1
|
Guo X, Zhu W, Wang Z, Peng G, Tan L, Ming T, Zhang S, Zhang S. Insight into shortening mechanisms of start-up time for three-dimensional biofilm electrode reactor/pyrite-autotrophic denitrification coupled system. BIORESOURCE TECHNOLOGY 2025; 415:131719. [PMID: 39471904 DOI: 10.1016/j.biortech.2024.131719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
In this study, a three-dimensional biofilm electrode reactor (3D-BER)/pyrite-autotrophic denitrification (PAD) coupled (3D-BER-PAD) system was constructed, aiming at investigating the effect of current on the start-up period of the system. The results showed that increasing current could shorten the system's start-up period and improve nitrate removal efficiency (NRE). When the current was 20 mA, the system could start stabilization after approximately 13 days and maintain a stable NRE (88.2 ± 3.4 %) with low energy consumption (0.05 ± 0.003 kW·h/gNO3--N). Additionally, an appropriate current (10 or 20 mA) promoted the reproduction of denitrifying bacteria (e.g., Thiobacillus and Thermomonas) and the expression of functional genes involved in denitrification and sulfur oxidation. Finally, the denitrification mechanism and electron transfer model in the 3D-BER-PAD system were proposed. This study has reference value for the rapid start-up and the improvement of treatment efficiency in the 3D-BER-PAD system.
Collapse
Affiliation(s)
- Xihui Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Lin Tan
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Chen H, Tang M, He L, Xiao X, Yang F, He Q, Sun S, Gao Y, Zhou L, Li Y, Sun J, Zhang W. Exploring the impact of fulvic acid on electrochemical hydrogen-driven autotrophic denitrification system: Performance, microbial characteristics and mechanism. BIORESOURCE TECHNOLOGY 2024; 412:131432. [PMID: 39236909 DOI: 10.1016/j.biortech.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Collapse
Affiliation(s)
- Haolin Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Liang He
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Xinxin Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Fei Yang
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
3
|
Tan S, Huang Y, Yang H, Zhang S, Tang X. Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11107. [PMID: 39155705 DOI: 10.1002/wer.11107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Denitrification is of great significance for low C/N wastewater treatment. In this study, pyrite autotrophic denitrification (PAD) was coupled with a three-dimensional biofilm electrode reactor (BER) to enhance denitrification. The effect of current on denitrification was extensively studied. The nitrate removal of the PAD-BER increased by 14.90% and 74.64% compared to the BER and the PAD, respectively. In addition, the electron utilization, extracellular polymeric substances secretion, and denitrification enzyme activity (NaR and NiR) were enhanced in the PAD-BER. The microbial communities study displayed that Dokdonella, Hydrogenophaga, Nitrospira, and Terrimonas became the main genera for denitrification. Compared with the PAD and the BER, the abundance of the key denitrification genes narG, nirK, nirS, and nosZ were all boosted in the PAD-BER. This study indicated that the enhanced autotrophic denitrifiers and denitrification genes were responsible for the improved denitrification in the PAD-BER. PRACTITIONER POINTS: PAD-BER displayed higher nitrate removal, EPS, NAR, and NIR activity. The three types of denitrification (HD, HAD, and PAD) and their contribution percentage in the PAD-BER were analyzed. HAD was dominant among the three denitrification processes in PAD-BER. Microbial community composition and key denitrification genes were tested to reveal the denitrification mechanisms.
Collapse
Affiliation(s)
- Shenyu Tan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yu Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Heng Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
4
|
Wang H, Zhou Q. Potential application of bioelectrochemical systems in cold environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172385. [PMID: 38604354 DOI: 10.1016/j.scitotenv.2024.172385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Globally, more than half of the world's regions and populations inhabit psychrophilic and seasonally cold environments. Lower temperatures can inhibit the metabolic activity of microorganisms, thereby restricting the application of traditional biological treatment technologies. Bioelectrochemical systems (BES), which combine electrochemistry and biocatalysis, can enhance the resistance of microorganisms to unfavorable environments through electrical stimulation, thus showing promising applications in low-temperature environments. In this review, we focus on the potential application of BES in such environments, given the relatively limited research in this area due to temperature limitations. We select microbial fuel cells (MFC), microbial electrolytic cells (MEC), and microbial electrosynthesis cells (MES) as the objects of analysis and compare their operational mechanisms and application fields. MFC mainly utilizes the redox potential of microorganisms during substance metabolism to generate electricity, while MEC and MES promote the degradation of refractory substances by augmenting the electrode potential with an applied voltage. Subsequently, we summarize and discuss the application of these three types of BES in low-temperature environments. MFC can be employed for environmental remediation as well as for biosensors to monitor environmental quality, while MEC and MES are primarily intended for hydrogen and methane production. Additionally, we explore the influencing factors for the application of BES in low-temperature environments, including operational parameters, electrodes and membranes, external voltage, oxygen intervention, and reaction devices. Finally, the technical, economic, and environmental feasibility analyses reveal that the application of BES in low-temperature environments has great potential for development.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Xue Y, Zhang C, Li S, Zhou Q, Zhou X, Zhang Y. Enhanced denitrification by graphene oxide-modified cathode for the secondary effluent of wastewater treatment plants in three-dimensional biofilm electrode reactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3192-3207. [PMID: 39150420 DOI: 10.2166/wst.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 08/17/2024]
Abstract
In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)-modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different hydraulic retention times (HRTs) and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% total nitrogen (TN) molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.
Collapse
Affiliation(s)
- Ying Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China E-mail:
| | - Sibo Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Song Z, Liao R, Su X, Zhang X, Zhao Z, Sun F. Development of a novel three-dimensional biofilm-electrode system (3D-BES) loaded with Fe-modified biochars for enhanced pollutants removal in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166980. [PMID: 37699484 DOI: 10.1016/j.scitotenv.2023.166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Different mass ratio iron (Fe)-loaded biochars (FeBCs) were prepared from food waste and used in the three-dimensional biofilm-electrode systems (3D-BES) as particular electrodes for landfill leachate treatment. Compared to the unmodified biochar (BC), specific surface area of Fe-loaded biochars (FeBC-3 with a Fe: biochar of 0.2:1) increased from 63.01 m2/g to 184.14 m2/g, and pore capacity increased from 0.038 cm3/g to 0.111 cm3/g. FeBCs provided more oxygen-containing functional groups and exhibited excellent redox properties. Installed with FeBC-3 as particular electrode, both NH4+-N and chemical oxygen demand COD removals in 3D-BESs were well fitted with the pseudo-first-order model, with the maximum removal efficiencies of 98.6 % and 95.5 %, respectively. The batch adsorption kinetics experiments confirmed that the maximum NH4+-N (7.5 mg/g) and COD (21.8 mg/g) adsorption capacities were associated closely with the FeBC-3 biochar. In contrast to the 3D-BES with the unmodified biochar, Fe-loaded biochars significantly increased the abundance of microorganisms being capable of removing organics and ammonia. Meanwhile, the increased content of dehydrogenase (DHA) and electron transport system activity (ETSA) evidenced that FeBCs could enhance microbial internal activities and regulate electron transfer process among functional microorganisms. Consequently, it is concluded that Fe-loaded biochar to 3D-BES is effective in enhancing pollutant removals in landfill leachate and provided a reliable and effective strategy for refractory wastewater treatment.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
7
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Jin C, Tang Q, Xu H, Sheng Y. Effects of anode materials on nitrate reduction and microbial community in a three-dimensional electrode biofilm reactor with sulfate. CHEMOSPHERE 2023; 340:139909. [PMID: 37611758 DOI: 10.1016/j.chemosphere.2023.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/22/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Graphite rod corrosion and peeling are serious problems in three-dimensional electrode biofilm reactors (3D-BERs). In this study, titanium rods, titanium suboxide-coated titanium rods and graphite rods were used as anodes to investigate the effect of anodic materials on the electrochemical and bioelectrochemical reduction of nitrate and sulfate. The results showed that the reactor with the titanium suboxide-coated titanium rod anode (3D-ER-T) exhibited a stable NO3--N removal efficiency (46%-95%) with a current range of 160-320 mA in the electrochemical reduction process. In the bioelectrochemical reduction, the removal efficiencies of NO3--N and SO42- and nitrogen selectivity in the 3D-BER with titanium suboxide-coated titanium rod anode (3D-BER-T) were higher than those in the 3D-BER with titanium suboxide-coated graphite rod anode (3D-BER-G). The removal efficiencies of NO3--N and SO42- and nitrogen selectivity were 92%, 43% and 86%, respectively, in 3D-BER-T under 320 mA and HRT 12 h. Anode materials affected the microbial community. Hydrogenophaga and Dethiobacter were the dominant bacteria in 3D-BER-T, while OPB41 and Sulfurospirillum were dominant in 3D-BER-G. Nitrate and sulfate were effectively removed in 3D-BER-T by the synergistic work of electrochemical reduction, bioelectrochemical reduction and indirect electrochemical reduction. The resupply/reserve mode of the electron donor promoted the load of shock resistance of 3D-BER-T via the sulfur cycle. Titanium suboxide coating could significantly enhance the anti-corrosion ability of matrix anodes.
Collapse
Affiliation(s)
- Chunhong Jin
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qi Tang
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengduo Xu
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
9
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
10
|
Wang S, Li J, Wang W, Zhou C, Chi Y, Wang J, Li Y, Zhang Q. An overview of recent advances and future prospects of three-dimensional biofilm electrode reactors (3D-BERs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118192. [PMID: 37285769 DOI: 10.1016/j.jenvman.2023.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) have attracted extensive attention in recent years due to their wide application range, high efficiency and energy saving. On the basis of traditional bio-electrochemical reactor, 3D-BERs are filled with particle electrodes, also known as the third electrodes, which can not only be used as a carrier for microbial growth, but also improve the electron transfer rate of the whole system. This paper reviews the constitution, advantages and basic principles of 3D-BERs as well as current research status and progress of 3D-BERs in recent years. The selection of electrode materials, including cathode, anode and particle electrode are listed and analyzed. Different constructions of reactors, like 3D-unipolar extended reactor and coupled 3D-BERs are introduced and discussed. Various contaminants degraded by 3D-BERs including nitrogen, azo dyes, antibiotics and the others are calculated and the corresponding degradation effects are described. The influencing factors and mechanisms are also introduced. At the same time, according to the research advances of 3D-BERs, the shortcomings and weakness of this technology in the current research process are analyzed, and the future research direction of this technology is prospected. This review aims to summarize recent studies of 3D-BERs in bio-electrochemical reaction and open a bright window to this booming research theme.
Collapse
Affiliation(s)
- Siyuan Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Jianchen Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Wenjun Wang
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha, 410205, China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanfeng Chi
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China.
| | - Jianhui Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Youcai Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Qingbo Zhang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| |
Collapse
|
11
|
Xiao H, Hao Y, Wu J, Meng X, Feng F, Xu F, Luo S, Jiang B. Differentiating the reaction mechanism of three-dimensionally electrocatalytic system packed with different particle electrodes: Electro-oxidation versus electro-fenton. CHEMOSPHERE 2023; 325:138423. [PMID: 36934480 DOI: 10.1016/j.chemosphere.2023.138423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Recently, there are still some controversial mechanisms of the 3D electrocatalytic oxidation system, which would probably confound its industrial application. From the conventional viewpoint, the Ti4O7 material may be the desired particle electrodes in the 3D system since its high oxygen evolution potential favors the production of •OH via H2O splitting reaction at the anode side of Ti4O7 particle electrodes. In fact, the incorporation of Ti4O7 particles showed phenol degradation of 88% and COD removal of 51% within 120 min, under the optimum conditions at energy consumption of 0.668 kWh g-1 COD, the performance of which was much lower than those in many previous literatures. In contrast, the prepared carbon black-polytetrafluoroethylene composite (CB-PTFE) particles with abundant oxygen-containing functional groups could yield considerable amounts of H2O2 (200 mg L-1) in the 3D reactor and achieved a complete degradation of phenol and COD removal of 80% in the presence of Fe2+, accompanying a low energy consumption of only 0.080 kWh g-1 COD. It was estimated that only 20% of Ti4O7 particles near the anode attained the potential over 2.73 V/SCE at 30 mA cm-2 based on the potential test and simulation, responsible for the low yield of •OH via the H2O splitting on Ti4O7 (1.74 × 10-14 M), and the main role of Ti4O7 particle electrodes in phenol degradation was through direct oxidation. For the CB-PTFE-based 3D system, current density of 10 mA cm-2 was sufficient for all the CB-PTFE particles to attain cathodic potential of -0.67 V/SCE, conducive to the high yield of H2O2 and •OH (9.11 × 10-14 M) in the presence of Fe2+, and the •OH-mediated indirect oxidation was mainly responsible for the phenol degradation. Generally, this study can provide a deep insight into the 3D electrocatalytic oxidation technology and help to develop the high-efficiency and cost-efficient 3D technologies for industrial application.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingli Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xianzhe Meng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Fei Feng
- Shandong Tiantai Environmental Technology Co., Ltd., Jinan, PR China
| | - Fengqi Xu
- SunRui Marine Environment Engineering Company Ltd, Qingdao, 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
12
|
Ma J, Wang X, Sun H, Tang W, Wang Q. A review on three-dimensional electrochemical technology for the antibiotic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27565-2. [PMID: 37213011 DOI: 10.1007/s11356-023-27565-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
The potential genotoxicity and non-biodegradability of antibiotics in the natural water bodies threaten the survival of various living things and cause serious environmental pollution and destruction. Three-dimensional (3D) electrochemical technology is considered a powerful means for antibiotic wastewater treatment as it can degrade non-biodegradable organic substances into non-toxic or harmless substances and even completely mineralize them under the action of electric current. Therefore, antibiotic wastewater treatment using 3D electrochemical technology has now become a hot research topic. Thus, in this review, a detailed and comprehensive investigation was conducted on the antibiotic wastewater treatment using 3D electrochemical technology, including the structure of the reactor, electrode materials, the influence of operating parameters, reaction mechanism, and combination with other technologies. Many studies have shown that the materials of electrode, especially particle electrode, have a great effect on the antibiotic wastewater treatment efficiency. The influence of operating parameters such as cell voltage, solution pH, and electrolyte concentration was very significant. Combination with other technologies such as membrane and biological technologies has effectively increased antibiotic removal and mineralization efficiency. In conclusion, the 3D electrochemical technology is considered as a promising technology for the antibiotic wastewater treatment. Finally, the possible research directions of the 3D electrochemical technology for antibiotic wastewater treatment were proposed.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu Dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaona Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiqi Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory On Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Liu S, Wang Z, Feng X, Pyo SH. Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell. ENVIRONMENTAL RESEARCH 2023; 216:114625. [PMID: 36279915 DOI: 10.1016/j.envres.2022.114625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
An innovative design of microbial electrolytic reactor (MER) coupled with Ipomoea aquaticaForsk. plant microbial fuel cell (IAF-PMFC) was developed for azo dye wastewater treatment and electricity generation. This study aims to assess the sequential degradation of azo dye and the feasibility of energy self-sufficiency in the MER/IAF-PMFC system. The decomposition of azo dye into aromatic amines and dye decolorization occurred in the MER at high hydraulic loading of 0.28 m3/(m2·d), while dye intermediates were mainly mineralized in the IAF-PMFC at low hydraulic loading of 0.06 m3/(m2·d). The final decolorization efficiency and COD removal of the combined system reached 99.64% and 92.06% respectively, even at influent dye concentration of 1000 mg/L. The effects of open/closed circuit conditions, presence/absence of aquatic plant and different cathode areas on the performance of the IAF-PMFC for treating the effluent of the MER were systematically tested, and the results showed that closed-circuit condition, plant involvement and larger cathode area were more beneficial to decolorization, detoxification and mineralization of dye wastewater, bioelectricity output, plant growth and photosynthetic rate. The power consumption by the MER was 0.0163 kWh/m3 of dye wastewater, while the highest power generation of the IAF-PMFC reached 0.0183 kWh/m3. The current efficiency of the MER for dye decolorization was as high as 942.83%, while the maximum coulombic efficiency of the IAF-PMFC for intermediates metabolism was only 6.30%, which still had much space of bioelectricity generation promotion. The MER/IAF-PMFC technology can simultaneously realize refractory wastewater treatment and balance of electricity production and consumption.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| | - Zuo Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| |
Collapse
|
14
|
Yin H, Lin X, Zhao F, Pu Y, Chen Y, Tang X. Nano-α-Fe 2 O 3 for enhanced denitrification in a heterotrophic/biofilm-electrode autotrophic denitrification reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10814. [PMID: 36461626 DOI: 10.1002/wer.10814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
In this study, a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER) was constructed and nano-ɑ-Fe2 O3 was coated on granular activated carbon (GAC) as a third electrode to enhance the nitrate removal performance. The introduction of nano-ɑ-Fe2 O3 could stimulate microorganisms to secrete more extracellular polymeric substances (EPS), accelerating the electron transfer. Moreover, more denitrification bacteria were enriched on the particle electrodes, especially Pseudomonas and Thermomonas, which played a significant role in denitrification. The denitrification performance at different COD/N ratios (0.65-3.23) and current intensities (0-150 mA) was investigated in depth. When the nitrate concentration of the influent was 60 mg/L, nitrate was almost completely removed at the optimal current intensity (60 mA) and COD/N ratio (1.29). At the same time, there was almost no nitrite (<0.10 mg/L) and ammonia nitrogen (0 mg/L) accumulation in the effluent. This study provided a new direction for the advancement of HAD-BER and accelerated its implementation. PRACTITIONER POINTS: By introducing nano-a-Fe2O3 into HAD-BER, more denitrification bacteria were enriched on the particle electrodes. The increased contents of polysaccharide and protein content could accelerate the electron transfer. Almost completely denitrification could be achieved at current = 60 mA and COD/N = 1.29. The study provided a new direction for the further development of HAD-BERs.
Collapse
Affiliation(s)
- Haoran Yin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Xiangyu Lin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Fan Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yu Pu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yini Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
15
|
Liu Y, Zheng B, Zhang T, Chen Y, Liu J, Wang Z, Gong X. Magnetic field intensified electrodeposition of low-concentration copper ions in aqueous solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
17
|
Shi B, Zhang L, Sun H, Ren J, Wang H, Tang H, Bian Z. Efficient and recyclable Ni-Ce-Mn-N modified ordered mesoporous carbon electrode during electrocatalytic ozonation process for the degradation of simulated high-salt phenol wastewater. CHEMOSPHERE 2022; 304:135258. [PMID: 35679983 DOI: 10.1016/j.chemosphere.2022.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, an efficient and stable NiO/CeO2/MnO2-modified nitrogen-doped ordered mesoporous carbon (NOMC) particle electrode was developed, in which the metal oxides were mosaicked within the pore channels by one-pot skeleton hybridization, and the comodification of NiO/CeO2/MnO2/N was found to improve the electrocatalytic activity and stability of the particle electrode. The improved stability of the ordered mesoporous carbon towards pore collapse was applied to the degradation of simulated high-salt phenol wastewater by an electrocatalytic ozonation process using simple binder pelletization. The modified ordered mesoporous carbon shows a specific surface area of 269.7 m2 g-1 and a pore size of 3.17 nm, and SEM and TEM were used to show that the mesoporous structure is well maintained and the metal nanoparticles are well dispersed. The electrochemically active area of the Ni2%/Ce0.5%/Mn2.5%-NOMC particle electrode reaches 224.65 mF cm-2, which indicates that NiO improves the capacitance of the ordered mesoporous carbon and accelerates the electron transfer efficiency. Encouragingly, the phenol removal efficiency is found to reach up to 93.0% for 60 min over a wide range of pH values, with an initial phenol concentration of 150 mg L-1, low current (0.03 A) and fast reaction rate (0.0895 min-1), and the presence of CeO2 ameliorates the low activity of the particle electrode under acidic conditions. These results indicate that the presence of pyridine-N and β-MnO2 effectively mitigates carbon corrosion and improves electrode stability, as the accumulation of large amounts of ·OH at 20 min and the maintenance of a degradation efficiency of more than 90% after eight cycles provides a viable solution for the widespread practical application of ordered mesoporous carbon particle electrodes.
Collapse
Affiliation(s)
- Bingyu Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Lu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Haiying Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Jianan Ren
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
18
|
Technological Parameters of Rotating Electrochemical and Electrobiological Disk Contactors Depending on the Effluent Quality Requirements. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soilless tomato cultivation wastewater, with typically low COD, high concentrations of phosphorus, and oxidized forms of nitrogen, may be effectively treated in a rotating electrochemical disk contactor (RECDC) and in a bioelectrochemical reactor (BER), such as a rotating electrobiological disk contactor (REBDC). The aim of this study was to determine the technological parameters of both reactors, i.e., electric current density (J) and hydraulic retention time (HRT), depending on the effluent quality requirements. The study was conducted with four one-stage RECDCs and with four one-stage REBDCs, at four hydraulic retention times, i.e., 4, 8, 12, and 24 h, and electric current densities of 0.63, 1.25, 2.50, 5.00, and 10.00 A/m2. It was demonstrated that soilless tomato cultivation wastewater could be effectively treated in electrochemical and electrobiological disk contactors, and then discharged to sewage system facilities. In a RECDC, the highest denitrification (53.4%) and dephosphatation (99.8%) performance was achieved at J = 10.0 A/m2 and HRT = 24 h. If the effluents are to be discharged to natural reservoirs, their effective treatment is only feasible in a REBDC. The bioelectrochemical disk contactor ensured over 90% dephosphatation effectiveness. At HRT = 24 h and all electric current densities studied, the concentrations of pollutants in the effluent met requirements set for industrial wastewater discharged into natural waters and the ground. By applying J = 2.5 A/m2 and HRT = 24 h in the REBDC, it was possible to achieve a phosphorus concentration below 3.0 mg P/L and concentrations of ammonia nitrogen and nitrites lower than the permissible levels for treated industrial wastewater introduced to waters and to the ground. Given the nitrate concentration (exceeding 30 mg N/L), an external carbon source is recommended to aid a treatment process that uses a technological system with a REBDC. Technological schemes were proposed for wastewater treatment plants (WWTPs) with a RECDC and a REBDC, for discharging treated wastewater to natural waters, the ground, and sewage systems.
Collapse
|