1
|
Li X, Xie C, Xu Y, Xia M, Zhang M, Li Y, Wu J. Freshwater snails (Bellamya aeruginosa) bioturbation to enhance nitrogen removal and associated mechanism in constructed wetlands. BIORESOURCE TECHNOLOGY 2025; 417:131849. [PMID: 39566694 DOI: 10.1016/j.biortech.2024.131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
In this study, total nitrogen (TN) removal efficiency of Pontederia cordata and Myriophyllum elatinoides in surface flow constructed wetlands (SFCWs) with Bellamya aeruginosa were 6.43% and 3.54% higher, respectively, than those in non-B. aeruginosa SFCWs. Further, bioturbation could promote N uptake by plants and release from sediment. In summer and autumn, potential nitrification rate was significantly higher in SFCWs with snails than that in SFCWs without snails. In each season, potential denitrification rate was significantly higher in SFCWs with snails than that in SFCWs without snails. Additionally, ammonia oxidizing archaea, narG, nirS, nirK and nosZ gene abundances were significantly higher in SFCWs with snails than those in SFCWs without snails. Structural equation model analysis revealed a strong positive correlation between nitrifiers and denitrifiers in SFCWs with snails, suggesting that bioturbation enhanced N removal by increasing synergistic effect of nitrifying and denitrifying bacteria.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Chen Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Yinghua Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghua Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China.
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang Y, Cai Z, Wu Z, Liang H, Li D, Fan S, Gao S, Chen S, Lu Y, Su C. Effects of flotation reagents with aniline aerofloat and ammonium dibutyl dithiophosphate on a constructed rapid infiltration system: Performance and microbial metabolic pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125218. [PMID: 39477000 DOI: 10.1016/j.envpol.2024.125218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Aniline aerofloat (AAF) and ammonium dibutyl dithiophosphate (ADD) are the key flotation reagents in mineral processing. This study investigated the performance of the constructed rapid infiltration systems with coke and red mud as adsorbents for treatment AAF and ADD wastewater. Meanwhile, the effects of AAF and ADD on the microbial metabolic pathways of the systems were unraveled. Results showed that the AAF concentration in influent was 25 mg/L, which promoted chemical oxygen demand (COD) and total phosphorus (TP) removal of the A column (coke) and B column (red mud). While the COD and TP removal of the C column (coke) and D column (red mud) were inhibited with ADD concentration increasing to 50 mg/L and 100 mg/L. The AAF reduced the binding energy of coke C-O bond by 0.9 eV, and down-regulated the C-C bond ratio by 40.72%. The dominant phyla in the columns were Pseudomonadota and Actinomycetota. The pore structure of coke was more conducive to the growth of the Pseudomonadota, while the metal composition of red mud was more conducive to the redox reaction of microorganisms. The presence of phosphofructokinase (2.7.1.11)-related genes was up-regulated in column C compared to other columns. The ADD was beneficial to the expression of norC and nosZ functional genes during nitrogen metabolism process. In contrast, phosphorus metabolism genes were more expressed in the red mud column for treatment AAF wastewater. This study reveals the potential of coke and red mud for the treatment of flotation reagents wastewater, while providing a theoretical basis for the optimal selection of filler types in the constructed rapid infiltration systems.
Collapse
Affiliation(s)
- Yunnan Zhang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Ziyi Wu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Huayu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Daoning Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shuo Fan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shenglong Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Ngaba MJY, Hu B, Rennenberg H. Biochar amendment affects the microbial genetic profile of the soil, its community structure and phospholipid fatty acid contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176748. [PMID: 39395494 DOI: 10.1016/j.scitotenv.2024.176748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Biochar (BC) amendment has been proposed as a promising strategy for mitigating greenhouse gas (GHG) emissions, specifically carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Conducting a meta-analysis to evaluate the impact of biochar on microbial genetic profile, community structure, and phospholipid fatty acid (PLFA) contents can aid in identifying key microbial groups involved in GHG production and consumption, and assessing the overall effectiveness of biochar in reducing GHG emissions. The present meta-analysis revealed that the addition of biochar resulted in a 22 % and 41 % reduction in pmoA and mcrA genes of methanogenic microorganisms, respectively. The mcrA/pmoA ratio significantly increased by 81 %. Gene abundances exhibited a positive response to biochar amendment, with increases observed in nifH, nirK, nirS, nosZ, and nosZ (nirS + nirK) genes by 13 %, 32 %, 37 %, 42 %, and 79 %, respectively. Moreover, biochar amendment influenced the microbial community structure accordingly. The concentration of PLFAs increased in response to BC treatment in the following order: A-bacteria (+49 %) < Fungi (+30 %) < Gram-pb (+21 %) < G-bacteria (+17 %) < Gram-nb (+11 %). These findings indicate that biochar amendment shapes the microbial community structure, further emphasizing its significance in enhancing soil fertility.
Collapse
Affiliation(s)
- Mbezele Junior Yannick Ngaba
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China; Higher Technical Teacher' Training College of Ebolowa, University of Ebolowa (HTTTC), 886 Ebolowa, Cameroon
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Kang Y, Dong J, Ma H, Guo Z, Wu H, Hu Z, Xie H, Zhang J. Synergetic effect of pyrrhotite and zero-valent iron on Hg(Ⅱ) removal in constructed wetland: Mechanisms of electron transfer and microbial reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136041. [PMID: 39368359 DOI: 10.1016/j.jhazmat.2024.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Effective removal of mercury (Hg) from wastewater is significant due to its high toxicity, especially methylmercury (MeHg). Reducing of Hg(II) to Hg(0) in constructed wetlands (CWs) using iron-based materials is an effective strategy for preventing the formation of MeHg. However, the surface passivation of zero-valent iron (ZVI) limits its application. Herein, synergetic ZVI and pyrrhotite were utilized to enhance Hg removal in CWs. Results indicated that the removal of total Hg, dissolved Hg, and particulate Hg in CWs with ZVI and pyrrhotite were improved by 21.68 ± 0.76 %, 13.02 ± 0.88 %, and 22.27 ± 0.76 % compared to that with single ZVI or pyrrhotite. Pyrrhotite increased the surface corrosion of ZVI, thereby facilitating the process of iron reduction. The redox of iron promoted the generation of EPS, which could provide electrons for Hg(II) reduction. The sulfur also participates in electron transfer by driving the methylation of Hg and provides sulfides to form FeS-Hg complexes and HgS precipitation. The abundance of key enzymes that involved in iron reduction and Hg transformation was enhanced with the addition of ZVI and pyrrhotite. The synergetic of pyrrhotite and ZVI enhances the removal of Hg in CW, offering a promising technology for high-efficiency treatment of Hg.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jiahao Dong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haoqin Ma
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong University Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
5
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
7
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
8
|
Wei L, Li J, Wang Z, Wu J, Wang S, Cai Z, Lu Y, Su C. Evaluating effects of tetrabromobisphenol A and microplastics on anaerobic granular sludge: Physicochemical properties, microbial metabolism, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121077. [PMID: 38718604 DOI: 10.1016/j.jenvman.2024.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.
Collapse
Affiliation(s)
- Lixin Wei
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Junjian Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinyan Wu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shuying Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Zhang C, Zeng X, Xu X, Nie W, Dubey BK, Ding W. PDA-Fe 3O 4 decorated carbon felt anode enhancing electrochemical performance of microbial fuel cells: Effect of electrode materials on electroactive biofilm. CHEMOSPHERE 2024; 355:141764. [PMID: 38521108 DOI: 10.1016/j.chemosphere.2024.141764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Anode modification is an effective strategy for enhancing the electrochemical performance of microbial fuel cell (MFC). However, the impacts of the modified materials on anode biofilm development during MFC operation have been less studied. We prepared a novel PDA-Fe3O4-CF composite anode by coating original carbon felt anode (CF) with polydopamine (PDA) and Fe3O4 nanoparticles. The composite anode material was characterized by excellent hydrophilicity and electrical conductivity, and the anodic biofilm exhibited fast start-up, higher biomass, and more uniform biofilm layer after MFC operation. The MFC reactor assembled with the composite anode achieved a maximum power density of 608 mW m-2 and an output voltage of 586 mV, which were 316.4% and 72.4% higher than the MFC with the original CF anode, respectively. Microbial community analysis indicated that the modified anode biofilm had a higher relative abundance of exoelectrogen species in comparison to the unmodified anode. The PICRUSt data revealed that the anodic materials may affect the bioelectrochemical performance of the biofilm by influencing the expression levels of key enzyme genes involved in biofilm extracellular polymer (EPS) secretion and extracellular electron transfer (EET). The growth of the anodic biofilm would exert positive or negative influences on the efficiency of electricity production and electron transfer of the MFCs at different operating stages. This work expands the knowledge of the role that anodic materials play in the development and electrochemical performance of anodic biofilm in MFCs.
Collapse
Affiliation(s)
- Cunkuan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xiaolan Zeng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Xiaotang Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wenbo Nie
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West India
| | - Wenchuan Ding
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
11
|
Ma WJ, Zhang HM, Ma ZS, You XJ, Wei XY, Li Y, Tian Y. Meta-analyzing the mechanism of pyrogenic biochar strengthens nitrogen removal performance in sulfur-driven autotrophic denitrification system: Evidence from metatranscriptomics. WATER RESEARCH 2024; 253:121296. [PMID: 38367378 DOI: 10.1016/j.watres.2024.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Sulfur-driven autotrophic denitrification (SAD) exhibits significant benefits in treating low carbon/nitrogen wastewater. This study presents an eco-friendly, cost-effective, and highly efficient method for enhancing nitrogen removal performance. The addition of biochar prepared at 300 °C (BC300) notably increased nitrogen removal efficiency by 31.60 %. BC300 concurrently enhanced electron production, the activities of the electron transfer system, and electron acceptors. With BC300, the ratio of NADH/NAD+ rose 2.00±0.11 times compared to without biochar, and the expression of NAD(P)H dehydrogenase genes was markedly up-regulated. In the electron transfer system, BC300 improved the electroactivity of extracellular polymeric substances and the activities of NADH dehydrogenase and complex III in intracellular electron transfer. Subsequently, electrons were directed into denitrification enzymes, where the nar, nir, nor, and nos related genes were highly expressed with BC300 addition. Significantly, BC300 activated the Clp and quorum sensing systems, positively influencing numerous gene expressions and microbial communication. Furthermore, the O%, H%, molar O/C, and aromaticity index in biochar were identified as crucial bioavailable parameters for enhancing nitrogen removal in the SAD process. This study not only confirms the application potential of biochar in SAD, but also advances our comprehension of its underlying mechanisms.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| | - Zi-Shang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Xiu-Jia You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Xin-Yue Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
12
|
Cheng M, Fu HM, Mao Z, Yan P, Weng X, Ma TF, Xu XW, Guo JS, Fang F, Chen YP. Motility behavior and physiological response mechanisms of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress: Insights from individual cells to populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170002. [PMID: 38220024 DOI: 10.1016/j.scitotenv.2024.170002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 μg O2/g/min and 593.51 mM/L to 3.27 μg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.
Collapse
Affiliation(s)
- Meng Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
13
|
Meng J, Di Y, Geng Y, Li W, Huo R, Zhou S. Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. BIORESOURCE TECHNOLOGY 2024; 396:130457. [PMID: 38369080 DOI: 10.1016/j.biortech.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The nitrogen removal characteristics and microbial response of biochar-immobilized mixed aerobic denitrifying bacteria (BIADB) were investigated at 25 °C and 10 °C. BIADB removed 53.51 ± 1.72 % (25 °C) and 39.90 ± 4.28 % (10 °C) nitrate in synthetic oligotrophic water. Even with practical oligotrophic water, BIADB still effectively removed 47.66-53.21 % (25 °C), and 39.26-45.63 % (10 °C) nitrate. The addition of inorganic electron donors increased nitrate removal by approximately 20 % for synthetic and practical water. Bacterial and functional communities exhibited significant temperature and stage differences (P < 0.05), with temperature and total dissolved nitrogen being the main environmental factors. The dominant genera and keystone taxa exhibited significant differences at the two temperatures. Structural equation model analysis showed that dissolved organic matter had the highest direct and indirect effects on diversity and function, respectively. This study provides an innovative pathway for utilizing biochar and inorganic electron donors for nitrate removal from oligotrophic waters.
Collapse
Affiliation(s)
- Jiajing Meng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
14
|
Wei L, Zheng J, Han Y, Xu X, Li M, Zhu L. Insights into the roles of biochar pores toward alleviating antibiotic resistance genes accumulation in biofiltration systems. BIORESOURCE TECHNOLOGY 2024; 394:130257. [PMID: 38151208 DOI: 10.1016/j.biortech.2023.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Biofiltration systems would harbor and spread various antibiotic resistance genes (ARGs) when treating antibiotic micro-pollution, constituting a potential ecological risk. This study aimed to investigate the effects of biochar pores on ARG emergence and related microbial response mechanisms in bench-scale biofiltration systems. Results showed that biochar pores effectively reduced the absolute copies of the corresponding ARGs sul1 and sul2 by 54.1% by lowering the sorbed-SMX's bioavailability compared to non-porous anthracite. An investigation of antimicrobial resistomes revealed a considerable decrease in the abundance and diversity of ARGs and mobile gene elements. Metagenomic and metaproteomic analysis demonstrated that biochar pores induced the changeover of microbial defense strategy against SMX from blocking SMX uptake by EPS absorbing to SMX biotransformation. Microbial SOS response, antibiotic efflux pump, EPS secretion, and biofilm formation were decreased. Functions related to SMX biotransformation, such as sadABC-mediated transformation, xenobiotics degradation, and metabolism, were significantly promoted.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China.
| |
Collapse
|
15
|
Álvarez-Chávez E, Godbout S, Généreux M, Côté C, Rousseau AN, Fournel S. Treatment of cow manure from exercise pens: A laboratory-scale study of the effect of air injection on conventional and alternative biofilters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119637. [PMID: 38000274 DOI: 10.1016/j.jenvman.2023.119637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Woodchips in stand-off pads for wintering cows have been applied in countries like Ireland and New Zealand. Their primary role is to protect soils by effectively filtering nutrients during wet conditions, while ensuring a healthy and comfortable environment for the cows. The stand-off pad concept has the potential to be adopted in Canada to provide year-long outdoor access to tie-stall dairy cows. The objective of this study was to evaluate the effect of alternative filtering materials and bed aeration under controlled laboratory conditions. Twelve biofilter columns (0.3 m in diameter and 1-m high) were installed in 12 environmentally-controlled chambers (1.2-m wide by 2.4-m long), and divided into four treatments: a bed of conventional woodchips or an alternative mix of organic materials (sphagnum peat moss, woodchips and biochar) with and without aeration (flux rate set at 0.6 m3/min/m2). Approximately 0.6 L of semi-synthetic dairy manure and 1 L of tap water were poured on the biofilters during two experimental periods of 4 weeks, simulating the effect of either winter or summer conditions (room temperature below or over 10 °C) on the retention of nutrients and fecal bacteria. Results showed that the alternative biofilters under both summer and winter conditions were more efficient in removing COD, SS, TN, and NO3-N than conventional biofilters (maximum efficiencies of 97.6%, 99.7%, 96.4%, and 98.4%, respectively). Similarly for E. coli, they achieved a minimum concentration of 1.8 Log10 CFU/100 ml. Conventional biofilters were more efficient for PO4-P removal with a maximum efficiency of 88.2%. Aeration did not have any significant effect under the tested temperature conditions. Additional factors such as media adaptation time as well as aeration flow during this period should be considered.
Collapse
Affiliation(s)
- Elizabeth Álvarez-Chávez
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Stéphane Godbout
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Mylène Généreux
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Caroline Côté
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Alain N Rousseau
- INRS-ETE/Institut National de la Recherche Scientifique - Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada.
| | - Sébastien Fournel
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
16
|
Miao L, Chai W, Luo D, Adyel TM, Wu J, Kong M, Wang W, Hou J. Effects of released organic components of solid carbon sources on denitrification performance and the related mechanism. BIORESOURCE TECHNOLOGY 2023; 389:129805. [PMID: 37769975 DOI: 10.1016/j.biortech.2023.129805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Here, a hybrid scaffold of polyvinyl alcohol/sodium alginate (PVA/SA) was used to prepare solid carbon sources (SCSs) for treating low carbon/nitrogen wastewater. The four SCSs were divided into two groups, biodegradable polymers group (including polyvinyl alcohol-sodium alginate (PS) and PS-PHBV (PP), and blended SCSs (PS-PHBV-wood chips (PPW) and PS-PHBV-wheat straw (PPS)). After the leaching experiments, no changes occurred in elemental composition and functional groups of the SCSs, and the released dissolved organic matter showed a lower degree of humification and higher content of labile molecules in the blended SCSs groups using EEM and FT-ICR-MS. The denitrification performance of the blended SCSs was higher, with nitrate removal efficiency over 84%. High-throughput sequencing confirmed PPW had the highest alpha-diversity, and the microbial community structure significantly varied among SCSs. Results of functional enzymes and genes show the released carbon components directly affect the NADH level and electron transfer efficiency, ultimately influencing denitrification performance.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenyun Chai
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No. 26, Jinzhu Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, China
| | | | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Wanzhong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Lin X, Li B, Tian M, Li X, Wang J. Denitrification effect and strengthening mechanism of SAD/A system at low temperature by gel-immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165599. [PMID: 37516176 DOI: 10.1016/j.scitotenv.2023.165599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Sulfur autotrophic denitrification coupled anaerobic ammonia oxidation (SAD/A) has several advantages over other denitrification processes; for example, it does not consume the organic carbon source, has low operation costs, and produces less excess sludge; however, it has certain disadvantages as well, such as a long start-up time, easy loss of bacteria, and low microbial activity at low temperature. The use of microbial immobilization technology to embed functional bacteria provides a feasible method of resolving the above problems. In this study polyvinyl alcohol‑sodium alginate was used to prepare a composite carrier for fixing anaerobic ammonia oxidizing bacteria (AAOB) and sulfur oxidizing bacteria (SOB), and the structure and morphology of the encapsulated bodies were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Subsequently, the nitrogen removal performance of the immobilized microbial carriers in the gradient cooling process (30 °C to 10 °C) was determined, and the corresponding mechanism was discussed. The results showed that the nitrate-removal efficiencies observed with granular sludge and gel embedding were at 10 °C 21.44 % and 14.31 % lower, than those at 30 °C, respectively, whereas the ammonia-removal efficiency decreased by up to approximately three-fold. The main mechanism was the 'insulation' provided by the external gel composed of PVA and SA for the internal sludge and subsequent improvement of its low temperature resistance, while protecting AAOB and SOB from oxygen inhibition, which is conducive to enriching denitrifying bacteria. In addition, the gel does not change the internal sludge species, it can shift the dominance of specific microorganisms and improve the removal efficiency of nitrogen. In summary, the immobilization of AAOB and SOB by the gel can achieve effectively mitigate nitrogen pollution in low temperature environments, thus indicating that the SAD/A process has broad engineering application prospects.
Collapse
Affiliation(s)
- Xiangyu Lin
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Jun Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China; Wuhan Airport Economic and Technological Development Zone Service Industry Development Investment Group Co., Ltd., Wuhan, Hubei 430070, China
| |
Collapse
|
18
|
Li X, Fan S, Zhang Y, Li D, Su C, Qi Z, Liang H, Gao S, Chen M. Performance and microbial metabolic mechanism of imidacloprid removal in a microbial electrolysis cell-integrated adsorption biological coupling system. BIORESOURCE TECHNOLOGY 2023; 386:129513. [PMID: 37468017 DOI: 10.1016/j.biortech.2023.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Coke used as a filler to treat imidacloprid (IMI) wastewater by both adsorption biological coupling and microbial electrolysis cells (MEC)-adsorption biological coupling technologies, the removal efficiencies on pollutions in wastewater containing IMI were investigated, and the key functional genes related to IMI degradation pathways were also revealed. Results showed that the removal rates of COD, ammonia nitrogen, TP, and IMI under the adsorption biological coupling treatment and MEC-adsorption biological coupling treatment were 94.61-95.54%, 93.37-95.79%, 73.69-83.80%, and 100%, respectively. MEC increased the relative abundance of Proteobacteria by 9.01% and transformed the dominant bacteria from Lysobacter and Reyranella to Brevundimonas and Aquincola. Moreover, MEC up-regulated the abundance of the coding genes PK (9.30%), narG (2.26%), pstS (3.63%), and phnD (1.32%), and converted the IMI degradation products to smaller molecular weight C6H8N2 and C6H6ClNO. This study provided an important reference information for efficient treatment of IMI wastewater using the MEC-adsorption biological coupling technology.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunnan Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zhifei Qi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Huayu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
19
|
Shi H, Feng X, Xiao Z, Jiang C, Wang W, Zhang X, Xu Y, Wang C, Guo W, Ren N. How β-Cyclodextrin-Functionalized Biochar Enhanced Biodenitrification in Low C/N Conditions via Regulating Substrate Metabolism and Electron Utilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37463333 DOI: 10.1021/acs.est.3c02482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Biodenitrification plays a vital role in the remediation of nitrogen-contaminated water. However, influent with a low C/N ratio limits the efficiency of denitrification and causes the accumulation/emission of noxious intermediates. In this study, β-cyclodextrin-functionalized biochar (BC@β-CD) was synthesized and applied to promote the denitrification performance of Paracoccus denitrificans when the C/N was only 4, accompanied by increased nitrate reduction efficiency and lower nitrite accumulation and nitrous oxide emission. Transcriptomic and enzymatic activity analyses showed BC@β-CD enhanced glucose degradation by promoting the activities of glycolysis (EMP), the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. Notably, BC@β-CD drove a great generation of electron donors by stimulating the TCA cycle, causing a greater supply of substrate metabolism to denitrification. Meanwhile, the promotional effect of BC@β-CD on oxidative phosphorylation accelerates electron transfer and ATP synthesis. Moreover, the presence of BC@β-CD increased the intracellular iron level, causing further improved electron utilization in denitrification. BC@β-CD helped to remove metabolites and induced positive feedback on the metabolism of P. denitrificans. Collectively, these effects elevated the glucose utilization for supporting denitrification from 36.37% to 51.19%. This study reveals the great potential of BC@β-CD for enhancing denitrification under low C/N conditions and illustrates a potential application approach for β-CD in wastewater bioremediation.
Collapse
Affiliation(s)
- Hongtao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Zijie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Chenyi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Wenqian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Yujie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Caipeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
20
|
Guo F, Luo Y, Nie W, Xiong Z, Yang X, Yan J, Liu T, Chen M, Chen Y. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties. BIORESOURCE TECHNOLOGY 2023; 379:129000. [PMID: 37011852 DOI: 10.1016/j.biortech.2023.129000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Constructed wetlands (CWs) amended with biochar have attracted much attention for nitrate removal treating secondary effluent. However, little is acknowledged about the linkage among the nitrate removal performance, microbial metabolic pathway of nitrate, and biochar properties. Herein, biochars pyrolyzed under 300 °C, 500 °C, and 700 °C (BC300, BC500, and BC700, respectively) were used in CWs to reveal the relationship. Results showed that CWs amended with BC300 (59.73%), BC500 (53.27%), and BC700 (49.07%) achieved higher nitrogen removal efficiency, compared with the control (39.51%). Metagenomic analysis showed that biochars could enrich the genes, which encoded key enzymes (adenosine triphosphate production, and electrons generation, transportation, and consumption) involved in carbon and nitrate metabolism. Further, biochar pyrolyzed under lower temperature, with higher oxygen content, molar O/C ratio, and the electron donating capacity, in CWs could obtain higher nitrate removal efficiency. Overall, this research offers new understandings for the promotion of denitrification in CWs amended with biochar.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Wenbo Nie
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zichun Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
21
|
Li L, Chen M, Liu S, Bao H, Yang D, Qu H, Chen Y. Does the aging behavior of microplastics affect the process of denitrification by the difference of copper ion adsorption? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131276. [PMID: 36989773 DOI: 10.1016/j.jhazmat.2023.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Riparian sediment is a hot zone for denitrification that can withhold copper and microplastics (MPs) from outside. It has been proven that MPs affect denitrification and the existing forms of copper in the environment. However, the impact of copper on sediment denitrification under exposure to MPs remains unclear. This study revealed the response of sediment denitrification to copper availability under the adsorption of MPs and the complexation of MP-derived dissolved organic matter (DOM). These results showed that MP accumulation inhibited denitrification. However, aged MPs increased the activity of nitrite reductase (12.64%), nitrogen dioxide reductase (37.68%), and electron transport (28.93%) compared with pristine MPs. The aging behavior of MPs alleviated 28.18% nitrite accumulation and 16.41-118.35% nitrous oxide emissions. Thus, the aging behavior of MPs alleviated the inhibition of denitrification. Notably, we resolved the copper ion adsorption and complexation by MPs, MP-derived DOM contributed to the denitrification process, and we found that the key nitrogen removal factors were affected by KL, KM, and K2. These results fill a gap in our understanding of biochemical synthesis of MPs during denitrification. Furthermore, it can be used to build a predictive understanding of the long-term effects of MPs on the sediment nitrogen cycle.
Collapse
Affiliation(s)
- Lanxi Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Shushan Liu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Dongxu Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
22
|
Cheng X, Feng H, Liang Y, Li L, Yao Y, Jin M, Li J. Filtration columns containing waste iron shavings, loofah, and plastic shavings for further removal of nitrate and phosphate from wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162799. [PMID: 36914123 DOI: 10.1016/j.scitotenv.2023.162799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
A novel pilot-scale advanced treatment system combining waste products as fillers is proposed and established to enhance the removal of nitrate (NO3--N) and phosphate (PO43--P) from secondary treated effluent. The system consists of four modular filter columns, one containing iron shavings (R1), two containing loofahs (R2 and R3), and one containing plastic shavings (R4). The monthly average concentration of total nitrogen (TN) and total phosphorus (TP) decreased from 8.87 to 2.52 mg/L and 0.607 to 0.299 mg/L, respectively. Micro-electrolysis of iron shavings produces Fe2+ and Fe3+ to remove PO43--P, while oxygen (O2) consumption creates anoxic conditions for subsequent denitrification. Gallionellaceae, iron-autotrophic Microorganisms, enriched the surface of iron shavings. The loofah served as a carbon source to remove NO3--N, and its porous mesh structure facilitated the attachment of biofilm. The plastic shavings intercepted suspended solids and degraded excess carbon sources. This system can be scaled up and installed at wastewater plants to improve the water quality of effluent cost-effectively.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Hongbo Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lincong Li
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Yunbo Yao
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Minghui Jin
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
23
|
Li X, Huang X, Fan S, Su C, Ding F, Wen S, Li D, Chen M. Effects of perfluoroalkyl substances on the operational efficiency, microbial communities, and key metabolic pathways of constructed rapid infiltration system with coke as filler layer. BIORESOURCE TECHNOLOGY 2023; 378:128998. [PMID: 37011846 DOI: 10.1016/j.biortech.2023.128998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Influences of perfluoroalkyl substances on the performance and microbial metabolic pathways of constructed rapid infiltration systems are not fully understood. In this study, wastewater containing different concentrations of perfluorooctanoic acid (PFOA)/perfluorobutyric acid (PFBA) was treated in constructed rapid infiltration systems with coke as filler. The addition of 5 and 10 mg/L PFOA inhibited the removal of chemical oxygen demand (COD) (80.42%, 89.27%), ammonia nitrogen (31.32%, 41.14%), and total phosphorus (TP) (43.30%, 39.34%). Meanwhile, 10 mg/L PFBA inhibited TP removal of the systems. Based on X-ray photoelectron spectroscopy, the percentages of F- within the PFOA and PFBA groups were 12.91% and 48.46%, respectively. PFOA transformed Proteobacteria (71.79%) into the dominant phyla of the systems, whereas PFBA enriched Actinobacteria (72.51%). The PFBA up-regulated the coding gene of 6-phosphofructokinase by 14.44%, whereas PFOA down-regulated it by 4.76%. These findings provide insights into the toxicity of perfluoroalkyl substances on constructed rapid infiltration systems.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Fengxiu Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
24
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Huang WH, Chang YJ, Wu RM, Chang JS, Chuang XY, Lee DJ. Type-wide biochars loaded with Mg/Al layered double hydroxide as adsorbent for phosphate and mixed heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 224:115520. [PMID: 36842698 DOI: 10.1016/j.envres.2023.115520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study discussed the adsorption of mixed heavy metal ions (Cu2+, Co2+, Pb2+) and phosphate ions by ten pristine biochars and those with precipitated Mg/Al layered double hydroxide (LDH). The pristine biochars have adsorption capacities of 6.9-13.4 mg/g for Cu2+, 1.1-9.7 mg/g for Co2+, 7.8-20.7 mg/g for Pb2+, and 0.8-4.9 mg/g for PO43-. The LDH-biochars have markedly increased adsorption capacities of 20.4-25.8 mg/g for Cu2+, 8.6-15.0 mg/g for Co2+, 26.5-40.4 mg/g for Pb2+ with mixed metal ions, and 13.0-21.8 mg/g for PO43-. Part of the Mg ions but Al ions are released from the LDH-biochars during adsorption, counting less than 7.2% of the adsorbed ions. The pristine biochars have specific adsorption sites for Cu2+ and Co2+, separate Pb2+ sites related to ether groups on biochar, and areal-dependent sites for PO43-. There is no universal adsorption mechanism corresponding to mixed metal ion adsorption for individual pristine biochar involving different contributions of C-O-C, C-O-H, and CO groups and graphitic-N, pyrrolic-N, and pyridine-N groups. The LDH complexes with hydroxyl and carbonyl groups of biochar, and the LDH interacts with biochar's ether groups, which contributes to metal adsorption, against the conception that the biochar is merely a carrier of LDH as adsorbents.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Rome-Ming Wu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei, 243, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Xiang-Ying Chuang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
26
|
Chen M, Mei H, Qin H, Yang X, Guo F, Chen Y. Pyrite coupled with biochar alleviating the toxicity of silver nanoparticles on pollutants removal in constructed wetlands. ENVIRONMENTAL RESEARCH 2023; 219:115074. [PMID: 36528047 DOI: 10.1016/j.envres.2022.115074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Silver nanoparticles (AgNPs) has been widely detected in the substrates of constructed wetlands (CWs), posing threaten to pollutants removal efficiency of CWs. However, the way to alleviate the toxicity of AgNPs on CWs is unclear. In this study, the gravel (GR), biochar (BC), pyrite (PY) and pyrite coupled with biochar matrix (PYBC) were selected as substrates to restore the pollutants removal efficiency of CWs under the exposure to the environment (0.2 mg/L) and accumulation (10 mg/L) concentration of AgNPs. Results showed that the BC and PY showed limited mitigation effects, while the PYBC alleviated the toxicity significantly. Especially in the exposure to the accumulation concentration of AgNPs, the removal of NH4+-N, TN, COD and TP in the PYBC were 10.2%, 8.3%, 9.4% and 10.7% higher than that in the GR, respectively. Mechanism analysis verified that AgNPs were transformed into Ag-Fe-S core shell aggregates (size >200 nm) decreasing bioavailability and the damage to cytomembrane. The PYBC restored the nitrogen removal efficiency by increasing the abundance of Nitrospira and Geothrix, which these bacteria were defined as nitrifiers and Feammox bacteria. This study provides a promising strategy to mitigate AgNPs' toxicity on the pollutant removal efficiency in CWs.
Collapse
Affiliation(s)
- Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Han Mei
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hao Qin
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiangyu Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fucheng Guo
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
27
|
Wang Z, Su J, Zhang R, Li K, Hu R, Liu Y, Zhang L, Li J. Enhanced nitrate, fluoride, and phenol removal using polyurethane sponges loaded with rice husk biochar in immobilized bioreactor. BIORESOURCE TECHNOLOGY 2022; 364:128098. [PMID: 36241068 DOI: 10.1016/j.biortech.2022.128098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polyurethane sponges loaded with rice husk biochar were prepared to immobilize Aquabacterium sp. CZ3 for intensified removal of nitrate, fluoride (F-), and phenol, with the maximum efficiency of 100 %, 91 %, and 99 %, respectively. The biochar load and increased carbon-to-nitrogen (C:N) ratio (below 3.0) stimulated the secretion of soluble microbial product, improved the electron transport system activity, and promoted denitrification, phenol co-metabolism, and F- and calcium crystallization. The characterization results suggested that F- was removed as fluoride-containing calcium precipitates. According to the microbial community analyses, Aquabacterium was the dominant bacterium. PICRUSt analyses showed that biochar and adequate carbon sources (C:N ratio 3.0) significantly increased the functional abundances of amino acid metabolism, carbohydrate metabolism, energy metabolism, and cell motility. The introduction of biochar reduces the demand for C:N ratio in the system, and expands the application potential of biomineralization technique in the remediation of multiple pollutants contaminated water.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
28
|
Chen M, Bi M, Nie W, Chen Y. New insight into ammonium removal in riverbanks under the exposure of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129725. [PMID: 35963085 DOI: 10.1016/j.jhazmat.2022.129725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Riverbanks play the key role in ammonium removal from runoff entering river. Currently, microplastics (MPs) are frequently detected in riverbanks receiving urban and agricultural runoff. Nevertheless, the effect of MPs accumulation on ammonium removal in riverbanks is still unknown. We utilized sediment flow-through reactors to investigate the impact and mechanism of MPs accumulation on ammonium removal in riverbanks. These results revealed that MPs accumulation decreased ammonium removal in sediment by 8.2 %-12.8 % resulting from the reduction in nitrifier abundance (Nitrososphaera and Nitrososphaeraceae) and genes encoding ammonium and hydroxylamine oxidation (amoA, amoB, amoC, and hao) by MPs accumulation. Furthermore, MPs accumulation decreased the substrate and gene abundance of hydroxylamine oxidation process to reduce N2O emission (16.3 %-34.3 %). Notably, mathematic model verified that sediment physical properties changed by MPs accumulation were direct factors affecting ammonium removal in riverbank. It was suggested that both the biotoxicity of MPs and sediment physical properties should be considered in the ammonium removal process. To summarize, this study for the first time comprehensively clarifies the impact of MPs on the ammonium removal capacity of riverbanks, and provides information for taking measures to protect the ecological function of the riverbank and river ecosystem from MPs and ammonium pollution.
Collapse
Affiliation(s)
- Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Mohan Bi
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Wenbo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
29
|
Chen S, Yang D, Wang Q, Huang X, Ren H, Xu K. Study on the advanced nitrogen removal under low temperature by biofilm on weak magnetic carriers. BIORESOURCE TECHNOLOGY 2022; 360:127580. [PMID: 35798170 DOI: 10.1016/j.biortech.2022.127580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The advanced nitrogen removal under low temperature is inhibited because of reduction of the microbial activity. Packed bed reactors filled with different magnetic carriers (0, 0.3, 0.6, 0.9 mT) were constructed to enhance advanced denitrification under low temperature (5 ℃). Results showed that 0.3 and 0.9 mT carriers significantly improved denitrification, indicating the "window" effect. Total nitrogen removals were increased by 6.96% and 8.25%, and NO2- accumulation decreased by 25.70% and 13.90% in 0.3 and 0.9 mT reactors, respectively. Analysis of enzyme activity and electron transport chain showed that 0.3 mT carrier mainly increased NIR activity by improving compound III and cytC abundance while 0.9 mT carrier mainly increased NAR activity by improving compound I and NADH abundance, indicating different pathways. Similar microbial community in 0.3 and 0.9 mT reactors were revealed. Overall, weak magnetic carriers can be used to enhance advanced nitrogen removal under low temperature.
Collapse
Affiliation(s)
- Sien Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qingxin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueying Huang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Yan C, Huang J, Cao C, Li X, Lin X, Wang Y, Qian X. Iris pseudacorus as precursor affecting ecological transformation of graphene oxide and performance of constructed wetland. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129164. [PMID: 35739704 DOI: 10.1016/j.jhazmat.2022.129164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The role of plants is largely unknown in constructed wetlands (CWs) exposed to phytotoxic nanomaterials. Present study investigated transformation of graphene oxide (GO) and performance of CWs with Iris pseudacorus as precursor. GO was trapped by CWs without dependence on plants. GO could move to lower substrate layer and present increases on defects/disorders with stronger effects in planted CW. Before adding GO, planted CW achieved better removal both of phosphorus and nitrogen. After adding GO, phosphorus removal in planted CW was 93.23-95.71% higher than 82.55-90.07% in unplanted CW. However, total nitrogen removal was not improved, showing 48.20-56.66% and 53.44-56.04% in planted and unplanted CWs. Plant improved urease, phosphatase, and arylsulfatase, but it decreased β-glucosidase and had less effects on dehydrogenase and catalase. Pearson correlation matrix revealed that plant enhanced microbial interaction with high degree of positive correlation. Moreover, there were obvious shifts in microbial community at phylum and genus level, which presented closely positive action on substrate enzyme activities. The functional profile was less affected due to functional redundancy in microbial system, but time effects were obvious in CWs, especially in planted CW. These findings could provide the basis on understanding role of plants in CWs for treating nanoparticles wastewater.
Collapse
Affiliation(s)
- Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Xiaoyang Lin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yaoyao Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
31
|
Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water. WATER 2022. [DOI: 10.3390/w14060957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In rural toilets, black water still remains polluted by nitrogen and phosphorus after being pre-treated by septic tanks. This study uses aerated biofilters to purify black water, screen the biofilter filler, and determine its effect on nitrogen and phosphorus purification in rural black water. This study introduced the concept of the “shape factor” into the Langmuir and Freundlich equations and optimized the isotherm adsorption model to better fit the actual dynamics of nitrogen and purification in black water. Combined with the first-order kinetic equation, the double constant equation, and the Elovich equation, the adsorption performance of seven kinds of biofilter fillers (i.e., zeolite, volcanic rock, sepiolite, ceramsite, anthracite, vermiculite, and peat) was studied. Then, the biofilter was constructed using a combination of fillers with better adsorption properties, and its ability to purify rural black water was studied. Results showed that vermiculite and zeolite had little effect on nitrogen and a high saturated adsorption of 654.50 and 300.89 mg·kg−1, respectively; peat and ceramsite had little effect on phosphorus and a high saturated adsorption of 282.41 mg·kg−1 and 233.89 mg·kg−1, respectively. The adsorption rate of nitrogen from fast to slow was vermiculite > peat > zeolite > volcanic rock > sepiolite > ceramsite > anthracite. The adsorption rate of phosphorus from fast to slow was peat > ceramsite > zeolite > sepiolite > vermiculite > volcanic rock > anthracite. Four combined biological filter fillers aided the removal of nitrogen and phosphorus from rural high-concentration black water. The combination of zeolite and ceramsite filler had a good nitrogen and phosphorus removal effect in high-concentration black water. After the system was stable, the nitrogen removal rate attained 71–73%, and the phosphorus removal rate attained 73–76% under the influent condition of total nitrogen and phosphorus concentrations of 150–162 and 10–14 mg·L−1, respectively. This study provides technical support and reference for the purification and treatment of rural black water.
Collapse
|