1
|
Zhao ZT, Yang SS, Luo G, Sun HJ, Liu BF, Cao GL, Bao MY, Pang JW, Ren NQ, Ding J. Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies. Biotechnol Adv 2024; 79:108508. [PMID: 39740753 DOI: 10.1016/j.biotechadv.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH2) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization. However, certain intermediates by-products generated during the pretreatment process, such as phenolic compounds, furan derivatives, and aldehydes, have been identified as potent inhibitors of subsequent anaerobic fermentation due to their disruptive effects on the physiological and metabolic functions of hydrogen-producing microbiota. To counteract the negative effects of these inhibitors on bio-H2 fermentation, various detoxification strategies for LCB hydrolysates have been explored. This review presents a comprehensive analysis of fermentation-inhibitory by-products commonly generated by modern pretreatment protocols and their negative impacts on biohydrogen fermentation. Furthermore, the underlying mechanisms of inhibition upon hydrogen-producing microbes and their impacts on microbial community dynamics are exhibited. State-of-the-art strategies for detoxifying pretreated LCB have been also discussed, along with alternative pretreatment strategies designed to minimize or eliminate the formation of inhibitory by-products. Additionally, this review addresses the significant gap in the economic viability assessments of these processes, offering a detailed evaluation of both the technological and economic feasibility of biomass fermentation. Given the limitations of previous studies, strategies for cost-effective pretreatment and detoxification should be developed in the future to overcome the inhibition of fermentation inhibitors in the bioconversion of biomass to hydrogen.
Collapse
Affiliation(s)
- Zi-Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Geng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Mei-Yi Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ji-Wei Pang
- Harbin Corner Science & Technology Inc., Harbin 150023, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
2
|
Varghese SM, Chowdhury AR, Arnepalli DN, Ranga Rao G. Crosslinked hydrogel-derived carbons activated by trace amounts of aqueous potassium carbonate for carbon dioxide adsorption. BIORESOURCE TECHNOLOGY 2024; 403:130851. [PMID: 38782189 DOI: 10.1016/j.biortech.2024.130851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
A new method for green synthesis of activated carbon using chitosan-based hydrogel precursors is reported. Chitosan-based hydrogel materials are designed to absorb trace amounts of non-toxic and non-corrosive activating agent K2CO3 from dilute aqueous solution. The K2CO3 impregnated hydrogels are further freeze-dried and converted to activated carbons with tuneable pore structure by a single-step pyrolysis. Activated carbon with highest pore volume of 0.76 cm3/g and surface area of 2026 m2/g is obtained by using K2CO3 as low as 0.23 g per gram of chitosan hydrogel. It can adsorb maximum CO2 of 4.2 mmol/g at 25 °C and 1 bar. This study demonstrates that biopolymer hydrogels impregnated with trace amounts of K2CO3 are excellent precursor materials to design high surface area carbons for CO2 capture.
Collapse
Affiliation(s)
- Soniya Mariya Varghese
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India; Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Additi Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dali Naidu Arnepalli
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - G Ranga Rao
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Liu W, Liu P, Liu L, Sun H, Fan Y, Ma C, Ouyang J, Zheng Z. Promoting microbial fermentation in lignocellulosic hydrolysates by removal of inhibitors using MTES and PEI-modified chitosan-chitin nanofiber hybrid aerogel. Carbohydr Polym 2024; 328:121766. [PMID: 38220334 DOI: 10.1016/j.carbpol.2023.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
To further enhance the removal efficiency for furanic and phenolic compounds in lignocellulosic hydrolysates, a new detoxification strategy was proposed, which retained fermentable sugars and promoted the growth and metabolism of subsequent bacteria. The best adsorbent (P/M-CCA) was prepared by hybrid chitosan-chitin nanofiber, graft modification with polyethylenimine, and silanization with methyl triethoxylsilane in order. Taken corn cob hydrolysate as object, the removal rates of HMF and furfural were 85.1 % and 99.0 %, respectively. The removal rates of six out of nine phenolic inhibitors were 100 %, and the other three were more than 65 %. Even better, the retention rates of glucose and xylose were both 100 %. In contrast to no growth in undetoxified hydrolysates, Bacillus coagulans grew normally in detoxified hydrolysates, and lactic acid reached 19.1 g/L after 12 h fermentation. P/M-CCA achieves both removal of multiple inhibitors and retain sugars, which would promote the valorization of highly toxic lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Wen Liu
- Nanjing Forestry University, Longpan Road 159, Nanjing, People's Republic of China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Liang Liu
- Nanjing Forestry University, Longpan Road 159, Nanjing, People's Republic of China.
| | - Huimin Sun
- Nanjing Forestry University, Longpan Road 159, Nanjing, People's Republic of China
| | - Yimin Fan
- Nanjing Forestry University, Longpan Road 159, Nanjing, People's Republic of China.
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| | - Jia Ouyang
- Nanjing Forestry University, Longpan Road 159, Nanjing, People's Republic of China.
| | - Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Chen XF, Shen ZJ, Ji XR, Yao SM, Wang C, Li HL, Zhang HR, Xiong L, Chen XD. Removal of Fermentation Inhibitors from Sugarcane Bagasse Hydrolysate via Post-cross-linked Hydrophilic-Hydrophobic Interpenetrating Polymer Networks. Appl Biochem Biotechnol 2023; 195:6537-6556. [PMID: 36877441 DOI: 10.1007/s12010-023-04414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
The efficient and economical removal of fermentation inhibitors from the complex system of biomass hydrolysate was one of the basics and keys in bio-chemical transformation. In this work, post-cross-linked hydrophilic-hydrophobic interpenetrating polymer networks (PMA/PS_pc IPNs and PAM/PS_pc IPNs) were proposed to remove fermentation inhibitors from sugarcane bagasse hydrolysate for the first time. PMA/PS_pc and PAM/PS_pc IPNs can obviously enhance the adsorption performance towards fermentation inhibitors due to their higher surface area and hydrophilic-hydrophobic synergetic surface properties, especially PMA/PS_pc IPNs has higher selectivity coefficients of 4.57, 4.63, 4.85, 16.0, 49.43, and 22.69, and higher adsorption capacity of 24.7 mg/g, 39.2 mg/g, 52.4 mg/g, 9.1 mg/g, 13.2 mg/g, and 144.9 mg/g towards formic acid, acetic acid, levulinic acid (LA), 5-hydroxymethylfurfural (HMF), furfural, and acid-soluble lignin (ASL), respectively, in a lower total sugar loss of 2.03%. The adsorption kinetics and isotherm of PMA/PS_pc IPNs were studied to elucidate its adsorption behavior towards fermentation inhibitors. In addition, the cyclic utilization property of PMA/PS_pc IPNs was stable. Synthesizing PMA/PS_pc IPNs is a new strategy to provide an efficient adsorbent for the removal of fermentation inhibitors from lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Xue-Fang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Zhi-Jie Shen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xu-Ran Ji
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Shi-Miao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
| | - Hai-Long Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
| | - Hai-Rong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China
| | - Xin-de Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China.
- CAS Key Laboratory of Renewable Energy, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Shahzadi I, Wu Y, Lin H, Huang J, Zhao Z, Chen C, Shi X, Deng H. Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131312. [PMID: 37054646 DOI: 10.1016/j.jhazmat.2023.131312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
There is an urgent need to develop sustainable, renewable, and environment-friendly adsorbents to rectify heavy metals from water. In the current study, a green hybrid aerogel was prepared by immobilizing yeast on chitin nanofibers in the presence of a chitosan interacting substrate. A cryo-freezing technique was employed to construct a 3D honeycomb architecture comprising the hybrid aerogel with excellent reversible compressibility and abundant water transportation pathways for the accelerated diffusion of Cadmium(II) (Cd(II)) solution. This 3D hybrid aerogel structure offered copious binding sites to accelerate the Cd(II) adsorption. Moreover, the addition of yeast biomass amplified the adsorption capacity and reversible wet compression of hybrid aerogel. The monolayer chemisorption mechanism explored by Langmuir and pseudo-second-order kinetic exhibited a maximum adsorption capacity of 127.5 mg/g. The hybrid aerogel demonstrated higher compatibility for Cd(II) ions as compared to the other coexisted ions in wastewater and manifested a better regeneration potential following four consecutive sorption-desorption cycles. Complexation, electrostatic attraction, ion-exchange and pore entrapment were perhaps major mechanisms involved in the removal of Cd(II) revealed by XPS and FT-IR. This study unveiled a novel avenue for efficient green-synthesized hybrid aerogel that may be sustainably used as an excellent purifying agent for Cd(II) removal from wastewater.
Collapse
Affiliation(s)
- Iqra Shahzadi
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yang Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Heng Lin
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Ze Zhao
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Shan W, Yan Y, Li Y, Hu W, Chen J. Microbial tolerance engineering for boosting lactic acid production from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:78. [PMID: 37170163 PMCID: PMC10173534 DOI: 10.1186/s13068-023-02334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.
Collapse
Affiliation(s)
- Wenwen Shan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongli Yan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongda Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jihong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Aili Hamzah AF, Hamzah MH, Che Man H, Jamali NS, Siajam SI, Show PL. Subcritical Water Pretreatment for Anaerobic Digestion Enhancement: A Review. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work reviews hydrothermal subcritical water pretreatment to enhance biogas production through anaerobic digestion. The complexity of the lignocellulosic structure has been the main limitation contributing to unsatisfactory biogas production throughout the anaerobic digestion. The high resistance of the structure to biological hydrolysis has increased the interest in applying pretreatment prior to anaerobic digestion to facilitate hydrolysis. Hydrothermal subcritical water technology, an environmentally friendly pretreatment that uses water as the main medium, is gaining prominence in biogas enhancement. However, the subcritical water pretreatment influence on structural properties, biogas production, and the production of anaerobic process inhibitors signifies a knowledge gap and needs an evaluation. This review presents the need for pretreatment reaction and properties in the subcritical water region, biogas production from subcritical water pre-treated waste, production of inhibitors, and its challenges are discussed. This pretreatment could be a promising option and further enhance biogas production throughout the anaerobic digestion process.
Collapse
|
8
|
Xiang H, Dai K, Kou J, Wang G, Zhang Z, Li D, Chen C, Wu J. Selective adsorption of ferulic acid and furfural from acid lignocellulosic hydrolysate by novel magnetic lignin-based adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Guo H, Zhao Y, Chang JS, Lee DJ. Inhibitor formation and detoxification during lignocellulose biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 361:127666. [PMID: 35878776 DOI: 10.1016/j.biortech.2022.127666] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
For lignocellulose biorefinery, pretreatment is needed to maximize the cellulose accessibility, frequently generating excess inhibitory substances to decline the efficiency of the subsequent fermentation processes. This mini-review updates the current research efforts to detoxify the adverse impacts of generated inhibitors on the performance of biomass biorefinery. The lignocellulose pretreatment processes are first reviewed. The generation of inhibitors, furans, furfural, phenols, formic acid, and acetic acid, from the lignocellulose, with their action mechanisms, are listed. Then the detoxification processes are reviewed, from which the biological detoxification processes are noted as promising and worth further study. The challenges and prospects for applying biological detoxification in lignocellulose biorefinery are outlined. Integrated studies considering the entire biorefinery should be performed on a case-by-case basis.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
10
|
Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock. J Biotechnol 2022; 348:1-9. [DOI: 10.1016/j.jbiotec.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
|