wang L, Dong W, Zang L. Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation. ACS OMEGA 2022; 7:10550-10558. [PMID: 35382266 PMCID: PMC8973120 DOI: 10.1021/acsomega.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
Hydroxyapatite (HA) had the effect of maintaining the pH balance of the reaction system and promoting enzyme activity. In this work, hydroxyapatite was synthesized by coprecipitation and characterized for biohydrogen (bioH2) production from glucose. The highest bioH2 yield obtained was 182.33 ± 2.41 mL/g glucose, amended with an optimal dosage of 400 mg/L HA, which was a 55.80% higher bioH2 yield compared with the control group without any addition. The results indicated that HA facilitated the deterioration of organic substances and increased the concentration of soluble microbial products (SMPs). Microbial community analysis revealed that HA significantly increased the abundance of Firmicutes from 35.27% (0 mg/L, HA) to 76.41% (400 mg/L, HA), which played an essential role in bioH2 generation. In particular, the abundance of Clostridium sensu stricto 1 increased from 15.33% (0 mg/L HA) to 45.17% (400 mg/L HA) and became the dominant bacteria. The results also indicated that HA likely improves bioH2 production from organic wastewater in practice.
Collapse
Affiliation(s)
- Haoe Mo
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Na Wang
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Zhongmin Ma
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Jishi Zhang
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Jinlong Zhang
- Jilin
Meihua Amino Acid Co., Ltd., Baicheng 137000, China
| | - Lu Wang
- Jilin
Meihua Amino Acid Co., Ltd., Baicheng 137000, China
| | - Weifang Dong
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
- E-mail:
| | - Lihua Zang
- School
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
- Jilin
Meihua Amino Acid Co., Ltd., Baicheng 137000, China
- E-mail:
| |
Collapse
|