1
|
Silva VBD, Almeida-Bezerra JW, Pereira RLS, Alcântara BMD, Furlan CM, Coelho JJ, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antibacterial potential, and toxicity of the extracts from the stem bark of Hancornia speciosa Gomes (Apocynaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118631. [PMID: 39067831 DOI: 10.1016/j.jep.2024.118631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa is a medicinal plant popularly used to treat different medical issues, including infectious diseases. Exploring the therapeutic potentialities of the extracts from medicinal plants combined with conventional antibiotic drugs is a promising horizon, especially considering the rising microbial resistance. AIM OF THE STUDY This study aimed to characterize the chemical composition of the ethereal (EEHS) and methanolic (MEHS) extracts of the stem bark of H. speciosa, and also evaluate their antibacterial and drug-modifying activity, and toxicity. MATERIALS AND METHODS The extracts were characterized by gas chromatography coupled to mass spectrometry (GC-MS). Additionally, total phenol and flavonoid contents were determined. The antibacterial and antibiotic-modifying activity was evaluated against strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa using the serial microdilution method, obtaining the minimum inhibitory concentration (MIC). The toxicity assay was carried out using the Drosophila melanogaster model. RESULTS Thirty compounds were identified in the extracts of the stem bark of H. speciosa, with triterpenoids being predominant in both extracts. Additionally, fatty alcohols, carbohydrates, fatty acids, phenolic acids, and phytosterols were identified in both extracts. EEHS and MEHS extracts had considerable phenol contents (346.4 and 340.0 mg GAE/g, respectively). Flavonoids were detected in a lower proportion (7.6 and 6.9 mg QE/g, respectively). H. speciosa extracts did not display intrinsic antibacterial activity against the bacterial strains evaluated, however, they were capable of modifying the activity of gentamicin, erythromycin, and norfloxacin. EEHS increased the efficacy of norfloxacin against E. coli and S. aureus, reducing MIC values by 50%. MEHS potentiated the action of gentamicin against all bacterial strains, especially against E. coli. The extracts did not display toxicity at clinically relevant concentrations against D. melanogaster. CONCLUSION The stem bark of H. speciosa was considered a rich source of bioactive compounds. Our findings evidenced the therapeutic potential of H. speciosa extracts for the development of new pharmaceutical therapeutics against bacteria. Although the extracts did not exhibit intrinsic antibacterial activity, they enhanced the efficacy of commercial antibiotic drugs and were non-toxic at clinically relevant concentrations. Future studies are needed to elucidate the mechanisms of action of these extracts, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Raimundo Luiz Silva Pereira
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Bruno Melo de Alcântara
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Cláudia Maria Furlan
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Janerson José Coelho
- Universidade Estadual do Ceará - UECE, Faculdade de Educação, Ciências e Letras dos Inhamuns - CECITEC, Tauá, 63660-000, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
2
|
Wichaphian A, Kaewman N, Pathom-Aree W, Phinyo K, Pekkoh J, Chromkaew Y, Cheirsilp B, Srinuanpan S. Zero-waste biorefining co-products from ultrasonically assisted deep eutectic solvent-pretreated Chlorella biomass: Sustainable production of biodiesel and bio-fertilizer. BIORESOURCE TECHNOLOGY 2024; 408:131163. [PMID: 39079573 DOI: 10.1016/j.biortech.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Microalgal biomass is gaining increasing attention to produce high-value co-products. This study proposes integrating Chlorella microalgal biomass into a zero-waste biorefining system, aiming to produce biodiesel and biofertilizer. It investigates optimal conditions for ultrasound-assisted deep eutectic solvent (DES) pretreatment and lipid recovery to enhance the extraction of lipids. Optimal DES pretreatment was identified as a 1.6:1 acetic acid-to-choline chloride molar ratio, 0.36 g biomass loading, and 2.50 min of pretreatment. Lipid recovery succeeded with a 10-minute extraction time and a 1:3 methanol-to-butanol volume ratio. These conditions yielded biodiesel-quality lipids at 139.52 mg/g microalgal biomass with superior fuel characteristics. The de-oiled microalgal biomass residue exhibited promise as a lettuce biofertilizer, enhancing photosynthetic pigments but potentially reducing yields by 40 %. The study also notes changes in rhizosphere microbial communities, indicating both stimulatory and inhibitory effects on beneficial microbes. This study has the potential to enhance sustainability in energy, agriculture, and the environment.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitiphong Kaewman
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Costa IG, Vargas JVC, Balmant W, Ramos LP, Mariano AB, Oliveira ACD, da Silva TA, Severo IA, Ordonez JC, Sousa DL, Dos Santos VF. Unlocking pilot-scale green diesel production from microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122141. [PMID: 39128345 DOI: 10.1016/j.jenvman.2024.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Microalgae have emerged as a promising source of biomass to produce renewable biofuels due to their ability to synthesize high-energy density compounds of commercial interest. This study proposes an approach for pilot-scale oil extraction, purification by fractional distillation, hydrocarbon characterization by gas chromatography coupled to mass spectrometry (GC-MS), evaluation of physicochemical parameters of the produced hydrocarbons, preliminary cost analysis, and challenges and future opportunities for green diesel on a commercial scale. Here, the microalgae Tetradesmus obliquus was cultivated in 12 m³ photobioreactors using biodigested swine waste as a culture medium. The resulting biomass was subjected to drying and harvesting, followed by oil extraction using a hot solvent extraction method, followed by distillation to purify the compounds. Three different extraction and distillation experiments were conducted, each using different solvent combinations. The results obtained revealed that extraction with a solvent blend, composed of hexane and ethanol, provided more significant yields compared to extraction with pure hexane. GC-MS analysis showed the presence of alkanes and alkenes in the oil samples, and the proportion of solvent used in the extraction directly influenced the production of alkanes. Additionally, specific hydrocarbons such as 4-methyl-1-decene, 8-heptadecene, 1-pentadecene, 9-heneicosene, and 2-dodecene were identified. The evaluation of the physicochemical parameters demonstrated that the calorific value of the distilled oil samples is within the range of typical values for petroleum diesel. However, it was observed that the distilled oil samples had higher sulfur content compared to conventional diesel. Regarding the cost analysis, it was found that it varies depending on the experimental conditions. In particular, the process using a solvent mixture of 70% hexane and 30% ethanol proved to be more economical than the others, since it extracted a greater quantity of oil with a lower initial biomass requirement. In summary, this microalgae-derived hydrocarbon production process is promising and offers insights for compound purification and future biofuel applications.
Collapse
Affiliation(s)
- Iago G Costa
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - José V C Vargas
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Wellington Balmant
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Luiz P Ramos
- Department of Chemical Engineering, Graduate Program in Chemical Engineering (PGEQ), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - André B Mariano
- Department of Electrical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Anne C D Oliveira
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Thiago A da Silva
- Department of Chemical Engineering, Graduate Program in Chemical Engineering (PGEQ), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Ihana A Severo
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, United States.
| | - Juan C Ordonez
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, United States
| | - Diego L Sousa
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Vinicius F Dos Santos
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
4
|
de Castro LLRL, Silva LGL, Abreu IR, Braz CJF, Rodrigues SCS, Moreira-Araújo RSDR, Folkersma R, de Carvalho LH, Barbosa R, Alves TS. Biodegradable PBAT/PLA blend films incorporated with turmeric and cinnamomum powder: A potential alternative for active food packaging. Food Chem 2024; 439:138146. [PMID: 38100869 DOI: 10.1016/j.foodchem.2023.138146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Active packaging made from biodegradable polymers and natural additives appears as an ecological alternative. In addition to having antioxidant activity and enhancing food preservation, it allows mitigating the negative impacts caused by improper disposal. This study pursued to produce biodegradable films based on a polymer blend PBAT/PLA (Ecovio®) using the flat extrusion method. The films were prepared with the incorporation of 5 wt% of powdered turmeric or cinnamon as natural additives. The films obtained, and those reprocessed twice, were characterized in terms of colorimetric, UV light transmittance, water contact angle, water vapor permeability, morphology, mechanical properties, and antioxidant activity. Cinnamon reduced the UV light transmittance and made a surface more hydrophobic. Reprocessing led to greater elongation and maximum load, associated with increased dispersion and distribution, as evidenced in the morphological analysis. The films developed have significant potential for applications in active food packaging, with emphasis on cinnamon-additivated films.
Collapse
Affiliation(s)
- Layara L R L de Castro
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil
| | - Lauriene G L Silva
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil
| | - Iago R Abreu
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil
| | - Cristiano J F Braz
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil
| | - Samara C S Rodrigues
- Department of Physics, Federal Institute of Education, Science and Technology of Piauí, Teresina Central Campus, Teresina 64.000-040, Brazil
| | | | - Rudy Folkersma
- NHL Stenden University of Applied Sciences, Groningen 9727, Netherlands
| | - Laura H de Carvalho
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, 58.100-000 Teresina, PI, Brazil
| | - Renata Barbosa
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil
| | - Tatianny S Alves
- Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64.049-550, Brazil.
| |
Collapse
|
5
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
6
|
Barthwal R, Mahar R. Exploring the Significance, Extraction, and Characterization of Plant-Derived Secondary Metabolites in Complex Mixtures. Metabolites 2024; 14:119. [PMID: 38393011 PMCID: PMC10890687 DOI: 10.3390/metabo14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Secondary metabolites are essential components for the survival of plants. Secondary metabolites in complex mixtures from plants have been adopted and documented by different traditional medicinal systems worldwide for the treatment of various human diseases. The extraction strategies are the key components for therapeutic development from natural sources. Polarity-dependent solvent-selective extraction, acidic and basic solution-based extraction, and microwave- and ultrasound-assisted extraction are some of the most important strategies for the extraction of natural products from plants. The method needs to be optimized to isolate a specific class of compounds. Therefore, to establish the mechanism of action, the characterization of the secondary metabolites, in a mixture or in their pure forms, is equally important. LC-MS, GC-MS, and extensive NMR spectroscopic strategies are established techniques for the profiling of metabolites in crude extracts. Various protocols for the extraction and characterization of a wide range of classes of compounds have been developed by various research groups and are described in this review. Additionally, the possible means of characterizing the compounds in the mixture and their uniqueness are also discussed. Hyphenated techniques are crucial for profiling because of their ability to analyze a vast range of compounds. In contrast, inherent chemical shifts make NMR an indispensable tool for structure elucidation in complex mixtures.
Collapse
Affiliation(s)
- Ruchi Barthwal
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| |
Collapse
|
7
|
Manickavasagam G, Saaid M, Lim V. Exploring stingless bee honey from selected regions of Peninsular Malaysia through gas chromatography-mass spectrometry-based untargeted metabolomics. J Food Sci 2024; 89:1058-1072. [PMID: 38221804 DOI: 10.1111/1750-3841.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Volatile organic compounds in honey are known for their considerable impact on the organoleptic properties of honey, such as aroma, flavor, taste, and texture. The type and composition of volatile organic compounds are influenced by entomological, geographical, and botanical origins; thus, these compounds have the potential to be chemical markers. Sixty-two volatile compounds were identified using gas chromatography-mass spectrometry from 30 Heterotrigona itama (H. itama) honey samples from 3 different geographical origins. Hydrocarbons and benzene derivatives were the dominant classes of volatile organic compounds in the samples. Both clustering and discriminant analyses demonstrated a clear separation between samples from distant origins (Kedah and Perak), and the volcano plot supported it. The reliability and predictability of the partial least squares-discriminant analysis model from the discriminant analysis were validated using cross-validation (R2 : 0.93; Q2 : 0.83; accuracy: 0.97) and the permutation test (p < 0.001), and the output depicted that the model is legitimate. In combination with the variable importance of projection (VIP > 1.0) and the Kruskal-Wallis test (p < 0.01), 19 volatile organic compounds (encompassed aldehydes, benzene derivatives, esters, hydrocarbons, and terpenoids) were sorted and named potent chemical markers in classifying honey samples from three geographical origins. In brief, this study illustrated that volatile organic compounds of stingless honey originated from the same bee species, but different geographical origins could be applied as chemical markers.
Collapse
Affiliation(s)
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Dong Y, Zhao J, Miao R, Feng R, Wang T, Lin J, Gan B, Tan X, Wu Y. In Vitro Bioactivities and Characterization of Mycelial Extracts from Different Strains of Phellinus igniarius (Agaricomycetes). Int J Med Mushrooms 2024; 26:59-71. [PMID: 38780423 DOI: 10.1615/intjmedmushrooms.2024053086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
To fully utilize Phellinus igniarius fermentation mycelia, the present study investigated the in vitro antioxidant and α-amylase inhibitory properties of four Ph. igniarius strains. Organic solvents were used to extract fatty acids, phenolics, and flavonoids from the selected mushrooms. The composition and bioactivity of the extracts were evaluated. The lipid yield obtained using petroleum ether (7.1%) was higher than that obtained using 1:1 n-hex-ane+methanol (5.5%) or 2:1 dichloromethane+methanol (3.3%). The composition and relative content of saturated and unsaturated fatty acids in the petroleum ether extract were higher than those in other solvent extracts. Furthermore, ethyl acetate extracts had higher flavonoid and phenolic content and better antioxidant activity than other extracts; however, the 70% ethanol extracts had the best α-amylase inhibitory activity. The supernatant from the ethanol precipitation of aqueous and 1% (NH4)2C2O4 extracts could also be biocompound sources. This comparative study is the first highlighting the in vitro antioxidant and α-amylase inhibitory properties of the four strains of Ph. igniarius extracts prepared using different organic solvents, which makes the investigated species and extracts promising for biological application.
Collapse
Affiliation(s)
- Yating Dong
- Jiangsu university/ Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC)
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, People's Republic of China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Xingyi Tan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), Tianfu New Area, Chengdu, 610000 China
| | - Yiyou Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), Tianfu New Area, Chengdu, 610000 China
| |
Collapse
|
9
|
Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, Jones S, Kumar Yadav K, Chang SW, Ravindran B, Kumar Awasthi M. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management - A critical review. BIORESOURCE TECHNOLOGY 2023; 387:129660. [PMID: 37573978 DOI: 10.1016/j.biortech.2023.129660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.
Collapse
Affiliation(s)
- Sundaram Vickram
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Jhonnah Mundike
- Department of Environmental Engineering, School of Mines & Mineral Sciences, The Copperbelt University, Riverside Jambo Drive, PO Box 21692, Kitwe, Zambia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
10
|
Liu J, Mandlaa, Wang J, Sun Z, Chen Z. A strategy to enhance and modify fatty acid synthesis in Corynebacterium glutamicum and Escherichia coli: overexpression of acyl-CoA thioesterases. Microb Cell Fact 2023; 22:191. [PMID: 37735384 PMCID: PMC10512533 DOI: 10.1186/s12934-023-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Fatty acid (FA) is an important platform compound for the further synthesis of high-value biofuels and oleochemicals, but chemical synthesis of FA has many limitations. One way to meet the future demand for FA could be to use microbial cell factories for FA biosynthesis. RESULTS Thioesterase (TE; TesA, TesB, and TE9) of Corynebacterium glutamicum (CG) can potentially improve FA biosynthesis, and tesA, tesB, and te9 were overexpressed in C. glutamicum and Escherichia coli (EC), respectively, in this study. The results showed that the total fatty acid (TFA) production of CGtesB and ECtesB significantly increased to 180.52 mg/g dry cell weight (DCW) and 123.52 mg/g DCW, respectively (P < 0.05). Overexpression strains CG and EC could increase the production of C16:0, C18:1(t), C18:2, C20:1, C16:1, C18:0, and C18:1(c) (P < 0.05), respectively, and the changes of long-chain FA resulted in the enhancement of TFA production. The enzymatic properties of TesA, TesB, and TE9 in vitro were determined: they were specific for long-, broad and short-chain substrates, respectively; the optimal temperature was 30.0 °C and the optimal acid-base (pH) were 8.0, 8.0, and 9.0, respectively; they were inhibited by Fe2+, Cu2+, Zn2+, Mg2+, and K+. CONCLUSION Overexpression TE enhances and modifies FA biosynthesis with multiple productive applications, and the enzyme properties provided useful clues for optimizing FA synthesis.
Collapse
Affiliation(s)
- Jin Liu
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Mandlaa
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Jia Wang
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Ziyu Sun
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| | - Zhongjun Chen
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
11
|
Jung M, Kim YE, Lee N, Yu H, Lee J, Lee SY, Lee YC, Oh YK. Simultaneous enhancement of lipid biosynthesis and solvent extraction of Chlorella using aminoclay nanoparticles. BIORESOURCE TECHNOLOGY 2023; 384:129314. [PMID: 37311525 DOI: 10.1016/j.biortech.2023.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Magnesium aminoclay nanoparticles (MgANs) exert opposing effects on photosynthetic microalgae by promoting carbon dioxide (CO2) uptake and inducing oxidative stress. This study explored the potential application of MgAN in the production of algal lipids under high CO2 concentrations. The impact of MgAN (0.05-1.0 g/L) on cell growth, lipid accumulation, and solvent extractability varied among three tested oleaginous Chlorella strains (N113, KR-1, and M082). Among them, only KR-1 exhibited significant improvement in both total lipid content (379.4 mg/g cell) and hexane lipid extraction efficiency (54.5%) in the presence of MgAN compared to those of controls (320.3 mg/g cell and 46.1%, respectively). This improvement was attributed to the increased biosynthesis of triacylglycerols and a thinner cell wall based on thin-layer chromatography and electronic microscopy, respectively. These findings suggest that using MgAN with robust algal strains can enhance the efficiency of cost-intensive extraction processes while simultaneously increasing the algal lipid content.
Collapse
Affiliation(s)
- Mikyoung Jung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Young-Eun Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Nakyeong Lee
- Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea; Division of Environmental Materials, Honam National Institute of Biological Resources, Mokpo 58762, South Korea
| | - Hyoji Yu
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si 13120, South Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
12
|
Polat E, Yavuztürk-Gül B, Ünver H, Altınbaş M. Biotechnological product potential of Auxenochlorella protothecoides including biologically active compounds (BACs) under nitrogen stress conditions. World J Microbiol Biotechnol 2023; 39:198. [PMID: 37188850 DOI: 10.1007/s11274-023-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen stress can influence microalgae's growth characteristics, and microalgae grown in nitrogen-deficient conditions may produce higher or lower levels of biotechnological products as a result of metabolic changes. In photoautotrophic and heterotrophic cultures, nitrogen limitation has been proven effective in promoting lipid accumulation. In spite of this, no study has demonstrated a significant correlation between lipid content and other biotechnological products such as bioactive compounds (BACs). This research examines a strategy for lipid accumulation as well as the potential production of BACs with antibacterial properties in parallel with that strategy. This concept involved the treatment of the microalga Auxenochlorella protothecoides with low and high concentrations of ammonium (NH4+). This particular experiment reached a maximum lipid content of 59.5% using a 0.8 mM NH4+ concentration, resulting in the yellowing of the chlorophyll levels. Agar diffusion assays were conducted to determine the antibacterial activity of different extracts derived from the biomass when stressed with different levels of nitrogen. Algal extracts prepared by a variety of solvents showed different levels of antibacterial activity against representative strains of both gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria. Among the extracts tested, 500 mg/L ethyl acetate extract had the greatest antibacterial activity against Escherichia coli. In order to identify the components responsible for the extract's antibacterial activity, fatty acid methyl ester (FAME) analysis was performed. It has been suggested that the lipid fraction may be a valuable indicator of these activities since some lipid components are known to possess antimicrobial properties. In this regard, it was found that the amount of polyunsaturated fatty acid (PUFA) significantly decreased by 53.4% under the conditions with the highest antibacterial activity observed.
Collapse
Affiliation(s)
- Ece Polat
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Sinop University, 57000, Sinop, Türkiye.
| | - Bahar Yavuztürk-Gül
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
- Dincer Topacık National Research Center on Membrane Technologies (MEM-TEK), Istanbul, Türkiye
| | - Hülya Ünver
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Mahmut Altınbaş
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| |
Collapse
|
13
|
Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Microalgae oil has great potential to address the growing energy demand and dependence on fossil fuels. However, the multilayered cell walls of microalgae hinder efficient extraction and enhanced lipid recovery. In this study, we develop a novel protocol based on near infrared-assisted extraction (NIRAE) technology to extract efficiently total lipids from Scenedesmus obliquus. Under a greener solvent extraction approach, the effect of nine non-polar/polar solvent systems in various ratios on lipid yield was tested, and the results were compared with Soxhlet, Folch, and Bligh–Dyer methods. The highest oil yields were NIRAE 15.43%, and Soxhlet 22.24%, using AcoEt/MeOH (1:2 v/v). For Folch and Bligh–Dyer, 9.11 and 10%, respectively. The optimized NIRAE conditions obtained using response surface methodology (RSM): 43.8 min, solvent/biomass 129.90:1 (m/v), and AcOEt/MeOH 0.57:2.43 (v/v) increased the oil yield significantly to 24.20%. In contrast to conventional methods, the overall optimized NIRAE process satisfied the requirements of a green extraction because of the simple and safe operation, less solvent toxicity, lower extraction time, and solvent and energy consumption.
Collapse
|
14
|
Helsper S, Hatem WA, Young L, Wilhelm Z, Liberatore MW. Flow and crystallization of saturated fatty acid methyl esters and their binary mixtures. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sedi Helsper
- Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Wesam A. Hatem
- Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Lisa Young
- Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Zane Wilhelm
- Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | | |
Collapse
|
15
|
Guo H, Cheng J, Mao Y, Qian L, Shao Y, Yang X, Yang W. Acid-base bifunctional catalyst with coordinatively unsaturated cobalt-nitrogen sites for the simultaneous conversion of microalgal triglycerides and free fatty acids into biodiesel. BIORESOURCE TECHNOLOGY 2022; 350:126862. [PMID: 35183722 DOI: 10.1016/j.biortech.2022.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
An acid-base bifunctional catacknalyst with coordinatively unsaturated cobalt-nitrogen active sites Co-Nx (x < 4) was synthesized to convert microalgal lipids with high acid value into biodiesel. Pyrolysis destroyed Co-N4 coordination structure in ZIF-67 and released coordinatively unsaturated Co-Nx and uncoordinated N sites, which resulted in the Lewis/Brønsted acid ratio increasing from 0.1 to 11.45 and the basicity increasing from 0.96 to 6.05 mmol/g. According to DFT calculations, the adsorption energy of free fatty acid (FFA) on Co-N2 site (-1.003 eV) exceeded that on Co-N4 site (-0.271 eV). The strong interaction between Co-N2 site and FFA increased electropositivity of carbonyl carbon atom in FFA from 1.379 to 1.529 eV and promoted esterification. The pyrolysis-induced defects generated more mesopores to promote the transportation of lipid molecules inside the catalyst. Therefore, the conversion efficiency of microalgal lipids into biodiesel over the ZC-450 catalyst (96.7%) was higher than that over the ZIF-67 catalyst (69.5%).
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Yang Shao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Xiao Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|