1
|
Fernandes C, Aliaño-González MJ, Cid Gomes L, Bernin D, Gaspar R, Fardim P, Reis MS, Alves L, Medronho B, Rasteiro MG, Varela C. Lignin extraction from acacia wood: Crafting deep eutectic solvents with a systematic D-optimal mixture-process experimental design. Int J Biol Macromol 2024; 280:135936. [PMID: 39322130 DOI: 10.1016/j.ijbiomac.2024.135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Lignin is a complex biopolymer whose efficient extraction from biomass is crucial for various applications. Deep eutectic solvents (DES), particularly natural-origin DES (NADES), have emerged as promising systems for lignin fractionation and separation from other biomass components. While ternary DES offer enhanced fractionation performance, the role of each component in these mixtures remains unclear. In this study, the effects of adding tartaric acid (Tart) or citric acid (Cit) to a common binary DES mixture composed of lactic acid (Lact) and choline chloride (ChCl) were investigated for lignin extraction from acacia wood. Ternary Cit-based DES showed superior performance compared to Tart-based DES. Using a combined mixture-process D-Optimal experimental design, the Lact:Cit:ChCl DES composition and extraction temperature were optimized targeting maximum lignin yield and purity. The optimal conditions (i.e., Lact:Cit:ChCl, 0.6:0.3:0.1 molar ratio, 140 °C) resulted in a lignin extraction yield of 99.63 ± 1.24 % and a lignin purity of 91.45 ± 1.03 %. Furthermore, this DES exhibited feasible recyclability and reusability without sacrificing efficiency.
Collapse
Affiliation(s)
- Catarina Fernandes
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
| | - María José Aliaño-González
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; Analytical Chemistry Department, Faculty of Sciences, University of Cádiz, 11510 Cádiz, Spain
| | - Leandro Cid Gomes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Rita Gaspar
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium
| | - Marco S Reis
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Maria Graça Rasteiro
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Carla Varela
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Zhang Y, Wang Y, Li W, Liu S, Tan X, Zhang Q, Miao C, Gao J, Song X, Sun C, Li K, Ragauskas AJ, Zhuang X. Valorization of Lignocellulose with One-Step Acidified Monophasic Phenoxyethanol Fractionation. CHEMSUSCHEM 2024; 17:e202400487. [PMID: 38807568 DOI: 10.1002/cssc.202400487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Effective fractionation of lignocelluosic biomass and subsequent valorization of all three major components under mild conditions were achieved. Pretreatment with acidified monophasic phenoxyethanol (EPH) efficiently removed 92.6 % lignin and 80 % xylan from poplar at 110 °C in 60 min, yielding high-value EPH-xyloside, EPH-modified lignin (EPHL), and a solid residue nearly purely composed of carbohydrates. After removing the grafted acetyl groups using 1 % NaOH at 50 °C, the highest enzymatic digestibility reached 92.3 %. EPHL could be recovered in high yield and purity with an uncondensed structure, while xylose was converted to EPH-xyloside, a potential precursor in biomedical industries. Additionally, the acidified monophasic EPH solvent could effectively fractionate biomass from species other than hardwood, achieving over 70 % delignification from recalcitrant pinewood under the same mild conditions, demonstrating the high potential of monophasic EPH pretreatment.
Collapse
Affiliation(s)
- Yiqi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yunxuan Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Wuhuan Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shijun Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Xuesong Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Quan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Changlin Miao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Jingjing Gao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN, USA
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center of Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
3
|
Jiang B, Shen F, Jiang Y, Huang M, Zhao L, Lei Y, Hu J, Tian D, Shen F. Extraction of super high-yield lignin-carbohydrate complexes from rice straw without compromising cellulose hydrolysis. Carbohydr Polym 2024; 323:121452. [PMID: 37940260 DOI: 10.1016/j.carbpol.2023.121452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Lignin-carbohydrate complexes (LCC) that exhibit both structural advantages of lignin and carbohydrates are promising amphiphilic biopolymers, but the extraction is challenged by its liable chemical bond cleavage between lignin and carbohydrates. This work proposed a facile chemical route to integrating the production of water-insoluble (WIS LCC) and water-soluble LCC (WS LCC) into the emerging deep eutectic solvent (DES) biorefinery at mild conditions. The tailored mechanochemical fractionation process of ball milling assisted aqueous alkaline DES could extract 24.2 % LCC in total, with the co-production of a highly hydrolysable cellulose fraction (98.7 % glucose conversion). The resulting LCC exhibited considerably high contents of β-O-4, phenyl glycoside, and ferulic acid linkage bonds. When 100 g starting straw was subjected to this technique route, 9.1 g WIS LCC, 15.1 g WS LCC and 45.5 g glucose were cascaded produced. It was proposed that the selective disruption of hydrogen bonding entangled network and the quasi-state dissolution of the whole biomass allowed the subsequent cascade fractionation of WIS LCC, WS LCC and highly hydrolysable cellulose through solution property adjustment. This work showed a promising approach for LCC production with high yield without compromising cellulose conversion potential, which has been challenging in the current lignocellulose biorefinery.
Collapse
Affiliation(s)
- Baiheng Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Feiyue Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuehan Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongjia Lei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: 10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
5
|
Ahmed AM, Mekonnen ML, Mekonnen KN. REVIEW ON NANOCOMPOSITE MATERIALS FROM CELLULOSE, CHITOSAN, ALGINATE, AND LIGNIN FOR REMOVAL AND RECOVERY OF NUTRIENTS FROM WASTEWATER. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023:100386. [DOI: https:/doi.org/10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
|
6
|
Subramaniam S, Karunanandham K, Asm R, Uthandi S. Delignification of the cotton stalk and ginning mill waste via EnZolv pretreatment and optimization of process parameters using response surface methodology (RSM). BIORESOURCE TECHNOLOGY 2023; 387:129655. [PMID: 37573984 DOI: 10.1016/j.biortech.2023.129655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The present study aimed to add value to cotton waste biomass using a more eco-friendly process, EnZolv which delignifies cotton stalk and cotton ginning mill waste. A maximum delignification of 68.68% and 65.51% was obtained using pre-optimized EnZolv parameters in cotton stalk (CS) and ginning mill waste (GMW), respectively. Optimized EnZolv process removed 78.68% of lignin in CS using Response Surface Methodology (RSM) in Box-Behnken design at 0% moisture content, 50 U laccase g-1 of biomass, 5 h incubation time, 50 ⁰C incubation temperature, and 150 rpm shaking speed. Similarly, RSM-based delignification of 70.53% in GMW was achieved under the optimized EnZolv conditions of 98.75 % moisture content, 41.59 U laccase g-1 of biomass, 9.3 h incubation time, 46.15 ⁰C incubation temperature, and 150 rpm shaking speed.
Collapse
Affiliation(s)
- Santhoshkumar Subramaniam
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu, India; Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625104, Tamil Nadu, India
| | - Kumutha Karunanandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625104, Tamil Nadu, India
| | - Raja Asm
- ICAR- Central Institute for Research on Cotton Technology, Adenwala Road, Matunga, 400019 Mumbai, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu, India.
| |
Collapse
|
7
|
Zhang B, Fang S, Ke J. High efficient adsorption of W(VI) with a novel lignin-based biosorbent functionalized with Zn 2+ and polyamine. Int J Biol Macromol 2023; 250:126083. [PMID: 37532187 DOI: 10.1016/j.ijbiomac.2023.126083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Functionalized lignin-based biosorbent has become popular in wastewater treatment and extraction of valuable metals. Amination and metallization modification can effectively improve the adsorption performance of adsorbent. Zn2+/polyamine lignin for adsorption of W(VI) was synthesized by quaternization, amination and metallization from lignin with 3-chloro-2-hydroxypropyl trimethylammonium chloride, tetraethylenepentamine and ZnCl2. The adsorbent was characterized by SEM-EDS, FTIR and XRD. The adsorption performance of Zn2+/polyamine lignin for W(VI) was investigated in batch system. The adsorption mechanism was revealed by zeta potential, SEM-EDS and FTIR and XPS. It was shown that Zn2+/polyamine lignin exhibited great adsorption capacity at pH of 2, 25 °C, oscillation rate of 400 r/min, initial tungsten concentration of 700 mg·L-1 and adsorption time of 720 min. The maximum adsorption capacity of 0.5 g·L-1 Zn2+/polyamine lignin for W(VI) reached 488.28 mg·g-1. The adsorption followed Langmuir model and quasi-second-order kinetic model, indicating that the adsorption was monolayer homogeneous chemisorption. W(VI) was adsorbed through electrostatic attraction of hydrogen bond and Zn2+, ion exchange with Cl- and coordination with -NH2. The adsorption capacity reduced by only 6.47 % after seven cycles of adsorption-desorption, which indicated that Zn2+/polyamine lignin had a great application prospect.
Collapse
Affiliation(s)
- Baoping Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| | - Shiyuan Fang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Jing Ke
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| |
Collapse
|
8
|
Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, Wang JX, Dong CD. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2023; 381:129145. [PMID: 37169207 DOI: 10.1016/j.biortech.2023.129145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Jia-Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|