1
|
Wang X, Zhang Z, Yang X, Wang Y, Li Y, Zhu T, Zhao Y, Ni BJ, Liu Y. Interaction of poly dimethyl diallyl ammonium chloride with sludge components: Anaerobic digestion performance and adaptive changes of anaerobic microbes. WATER RESEARCH 2024; 266:122368. [PMID: 39270503 DOI: 10.1016/j.watres.2024.122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The wide utilization of poly dimethyl diallyl ammonium chloride (polyDADMAC) in industrial conditions leads to its accumulation in waste activated sludge (WAS), thereby affecting subsequent WAS treatment processes. This work investigated the interaction between polyDADMAC and WAS components from the perspective of anaerobic digestion (AD) performance and anaerobes adaptability variation. The results showed that polyDADMAC decreased the content of biodegradable organic substrates (i.e., soluble protein and carbohydrate) by binding with the functional groups and then settling to the solid phase, thus impeding the subsequent utilization. Higher concentrations of polyDADMAC prompted an initial protective response of excreting organic substrates into extracellular environment, but its toxicity to archaea was irreversible. Consequently, polyDADMAC inhibited the processes of AD and induced a 30 % reduction in methane production with 0.05 g polyDADMAC/g total suspended solid (TSS) addition. Changes in microbial community structure indicated that archaea involved in methane production (e.g., Anaerolineaceae sp. and Methanosaeta sp.) were inhibited when exposed to polyDADMAC. However, several adaptive bacteria with the ability of utilizing complex organics and participating in nitrogen cycle (e.g., Aminicenantales sp. and Ellin6067 sp.) were enriched with the above dosage. Specifically, the decreased abundance of genes relevant to methane metabolism pathway (i.e., mer and cdh) and increased abundance of genes involved in metabolism of cofactors and vitamins (e.g., nad and thi) indicated the toxicity of polyDADMAC and the irritant response of microflora. Moreover, polyDADMAC underwent degradation in AD system, resulting in a 12 % reduction in 15 days, accompanied by an increase in the -NO2 functional group. In general, this study provided a thorough understanding of the interaction between polyDADMAC and WAS components, raising concerns regarding the elimination of endogenous pollutants during AD.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xianli Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
2
|
Fang R, Wang X, Han Z, Pang R, Wu D, Tai J, Ouyang C, Zhan M, Kim H, Xie B, Su Y. Dynamic responses of the inter-microbial synergism and thermodynamic conditions attribute to the inhibition-and-relief effects of chitosan towards anaerobic digestion. WATER RESEARCH 2024; 267:122569. [PMID: 39369510 DOI: 10.1016/j.watres.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Wide commercial applications of chitosan in food preservation and green packaging fields inevitably lead to the universal existence in food, as well as the food waste (FW) processing system. However, whether and how the chitosan, a class of biomacromolecule substances, lead to dysfunction of anaerobic digestion (AD) process of FW remains less understood. Herein, chitosan exhibited an inhibition-and-relief effect with the AD process proceeding, and 80 mg/g-FW of chitosan decreased the net methane yield of FW by 24.7 %. The dynamic effect was ascribed to the varied fates of chitosan and the coupling biotic/abiotic influencing on multi-steps. Chitosan enhanced substrate flocs agglomeration, restraining the release of organics to liquid phase and reducing the binding affinity to enzymes. Among the various microorganisms involved in different steps, chitosan severely inhibited aceticlastic and hydrogenotrophic methanogen at the levels of microbial abundance, activity and function. Genome-centric metagenomics analyses revealed that transient chitosan decreased the coenzyme-based synergism of various microbial taxa involved in acetic acid generation/consumption metabolisms, including syntrophic propionate-oxidizing bacteria, syntrophic butyrate-oxidizing bacteria and methanogen. With the elimination of chitosan, these inhibitions were relieved, and the accumulated acetic acid and the more favorable thermodynamic conditions finally attributed to the recovery of AD performance.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Chuang Ouyang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Civil, Environmental & Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Chen H, Wu Y, Zou Z, Yang X, Tsang YF. Thermal hydrolysis alleviates polyethylene microplastic-induced stress in anaerobic digestion of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134124. [PMID: 38565020 DOI: 10.1016/j.jhazmat.2024.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 μg/L and 124.0 ± 5.1 μg/L, respectively. ATBC at 124.0 μg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yi Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
4
|
Wei Y, Jiao Y, Chen H. Polydimethyldiallylammonium chloride inhibits dark fermentative hydrogen production from waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130003. [PMID: 37977493 DOI: 10.1016/j.biortech.2023.130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Polydimethyldiallylammonium chloride (PDDA) is an excellent flocculant for wastewater purification and sludge dewatering, but whether it poses a threat to hydrogen production from waste activated sludge is not known. In this study, the effect and underlying mechanism of PDDA on the dark fermentation of sludge was investigated. The results showed that PDDA reduced cumulative hydrogen production from 3.8±0.1 to 2.4±0.1 mL/g volatile suspended solids at 40 g/kg total suspended solids. PDDA impeded the dark fermentation process by inhibiting the activity of key enzymes, presenting a stronger inhibitory effect on the hydrogen production process than the hydrogen consumption process. Additionally, PDDA inhibited Firmicutes by enriching other microorganisms, thereby impeding hydrogen production via the acetate pathway. This study deepens the understanding of the potential effects of PDDA on sludge treatment and provides a theoretical basis for alleviating the negative effects of quaternary ammonium-based cationic flocculants.
Collapse
Affiliation(s)
- Yafei Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yimeng Jiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
5
|
Zhou C, Yu Y, Zeng W, Feng S, Li J. Effects of microbubble pretreatment on physiochemical and microbial properties of excess activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12528-12542. [PMID: 38233712 DOI: 10.1007/s11356-024-31939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Fast increased amount of excess activated sludge (EAS) from wastewater treatment plants has aroused universal concerns on its environmental risks and demands for appropriate treatments, while effective treatment is dependent upon proper pretreatment. In this study, air-supplied microbubbles (air-MBs) with generated size of 25.18 to 28.25 μm were used for EAS pretreatment. Different durations (30, 60, 90, and 120 s) yielded sludge with varied physiochemical conditions, and 60 s decreased sludge oxidation status and significantly increased adenosine triphosphate (ATP) content. Soluble, loosely-bound, and tightly-bound extracellular polymeric substances (SEPS, LB-EPS, and TB-EPS) were extracted from the sludge through a stepwise approach and examined through three-dimensional excitation-emission matrix (3D-EEM) and quantitative analysis. The results showed that 60- and 120-s treatments generated stronger fluorescence intensities on dissolved organic matters (DOMs) of protein-like and fulvic acid in LB-EPS and TB-EPS, which indicated the decrease of counterparts in EAS, and therefore facilitated sludge dewaterability and reduction. The dominant microbial communities in EAS, including Proteobacteria, Bacteroidota, Chloroflexi, and Actinobacteriota, were not significantly affected by MB pretreatment. The results collectively revealed the effects of MB pretreatment on EAS and indicated that MBs could be an effective pretreatment technique for EAS treatment process.
Collapse
Affiliation(s)
- Cuihong Zhou
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| | - Yiqiong Yu
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| | - Wanlin Zeng
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
- E20 Institute of Environment Industry, Beijing, 100093, China
| | - Shugeng Feng
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China.
| | - Jiangting Li
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| |
Collapse
|
6
|
Bucci L, Ghiotto G, Zampieri G, Raga R, Favaro L, Treu L, Campanaro S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:580-590. [PMID: 38114447 PMCID: PMC10785762 DOI: 10.1021/acs.est.3c07737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Ammonia release from proteinaceous feedstocks represents the main inhibitor of the anaerobic digestion (AD) process, which can result in a decreased biomethane yield or even complete failure of the process. The present study focused on the adaptation of mesophilic AD communities to a stepwise increase in the concentration of ammonium chloride in synthetic medium with casein used as the carbon source. An adaptation process occurring over more than 20 months allowed batch reactors to reach up to 20 g of NH4+ N/L without collapsing in acidification nor ceasing methane production. To decipher the microbial dynamics occurring during the adaptation and determine the genes mostly exposed to selective pressure, a combination of biochemical and metagenomics analyses was performed, reconstructing the strains of key species and tracking them over time. Subsequently, the adaptive metabolic mechanisms were delineated by following the single nucleotide variants (SNVs) characterizing the strains and prioritizing the associated genes according to their function. An in-depth exploration of the archaeon Methanoculleus bourgensis vb3066 and the putative syntrophic acetate-oxidizing bacteria Acetomicrobium sp. ma133 identified positively selected SNVs on genes involved in stress adaptation. The intraspecies diversity with multiple coexisting strains in a temporal succession pattern allows us to detect the presence of an additional level of diversity within the microbial community beyond the species level.
Collapse
Affiliation(s)
- Luca Bucci
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Guido Zampieri
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Roberto Raga
- Department
of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Lorenzo Favaro
- Department
of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova,
Campus Agripolis, Viale dell’Università
16, 35020 Legnaro, Italy
| | - Laura Treu
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Stefano Campanaro
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
7
|
Hung CM, Chen CW, Huang CP, Dong CD. Nitrogen and boron co-doped lignin biochar for enhancing calcium peroxide activation toward organic micropollutants decontamination in waste activated sludge and related microbial structure dynamics. BIORESOURCE TECHNOLOGY 2023; 372:128673. [PMID: 36702322 DOI: 10.1016/j.biortech.2023.128673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
This study synthesized dual heteroatom nitrogen and boron-co-doped lignin-based biochar (NB-LGBC) for calcium peroxide (CP) activation to enhance the removal of organic micropollutants (OMPs), namely, 4-nonylphenol (4-NP) from waste activated sludge (WAS). NB-LGBC/CP enhanced 4-NP degradation by arriving at 83 % removal in 12 h. The NB-LGBC/CP system degraded 4-NP via a synergistic interaction (HO•, O2•- radicals, and singlet oxygen) and electron transfer due to the N-B-C bonding configurations. Results of fluorescence excitation-emission matrix (FEEM) analysis revealed significantly increase in biodegradable organics from treated WAS mixture. NB-LGBC/CP treatment enriched alkaliphilic bacterium associated with the predominance of the genus Desulfonatronum within the phylum Proteobacteria in the WAS, which improved the biological treatment capacity of 4-NP. Thus, NB-LGBC in HR-CAOP will be a novel approach for WAS decontamination.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|