1
|
Wu Y, Zhang H, Lin Q, Zhu R, Zhao L, Wang X, Ren J, Meng L. Fractionation of lignin and fermentable sugars from wheat straw using an alkaline hydrogen peroxide/pentanol biphasic pretreatment. J Biotechnol 2024; 396:62-71. [PMID: 39426411 DOI: 10.1016/j.jbiotec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To breakthrough the delignification saturation point (DSP) of alkaline hydrogen peroxide (AHP) pretreatment, a biphasic AHP/pentanol (AHPP) pretreatment was proposed in this work. The temperature and H2O2 concentration were evaluated. Under the optimal conditions (110 °C, 2 h, 4 % H2O2), 70.73 % of lignin was removed, which was increased by 11.65 % than the traditional AHP pretreatment, indicating successful overcoming of the DSP by adding pentanol. 85.74 % and 88.62 % of glucan and xylan digestibility were achieved, respectively, which increased by 7.41 % and 5.87 % as compared to AHP pretreatment. Furthermore, the lignin extracted from the organic phase accounted for 38.51 % of the delignification, and it had a low molecular weight, effectively preserving the β-O-4 bonds. Finally, satisfied pentanol recovery (77.91 %) and delignification (57.19 %) along with excellent glucan (76.11 %) and xylan (77.52 %) digestibility were reached after fourth recycling of AHPP pretreatment. Therefore, AHPP pretreatment was a promising method for biomass valorization within biorefinery concept.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Hui Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruonan Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lihong Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Ling Meng
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Li F, Li Q, Lv J, Huang M, Ling Z, Meng Y, Chen F, Ji Z. A novel seawater hydrothermal-deep eutectic solvent pretreatment enhances the production of fermentable sugars and tailored lignin nanospheres from Pinus massoniana. Int J Biol Macromol 2024; 267:131596. [PMID: 38621560 DOI: 10.1016/j.ijbiomac.2024.131596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Lignocellulose biorefinery depended on effective pretreatment strategies is of great significance for solving the current global crisis of ecosystem and energy security. This study proposes a novel approach combining seawater hydrothermal pretreatment (SHP) and microwave-assisted deep eutectic solvent (MD) pretreatment to achieve an effective fractionation of Pinus massoniana into high value-added products. The results indicated that complex ions (Mg2+, Ca2+, and Cl-) in natural seawater served as Lewis acids and dramatically promoted the depolymerization of mannose and xylan into oligosaccharides with 40.17 % and 75.43 % yields, respectively. Subsequent MD treatment realized a rapid and effective lignin fractionation (~90 %) while retaining cellulose. As a result, the integrated pretreatment yielded ~85 % of enzymatic glucose, indicating an eightfold increase compared with untreated pine. Because of the increased hydrophobicity induced by the formation of acyl groups during MD treatment, uniform lignin nanospheres were successfully recovered from the DES. It exhibited low dispersibility (PDI = 2.23), small molecular weight (1889 g/mol), and excellent oxidation resistance (RSI = 5.94), demonstrating promising applications in functional materials. The mechanism of lignin depolymerization was comprehensively elucidated via FTIR, 2D-HSQC NMR, and GPC analyses. Overall, this study provides a novel and environmentally friendly strategy for lignocellulose biorefinery and lignin valorization.
Collapse
Affiliation(s)
- Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiang Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiachen Lv
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingjun Huang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Meng
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Liao H, Feng B, Ying W, Lian Z, Zhang J. Novel approach for corn straw biorefineries: Production of xylooligosaccharides, lignin and ethanol by nicotinic acid hydrolysis and pentanol pretreatment. BIORESOURCE TECHNOLOGY 2024; 395:130352. [PMID: 38272142 DOI: 10.1016/j.biortech.2024.130352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The productive separation and conversion of corn straw offers significant prospects for the economic viability of biorefineries centered on straw resources. In this work, a graded utilization method was proposed to produce xylo-oligosaccharides (XOS), ethanol and lignin from corn straw by nicotinic acid (NA) hydrolysis and water/pentanol pretreatment. A XOS yield of 52.6 % was achieved under optimized conditions of 100 mM NA, 170 °C and 30 min. The solid residue was directly treated with water/pentanol, achieving a lignin removal rate of 79.7 %, and the total XOS yield was improved to 62.6 %. The lignin recovered from pentanol had a high purity of 97.6 %, with high phenolic OH content. Simultaneous saccharification and fermentation of final residue resulted in an ethanol yield of 92.0 %, which yielded 55.3 g/L ethanol. Thus, NA hydrolysis and water/pentanol pretreatment provided an efficient, environmentally friendly approach to fractionate corn straw for the co-production of XOS, ethanol, and lignin.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Baojun Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
4
|
Leadbeater DR, Bruce NC. Functional characterisation of a new halotolerant seawater active glycoside hydrolase family 6 cellobiohydrolase from a salt marsh. Sci Rep 2024; 14:3205. [PMID: 38332324 PMCID: PMC10853513 DOI: 10.1038/s41598-024-53886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Realising a fully circular bioeconomy requires the valorisation of lignocellulosic biomass. Cellulose is the most attractive component of lignocellulose but depolymerisation is inefficient, expensive and resource intensive requiring substantial volumes of potable water. Seawater is an attractive prospective replacement, however seawater tolerant enzymes are required for the development of seawater-based biorefineries. Here, we report a halophilic cellobiohydrolase SMECel6A, identified and isolated from a salt marsh meta-exo-proteome dataset with high sequence divergence to previously characterised cellobiohydrolases. SMECel6A contains a glycoside hydrolase family 6 (GH6) domain and a carbohydrate binding module family 2 (CBM2) domain. Characterisation of recombinant SMECel6A revealed SMECel6A to be active upon crystalline and amorphous cellulose. Mono- and oligosaccharide product profiles revealed cellobiose as the major hydrolysis product confirming SMECel6A as a cellobiohydrolase. We show SMECel6A to be halophilic with optimal activity achieved in 0.5X seawater displaying 80.6 ± 6.93% activity in 1 × seawater. Structural predictions revealed similarity to a characterised halophilic cellobiohydrolase despite sharing only 57% sequence identity. Sequential thermocycling revealed SMECel6A had the ability to partially reversibly denature exclusively in seawater retaining significant activity. Our study confirms that salt marsh ecosystems harbour enzymes with attractive traits with biotechnological potential for implementation in ionic solution based bioprocessing systems.
Collapse
Affiliation(s)
- Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Wang G, Huang M, Li F, Li Q, Chen F, Wang S, Ling Z, Ji Z. Insights into the poplar cell wall deconstruction following deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Int J Biol Macromol 2024; 254:127673. [PMID: 38287581 DOI: 10.1016/j.ijbiomac.2023.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
In this study, a combination of microcosmic and chemical analysis methods was used to investigate deep eutectic solvent (DES) pretreatment effects on cell wall's micromorphology and lignin's dissolution regular, in order to achieve high-performance biorefinery. The atomic force microscope observed that DES pretreatment peeled off non-cellulose components to reduced "anti-degradation barrier", resulting to improve the enzymatic saccharification from 12.36 % to 90.56 %. In addition, DES pretreatment can break the β-O-4 bond between the lignin units resulting in a decline in molecular weight from 3187 g/mol to 1112 g/mol (0-6 h). However, long pretreatment time resulted regenerated lignin samples repolymerization. Finally, DES has good recoverability which showed saccharification still can reach 51.51 % at 6 h following four recycling rounds and regenerated lignin also had a typical and well-preserved structure. In general, this work offers important information for industrial biorefinery technologies and lignin valorization.
Collapse
Affiliation(s)
- Gaomin Wang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingjun Huang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiang Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Songlin Wang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Nair LG, Agrawal K, Verma P. Organosolv pretreatment: an in-depth purview of mechanics of the system. BIORESOUR BIOPROCESS 2023; 10:50. [PMID: 38647988 PMCID: PMC10991910 DOI: 10.1186/s40643-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 04/25/2024] Open
Abstract
The concept of biorefinery has been advancing globally and organosolv pretreatment strategy has seen an upsurge in research due to its efficiency in removing the recalcitrant lignin and dissolution of cellulose. The high-performance organosolv system uses green solvents and its reusability contributes concurrently to the biorefinery sector and sustainability. The major advantage of the current system involves the continuous removal of lignin to enhance cellulose accessibility, thereby easing the later biorefinery steps, which were immensely restricted due to the recalcitrant lignin. The current system process can be further explored and enhanced via the amalgamation of new technologies, which is still a work in progress. Thus, the current review summarizes organosolv pretreatment and the range of solvents used, along with a detailed mechanistic approach that results in efficient pretreatment of LCB. The latest developments for designing high-performance pretreatment systems, their pitfalls, and advanced assessments such as Life Cycle Assessment along with Techno-Economic Assessment have also been deliberated to allow an insight into its diverse potential applicability towards a sustainable future.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
7
|
González-González RB, Iqbal HM, Bilal M, Parra-Saldívar R. (Re)-thinking the bio-prospect of lignin biomass recycling to meet Sustainable Development Goals and circular economy aspects. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100699. [DOI: 10.1016/j.cogsc.2022.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
Seo JY, Tokmurzin D, Lee D, Lee SH, Seo MW, Park YK. Production of biochar from crop residues and its application for biofuel production processes - An overview. BIORESOURCE TECHNOLOGY 2022; 361:127740. [PMID: 35934249 DOI: 10.1016/j.biortech.2022.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A sustainable carbon-neutral society is imperative for future generations, and biochars and biofuels are inevitable choice to achieve this goal. Crop residues (CR) such as sugarcane bagasse, corn stover, and rice husk are promising sustainable resources as a feedstock for biochars and biofuels. Extensive research has been conducted on CR-based biochar production not only in environmental remediation areas but also in application for biofuel production. Here, the distribution and resource potential of major crop residues are presented. The production of CR-biochar and its applications in biofuel production processes, focusing on the latest research are discussed. Finally, the challenges and areas of opportunity for future research in terms of CR supply, CR-biochar production, and CR-biochar utilization for biofuel production are proposed. Compared with other literature reviews, this study can serve as a guide for the establishment of sustainable, economical, commercial CR-based biorefineries.
Collapse
Affiliation(s)
- Jung Yoon Seo
- National Climate Technology Center, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhou X, Guan C, Xu Y, Yang S, Huang C, Sha J, Dai H. Mechanistic insights into morphological and chemical changes during benzenesulfonic acid pretreatment and simultaneous saccharification and fermentation process for ethanol production. BIORESOURCE TECHNOLOGY 2022; 360:127586. [PMID: 35798163 DOI: 10.1016/j.biortech.2022.127586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The anatomical and histochemical characterization of pretreated substrates is essential for the further valorization of biomass during the biorefinery process. In this work, the benzenesulfonic acid (BA)-treated substrates were employed for simultaneous saccharification and fermentation (SSF) of ethanol for the first time. An ethanol yield of 50.36% was attained at 10% solids loading and 47.45 g/L of ethanol accumulated at 30 % solids loading. The dramatic improvements could result from the deconstruction of cell walls, which were evidenced by fluorescence microscope and confocal Raman microscopy spectra. Additionally, for a thorough comprehension of the inherent chemistry of lignin during the BA pretreatment, the changes in lignin structure features were identified for the first time by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). In summary, this study tried to probe the possibility of BA-treated Miscanthus for the SSF process and unveiled the mechanism of the efficient BA pretreatment.
Collapse
Affiliation(s)
- Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chunlong Guan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yexuan Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Yang
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jiulong Sha
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|