1
|
Li R, Fan X, Jiang Y, Wang R, Guo R, Zhang Y, Fu S. From anaerobic digestion to single cell protein synthesis: A promising route beyond biogas utilization. WATER RESEARCH 2023; 243:120417. [PMID: 37517149 DOI: 10.1016/j.watres.2023.120417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The accumulation of a large amount of organic solid waste and the lack of sufficient protein supply worldwide are two major challenges caused by rapid population growth. Anaerobic digestion is the main force of organic waste treatment, and the high-value utilization of its products (biogas and digestate) has been widely concerned. These products can be used as nutrients and energy sources for microorganisms such as microalgae, yeast, methane-oxidizing bacteria(MOB), and hydrogen-oxidizing bacteria(HOB) to produce single cell protein(SCP), which contributes to the achievement of sustainable development goals. This new model of energy conversion can construct a bioeconomic cycle from waste to nutritional products, which treats waste without additional carbon emissions and can harvest high-value biomass. Techno-economic analysis shows that the SCP from biogas and digestate has higher profit than biogas electricity generation, and its production cost is lower than the SCP using special raw materials as the substrate. In this review, the case of SCP-rich microorganisms using anaerobic digestion products for growth was investigated. Some of the challenges faced by the process and the latest developments were analyzed, and their potential economic and environmental value was verified.
Collapse
Affiliation(s)
- Rui Li
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - XiaoLei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - YuFeng Jiang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RuoNan Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RongBo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - ShanFei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
2
|
Shu L, Li J, Xu J, Zheng Z. Nutrient removal and biogas upgrade using co-cultivation of Chlorella vulgaris and three different bacteria under various GR24 concentrations by induction with 5-deoxystrigol. World J Microbiol Biotechnol 2023; 39:245. [PMID: 37420159 DOI: 10.1007/s11274-023-03647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 07/09/2023]
Abstract
Algae symbiosis technology shows great potential in the synchronous treatment of biogas slurry and biogas, which has promising applications. For improving nutrients and CO2 removal rates, the present work constructed four microalgal systems: Chlorella vulgaris (C. vulgaris) monoculture, C. vulgaris-Bacillus licheniformis (B. licheniformis), C. vulgaris-activated sludge, and C. vulgaris-endophytic bacteria (S395-2) to simultaneously treat biogas as well as biogas slurry under GR24 and 5DS induction. Our results showed that the C. vulgaris-endophytic bacteria (S395-2) showed optimal growth performance along with photosynthetic activity under the introduction of GR24 (10-9 M). Under optimal conditions, CO2 removal efficiency form biogas, together with chemical oxygen demand, total phosphorus and total nitrogen removal efficiencies from biogas slurry reached 67.25 ± 6.71%, 81.75 ± 7.93%, 83.19 ± 8.32%, and 85.17 ± 8.26%, respectively. The addition of symbiotic bacteria isolated from microalgae can promote the growth of C. vulgaris, and the exogenous addition of GR24 and 5DS can strengthen the purification performance of the algae symbiosis to achieve the maximum removal of conventional pollutants and CO2.
Collapse
Affiliation(s)
- Lixing Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Junfeng Li
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Jun Xu
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Wei J, Wang Z, Zhao C, Sun S, Xu J, Zhao Y. Effect of GR24 concentrations on tetracycline and nutrient removal from biogas slurry by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 369:128400. [PMID: 36442601 DOI: 10.1016/j.biortech.2022.128400] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A biogas slurry composed of carbon, nitrogen, phosphorus, and antibiotics was generated. Investigations into the nutrient and tetracycline removal performance of four microalgae-based contaminant removal technologies, including Chlorella vulgaris, C. vulgaris co-cultured with endophytic bacteria, C. vulgaris co-cultured with Ganoderma lucidum, and C. vulgaris co-cultured with G. lucidum and endophytic bacteria, were conducted. The algal-bacterial-fungal consortium with 10-9 M strigolactone (GR24) yielded the maximum growth rate and average daily yield for algae at 0.325 ± 0.03 d-1 and 0.192 ± 0.02 g L-1 d-1, respectively. The highest nutrient/ tetracycline removal efficiencies were 83.28 ± 7.95 % for chemical oxygen demand (COD), 82.62 ± 7.97 % for total nitrogen (TN), 85.15 ± 8.26 % for total phosphorus (TP) and 83.92 ± 7.65 % for tetracycline. Adding an algal-bacterial-fungal consortium with an optimal synthetic analog GR24 concentration is seemingly an encouraging strategy for enhancing pollutant removal by algae, possibly overcoming the challenges of eutrophication and antibiotic pollution.
Collapse
Affiliation(s)
- Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215000, PR China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, PR China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| |
Collapse
|
4
|
Wang H, Wu B, Jiang N, Liu J, Zhao Y, Xu J, Wang H. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 370:128483. [PMID: 36513303 DOI: 10.1016/j.biortech.2022.128483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microalgae-based technologies are promising strategies for efficient wastewater treatment and biogas upgrading. In this study, three types of microalga-fungi/bacteria symbiotic systems stimulated with the strigolactone analog (GR24) were used to simultaneously remove nutrients from treated piggery wastewater and CO2 from biogas. The effects of initial concentrations of chemical oxygen demand (COD) and GR24 on nutrient removal and biogas upgrading were investigated. When the initial COD concentration was 1200 mg/L, the Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria co-cultivation systems achieved the best photosynthetic performance and microalgae growth. Moreover, under the appropriate COD concentration (1200 mg/L), the highest nutrient/CO2 removal efficiencies were obtained. In addition, 10-9 M GR24 significantly accelerated nutrient/CO2 removal efficiencies. These findings provide a theoretical basis for scale-up experiments using microalgae-based technologies.
Collapse
Affiliation(s)
- Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Nan Jiang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Jinhua Liu
- Changchun Customs Technology Center, Changchun 130062, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. FERMENTATION 2022. [DOI: 10.3390/fermentation8120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO2 that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.
Collapse
|
6
|
Yang W, Li S, Qv M, Dai D, Liu D, Wang W, Tang C, Zhu L. Microalgal cultivation for the upgraded biogas by removing CO 2, coupled with the treatment of slurry from anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2022; 364:128118. [PMID: 36252758 DOI: 10.1016/j.biortech.2022.128118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Biogas is the gaseous by product generated from anaerobic digestion (AD), which is mainly composed of methane and CO2. Numerous independent studies have suggested that microalgae cultivation could achieve high efficiency for nutrient uptake or CO2 capture from AD, respectively. However, there is no comprehensive review on the purifying slurry from AD and simultaneously upgrading biogas via microalgal cultivation technology. This paper aims to fill this gap by presenting and discussing an information integration system based on microalgal technology. Furthermore, the review elaborates the mechanisms, configurations, and influencing factors of integrated system and analyzes the possible challenges for practical engineering applications and provides some feasibility suggestions eventually. There is hope that this review will offer a worthwhile and practical guideline to researchers, authorities and potential stakeholders, to promote this industry for sustainable development.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dian Dai
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Chunming Tang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
7
|
Wang J, Tao J, Dong X, Liu Z, Hou D, Hu Y, Yan B, Su H, Chen G. Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fe 2O 3·α-MoO 3 catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115827. [PMID: 35944322 DOI: 10.1016/j.jenvman.2022.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A hydrothermal oxygen uncoupling (HTOU) method which combines aqueous phase reforming (APR) and oxygen uncoupling was proposed to treat biogas slurry (BS). Based on Le Chatelier's principle, this novel approach was constructed and realized by Cu-α-Fe2O3·α-MoO3 catalyst with van der Waals heterojunction-redox property. Additionally, the catalyst was synthesized by integrating a simple one-pot sol-gel method and thermal hydrogenating. Results indicated that the optimal removal efficiencies of non-purgeable organic carbon (NPOC) (76.29%), total nitrogen (TN) (45.56%), and ammonia nitrogen (AN) (29.03%) were achieved on the Cu-α-Fe2O3·α-MoO3 catalyst at 225.00 °C for 30.00 min, respectively. The significant performance of Cu-α-Fe2O3·α-MoO3 could be attributed to three aspects. (1) The α-MoO3 nanosheets with van der Waals heterostructures obtained at the calcination temperature of 600.00 °C, which can provide the superior performance of APR for hydrogen generation. (2) The adsorbed oxygen species were eliminated by thermal hydrogenating which had a surface passivation effect. (3) The effect of oxygen uncoupling in the lattice oxygen and gaseous oxygen release reaction was beneficial to the degradation of organic matter. Moreover, the reuse of catalysts studies further revealed that the deactivation of catalysts originated from carbon deposition of aromatic polymers and heavy metals oxides pollution. Overall, these findings disclosed that the HTOU could be a promising alternative to the treatment of high-concentration organic wastewater.
Collapse
Affiliation(s)
- Jian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Xiaoshan Dong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zibiao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Donghao Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Key Lab of Biomass Wastes Utilization, Tianjin, 300350, China.
| | - Hong Su
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China; Preparation Office of Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, 518071, China
| |
Collapse
|
8
|
Leong YK, Chang JS. Integrated role of algae in the closed-loop circular economy of anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 360:127618. [PMID: 35840031 DOI: 10.1016/j.biortech.2022.127618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Following the surging demand for sustainable biofuels, biogas production via anaerobic digestion (AD) presented itself as a solution for energy security, waste management, and greenhouse gas mitigation. Algal-based biorefinery platform serves an important role in the AD-based closed-loop circular economy. Other than using whole biomass of micro- and macroalgae as feedstock for biogas production, the integration of AD with other bio- or thermochemical conversion techniques can achieve complete valorization of biomass residue after processing or valuable compounds extraction. On the other hand, anaerobic digestate, the byproduct of AD processes can be used for microalgal cultivation for lipid and pigments accumulation, closing the loop of resource flow. Furthermore, algae and its consortium with bacteria or fungi can be employed for combined biogas upgrading and wastewater treatment. Innovative strategies have been developed to enhance biogas upgrading and pollutant removal performance as well as minimize O2 and N2 content in the upgraded biomethane.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
9
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|