1
|
Wang Y, Cai D, Xi B, Lu Y, Zhao X, Du Y. Insight into response mechanism of short-chain fatty acids to refined microbial transformation order of dissolved organic matter ranked by molecular weight during dry anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 412:131400. [PMID: 39218363 DOI: 10.1016/j.biortech.2024.131400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Dynamic transformation of dissolved organic matter (DOM) contributes to short-chain fatty acids (SCFAs) production during anaerobic digestion. However, the impact of refined transformation of DOM ranked by molecular weight (MW) on SCFAs has never been investigated. Results indicated that DOM conversion order was 3500-7000 Da>(MW>14000 Da) > 7000-4000 Da during hydrolysis stage, while it was independent of their MW in acidogenesis phase and followed a low to high MW order during methanogenesis stage. Proteins-like DOMs with different MW were closely related to SCFAs. Eight groups of microorganisms (e.g., Bacillus and Caldicoprobacter) responsible for the conversion of proteins-like DOMs to SCFAs. The possible routes linking environmental properties to microorganisms-proteins-like DOMs-SCFAs connections were constructed. Microbial activity modifications by regulating moisture, pH, NO3--N and NH4+-N can expedite the conversion of proteins-like DOMs to SCFAs. The study emphasizes the importance of MW-classification-based biotransformation of organic waste, offering a potential strategy to enhance anaerobic digestion performance.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yun Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Gracia J, Acevedo O, Acevedo P, Mosquera J, Montenegro C, Cabeza I. Statistical modeling and optimization of volatile fatty acids production by anaerobic digestion of municipal wastewater sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34091-2. [PMID: 39198346 DOI: 10.1007/s11356-024-34091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/19/2024] [Indexed: 09/01/2024]
Abstract
Obtaining value-added products from renewable resources is limited by the lack of specific operating conditions optimized for the physico-chemical characteristics of the biomass and the desired end product. A mathematical model and statistical optimization were developed for the production of volatile fatty acids (VFAs) by anaerobic digestion of municipal sewage sludge. The experimental tests were carried out in triplicate and investigated a wide range of conditions: pH 9.5, 10.5, and 11.5; temperatures 25 °C, 35 °C, 45 °C, and 55 °C; primary sludge with organic loading (OL) of 10 and 14 g VS (volatile solids); and digested sludge with 4 and 6 g VS. Subsequently, a statistical search was performed to obtain optimal production conditions, then a statistical model of VFA production was developed and the optimal conditions were validated at pilot plant scale. The maximum VFA concentration predicted was 6975 mg COD (chemical oxygen demand)/L using primary sludge at 25 °C, initial OL of 14 g VS, and pH 10.5. The obtained third-degree model (r2 = 0.83) is a powerful tool for bioprocess scale-up, offering a promising avenue for sustainable waste management and biorefinery development.
Collapse
Affiliation(s)
- Jeniffer Gracia
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Oscar Acevedo
- Faculty of Engineering, Design, and Innovation, Politécnico Grancolombiano, 110231, Bogotá, Colombia
| | | | - Jhessica Mosquera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Carlos Montenegro
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Ivan Cabeza
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Autopista Norte, Campus Universitario Puente del Común, Km 7, 250001, Chía, Colombia.
| |
Collapse
|
3
|
Zhang Z, Liu R, Lan Y, Zheng W, Chen L. Anaerobic co-fermentation of waste activated sludge with corn gluten meal enhanced phosphorus release and volatile fatty acids production: Critical role of corn gluten meal dosage on fermentation stages and microbial community traits. BIORESOURCE TECHNOLOGY 2024; 394:130275. [PMID: 38176597 DOI: 10.1016/j.biortech.2023.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The anaerobic co-fermentation of iron bound phosphorus (P) compounds (FePs)-bearing sludge with corn gluten meal (CGM) and the underlying mechanisms associated with P release and volatile fatty acids (VFAs) production were investigated. The optimal CGM dosage for P release was 0.6 g chemical oxygen demand (COD)/g total suspended solid (TSS), which resulted in an increase in efficiency from 7 % (control sample) to 39 %. However, the optimal CGM dosage for VFAs production was 0.4 g COD/g TSS, and the yield increased from 37.4 (control sample) to 331.7 mg COD/g volatile suspended solid. The addition of CGM enhanced hydrolysis and acidogenesis by supplying abundant organic substrates to promote the growth of hydrolytic and acidogenic bacteria. A higher VFAs/ammonium-nitrogen ratio resulted in a lower pH, which promoted greater FePs dissolution and P release from the sludge. This study provides novel insights into the effects of CGM on P release and VFAs production.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Liu H, Zhen F, Wu D, Wang Z, Kong X, Li Y, Xing T, Sun Y. Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. BIORESOURCE TECHNOLOGY 2023; 387:129678. [PMID: 37579859 DOI: 10.1016/j.biortech.2023.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products. Considering the yield, productivity, and lactate/VFAs ratio, a replacement ratio of 30% and a cycle time of 2 d may be more suitable for further production of MCFAs. Its productivity and lactate/VFAs ratio were 4.07 ± 0.24 g/(L·d) and 5 ± 0.6, respectively. The lactic acid bacteria, such as Enterococcus (63%) and Lactobacillus (33%), stabilized in the reactor, resulting in the generation of both lactate and VFAs by heterolactic fermentation. The present study demonstrated a new strategy with the potential to recover high-value products from organic waste streams.
Collapse
Affiliation(s)
- Huiliang Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Di Wu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|