1
|
Yang C, Xia P, Zhao L, Huang R, Wang K, Yang H, Yao Y. Hydrothermal carbonization of Chinese medicine residue from licorice: Effects of pore and chemical structures on chromium migration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116928. [PMID: 39208576 DOI: 10.1016/j.ecoenv.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The Chinese medicine residue (CMR) is composed of wet substances, so using hydrothermal carbonization (HTC) to recover renewable energy from the residue is a suitable treatment method. Chromium (Cr), a kind of heavy metal element, is enriched in hydrochar and severely restricts its effective utilization. An in-depth analysis of the migration path and mechanism of Cr in hydrochar is helpful in promoting energy utilization for CMR. Here, licorice, a significant Chinese medicine, was selected as the example to analyze the evolutions of its pore and chemical structures and their effects on the migration mechanism of Cr during the HTC process. The products obtained under various HTC conditions were analyzed using nitrogen adsorption, FTIR, and 13C NMR. The results show that, considering reaction time and relevant reactions as the primary factors during the HTC process, the migration pathway of Cr in hydrochar undergoes two stages, and they are the accompanying migration stage and the recovery aggregation stage. Active adsorption sites for Cr may exist within the pore structure of hydrochar. In the HTC process, hydrolysis, decarboxylation, and decarbonylation reactions are the direct drivers of Cr migration, while aromatization is the underlying cause of Cr recovery and aggregation. It is hypothesized that Cr catalyzes the acetylene cyclotrimerization reaction, thereby promoting the formation of aromatic structures in hydrochar and integrating into the hydrochar carbon skeleton.
Collapse
Affiliation(s)
- Cong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Peng Xia
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Lingyun Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Unconventional Natural Gas Evaluation and Development in Complex Tectonic Areas, Ministry of Natural Resources, Guiyang 550081, China; Guizhou Academy of Petroleum Exploration and Development Engineering, Guiyang 550081, China
| | - Rui Huang
- College of Electrical Engineering, Guizhou University, Guiyang 550025, China
| | - Ke Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yuanzhu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Myung E, Kim H, Choi N, Cho K. The biochar derived from Spirulina platensis for the adsorption of Pb and Zn and enhancing the soil physicochemical properties. CHEMOSPHERE 2024; 364:143203. [PMID: 39209036 DOI: 10.1016/j.chemosphere.2024.143203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microalgae can be collected in large quantities and hold significant potential for environmental remediation, offering a cost-effective solution. This study explores the use of Spirulina platensis (SP) as feedstock for biochar production. SP contains abundant nitrogen-rich components, such as proteins, which can serve as nitrogen sources. We prepared SP-derived biochar through pyrolysis for the adsorption of Pb and Zn from aqueous solutions and used it as an amending agent to remediate heavy metal-contaminated agricultural soil. Pyrolysis of proteins in SP introduces nitrogen-functional groups, resulting in nitrogen-doped biochar. We investigated the surface chemical behavior of thermally treated SP using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Surface analysis revealed the presence of pyridine-N and pyrrole-N from protein pyrolysis products. The study also demonstrated that these functional groups affect interactions with heavy metals. Batch experiments examined the effects of pH and initial concentration on the adsorption of Pb and Zn using SP400 and SP600. Both types of biochar showed satisfactory performance in adsorbing Pb and Zn. The effect of SP400 and SP600 on the removal of Pb and Zn through the physicochemical properties and surface functional groups was investigated. Analysis of SP400 and SP600 highlighted that electrostatic interactions, cation exchange, complexation, and mineral precipitation contributed to Pb and Zn adsorption. The study concludes that SP-derived biochar, particularly SP600, is effective for immobilizing Pb and Zn in contaminated agricultural soil, with SP600 showing superior performance.
Collapse
Affiliation(s)
- Eunji Myung
- Institutes of Green Bio Science and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea
| | - Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Akbari A, Abbasi H, Shafiee M, Baniasadi H. Synergistic adsorption of methylene blue with carrageenan/hydrochar-derived activated carbon hydrogel composites: Insights and optimization strategies. Int J Biol Macromol 2024; 265:130750. [PMID: 38467224 DOI: 10.1016/j.ijbiomac.2024.130750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The study explores the use of hydrochar-derived activated carbon (AC) to improve the adsorption capacity and mechanical properties of carrageenan (CAR) hydrogel beads. Four distinct samples, with carrageenan to activated carbon ratios of 1:0 (CAR), 2:1 (CAC2), 4:1 (CAC4), and 10:1 (CAC10), were prepared. These polymeric beads underwent comprehensive evaluation for their methylene blue (MB) adsorption capacity, gel content (GC), and swelling ratio (SR). Increasing activated carbon content up to 50 % of carrageenan mass significantly enhanced GC and SR by 20.57 % and 429.24 %, respectively. Various analytical techniques were employed to characterize the composites, including FTIR, XRD, Raman Spectroscopy, BET, SEM, and EDS-Mapping. Batch adsorption tests investigated the effects of pH, contact time, dye concentration, and temperature on MB adsorption. Maximum adsorption capacities for CAR, CAC10, CAC4, and CAC2 were 475.48, 558.54, 635.93, and 552.35 mg/g, respectively, under optimal conditions. Kinetic models (Elovich and pseudo-second-order) and isotherm models (Temkin for CAR and Freundlich for CAC10, CAC4, and CAC2) fitted well with the experimental data. Thermodynamic analysis showed spontaneous, exothermic MB adsorption. Primary mechanisms include electrostatic attraction, hydrogen bonding, n-π, and π-π stacking. The study highlights enhanced adsorption capacity of carrageenan hydrogel via carrageenan/activated carbon composites, providing cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Habib Abbasi
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran; Department of Nutrition Sciences, Ewaz School of Health, Larestan University of Medical Sciences, Larestan, Iran.
| | - Mojtaba Shafiee
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
4
|
Chen Z, Yang S, Zhang L, Duan F. Degradative solvent extraction of cyanobacteria: From reaction kinetics to potential organic matter evolution mechanism. BIORESOURCE TECHNOLOGY 2023; 386:129547. [PMID: 37488019 DOI: 10.1016/j.biortech.2023.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This study proposed a new continuous lumped reaction kinetics model to accurately reveal the control mechanism of cyanobacteria at each stage of degradative solvent extraction and discussed the potential evolution mechanism of organic matter. Results showed that degradation solvent extraction successfully separated nitrogen and phosphorus from cyanobacteria. The solute has high carbon and volatile contents, is almost ash-free, and forms a phosphorus-rich residue. The lowest fitting degree of the continuous lumped reaction model kinetics was 94.5%, suggesting that this model worked well. The depolymerization of the residue dominated between 200 and 350 °C, whereas solute decomposition dominated at 400 °C. Nitrogen-containing compounds, which originate from protein decarboxylation or deamination to generate amides, are the main components of the solute, and amino acids react with reducing sugars to generate nitrogen heterocyclic compounds, which are useful for preparing nitrogen-containing chemicals.
Collapse
Affiliation(s)
- Zongqi Chen
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| | - Shoumeng Yang
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| | - Lihui Zhang
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China.
| | - Feng Duan
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| |
Collapse
|
5
|
Prathap N, Balla P, Shivakumar MS, Periyasami G, Karuppiah P, Ramasamy K, Venkatesan S. Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications. Sci Rep 2023; 13:9676. [PMID: 37322059 PMCID: PMC10272132 DOI: 10.1038/s41598-023-36033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Carbon dots have stimulated the curiosity of biomedical researchers due to their unique properties, such as less toxicity and high biocompatibility. The synthesis of carbon dots for biomedical application is a core area in research. In the current research, an eco-friendly hydrothermal technique was employed to synthesize high fluorescent, plant-derived carbon dots from Prosopis juliflora leaves extract (PJ-CDs). The synthesized PJ-CDs were investigated by physicochemical evaluation instruments such as fluorescence spectroscopy, SEM, HR-TEM, EDX, XRD, FTIR, and UV-Vis. The UV-Vis absorption peaks obtained at 270 nm due to carbonyl functional groups shifts of n→π*. In addition, a quantum yield of 7.88 % is achieved. The synthesized PJ-CDs showing the presence of carious functional groups O-H, C-H, C=O, O-H, C-N and the obtained particles in spherical shape with an average size of 8 nm. The fluorescence PJ-CDs showed stability against various environmental factors such as a broad range of ionic strength and pH gradient. The antimicrobial activity of PJ-CDs was tested against a Staphylococcus aureus, and a Escherichia coli. The results suggest that the PJ-CDs could substantially inhibit the growth of Staphylococcus aureus. The findings also indicate that PJ-CDs are effective materials for bio-imaging in Caenorhabditis elegans and they can be also used for pharmaceutical applications.
Collapse
Affiliation(s)
- Nadarajan Prathap
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, India
| | - Putrakumar Balla
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | | | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Krishnaraj Ramasamy
- Department of Mechanical Engineering, College of Engineering and Technology, and Director Centre for Excellence in Indigenous Knowledge Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dollo, Ethiopia.
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, India.
| |
Collapse
|
6
|
Chen C, Wang Z, Ge Y, Liang R, Hou D, Tao J, Yan B, Zheng W, Velichkova R, Chen G. Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning. BIORESOURCE TECHNOLOGY 2023; 377:128893. [PMID: 36931444 DOI: 10.1016/j.biortech.2023.128893] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Hydrothermal biochar is a promising sustainable soil remediation agent for plant growth. Demands for biochar properties differ due to the diversity of soil environment. In order to achieve accurate biochar properties prediction and overcome the interpretability bottleneck of machine learning models, this study established a series of data-enhanced machine learning models and conducted relevant sensitivity analysis. Compared with traditional support vector machine, artificial neural network, and random forest models, the accuracy after data enhancement increased in average from 5.8% to 15.8%, where the optimal random forest model showed the average of accuracy was 94.89%. According to sensitivity analysis results, the essential factors influencing the predicting results of the models were reaction temperature, reaction pressure, and specific element of biomass feedstock. As a result, data-enhanced interpretable machine learning proved promising for the characteristics prediction of hydrothermal biochar.
Collapse
Affiliation(s)
- Chao Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yadong Ge
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Rui Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Donghao Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Lab of Biomass Wastes Utilization/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin 300072, China.
| | - Wandong Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rositsa Velichkova
- Department of Hydroaerodynamics and Hydraulic machines, Technical University of Sofia, 1000 Sofia, Bulgaria
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; School of Science, Tibet University, Lhasa 850012, China
| |
Collapse
|
7
|
Purev O, Park C, Kim H, Myung E, Choi N, Cho K. Spirulina platensis Immobilized Alginate Beads for Removal of Pb(II) from Aqueous Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1106. [PMID: 36673865 PMCID: PMC9859109 DOI: 10.3390/ijerph20021106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties of alginate hydrogels by employing Spirulina platensis. Spirulina platensis was immobilized on sodium alginate (S.P@Ca-SA) via crosslinking. The results of field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses of the N-containing functional groups indicated that Spirulina platensis was successfully immobilized on the alginate matrix. We evaluated the effects of pH, concentration, and contact time on Pb(II) adsorption by S.P@Ca-SA. The results demonstrated that S.P@Ca-SA could effectively eliminate Pb(II) at pH 5, reaching equilibrium within 6 h, and the maximum Pb(II) sorption capacity of S.P@Ca-SA was 87.9 mg/g. Our results indicated that S.P@Ca-SA fits well with the pseudo-second-order and Freundlich models. Compared with Spirulina platensis and blank alginate beads, S.P@Ca-SA exhibited an enhanced Pb(II) adsorption efficiency. The correlation implies that the amino groups act as adsorption sites facilitating the elimination of Pb(II).
Collapse
Affiliation(s)
- Oyunbileg Purev
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Chulhyun Park
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Eunji Myung
- Green-Bio Research Facility Center, Seoul National University, Seoul 25354, Republic of Korea
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Wang YJ, Li N, Ni GR, Zhou CH, Yin X, Huang HJ. Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15249055. [PMID: 36556860 PMCID: PMC9782344 DOI: 10.3390/ma15249055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
Pomelo peel (PP) is a kind of solid waste that is produced in the processing industry of honey pomelo. This study deeply explored the feasibility of recycling PP in the form of hydrochar (HC) by microwave-assisted hydrothermal carbonization (HTC) technology. Under the non-catalytic reaction conditions, the yield of hydrochar initially increased with the rise of reaction temperature (150-210 °C) until it remained relatively stable after 210 °C. Under the CaO-catalytical reaction condition, the yield of hydrochar did not change much at first (150-190 °C) but decreased significantly when the reaction temperature exceeded 190 °C. After the microwave-assisted HTC treatment, the PP-derived HC presented higher aromaticity, carbonization degree, porosity, and caloric value. Compared with raw PP, the nutrients in HC were more stable (conducive to being used as slow-release fertilizer). The application of CaO increased the pH value of HC and effectively promoted the accumulation of phosphorus in HC. The HC produced at 210 °C without any catalyst possessing a high devolatilization ability. Additionally, the HC obtained at 190 °C with CaO as the catalyst presented a high combustion property. In general, PP-derived HC showed great application potential in the field of soil remediation/improvement and solid fuels. This preliminary study would undoubtedly provide some important fundamental understanding of the microwave-assisted HTC of PP.
Collapse
|