1
|
Raczkiewicz M, Mašek O, Ok YS, Oleszczuk P. Size reduction of biochar to nanoscale decrease polycyclic aromatic hydrocarbons (PAHs) and metals content and bioavailability in nanobiochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173372. [PMID: 38797420 DOI: 10.1016/j.scitotenv.2024.173372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Monika Raczkiewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Ondřej Mašek
- UK Biochar Research Centre (UKBRC), School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JN, UK
| | - Yong Sik Ok
- Korea Biochar Research Center (KBRC), APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
2
|
Yao C, Wang B, Zhang J, Faheem M, Feng Q, Hassan M, Zhang X, Lee X, Wang S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120610. [PMID: 38581889 DOI: 10.1016/j.jenvman.2024.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.
Collapse
Affiliation(s)
- Canxu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| |
Collapse
|
3
|
Dong CD, Huang CP, Chen CW, Lam SS, Sonne C, Kang CK, Hung CM. Facile heteroatoms modification biochar production from mahogany (Swietenia macrophylla King) pericarps for enhanced the suppression of polycyclic aromatic hydrocarbon pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123173. [PMID: 38110049 DOI: 10.1016/j.envpol.2023.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are critical environmental concerns due to their intrinsic toxic aromatic nature and concomitant circumstances that potentially harm the ecological and human health. In this study, converting mahogany (Swietenia macrophylla King) pericarps to value-added biochar by pyrolysis for evaluating the potential formation/destruction of biochar-bound PAHs was studied for the first time. This study designed and optimized the thermal processing conditions at 300-900 °C in the CO2 or N2 atmosphere, and heteroatoms (N, O, B, NB, and NS) were modified for mahogany pericarps biochar (MPBC) production. The MPBC500 exhibited significantly higher pyrolysis products of PAHs (2780 ± 38 ng g-1) than that of MPBC900 (78 ± 6 ng g-1) under N2 without introducing modified elements. Specifically, the inhibition capacity of MPBC500 for PAHs under CO2 was improved most efficiently by the active nitrogen species of the pyridinic N and pyrrolic N groups. The pyrolysis conditions and heteroatom modification of MPBC altered its physicochemical properties, that is, aromaticity and hydrophobicity, affecting the PAH concentration and composition in the pyrolysis products. This study reveals sustainable approaches to reduce the environmental footprint of biochar by focusing on increases in PAHs pollution in sustainable biochar produced from a low-carbon bioeconomy perspective.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chih-Kuo Kang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chang-Mao Hung
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Hung CM, Gautam DS, Huang CP, Chen CW, Dong CD. Metal-free nitrogen and sulfur binary-doped cellulose-based biochar for efficient suppression of priority organic pollutants and environmental application. BIORESOURCE TECHNOLOGY 2024; 393:130131. [PMID: 38040300 DOI: 10.1016/j.biortech.2023.130131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Biochar production from cellulose biomass is an alternative solution in the search for clean and renewable biofuel. However, the rational design of cellulose biochar (CLBC) for polycyclic aromatic hydrocarbons (PAHs) reduction by integrating pyrolysis process parameters and introducing heteroatoms as inhibitors remains to be studied. Therefore, exogenous heteroatoms (N, B, S, SB, NB, and NS) were used to modify CLBC for the first time. CLBC300 pyrolyzed at 300 °C in a CO2 atmosphere achieved the highest concentrations of PAHs (4982 ± 271 ng g-1), compared with that of CLBC700 (3615 ± 71 ng g-1) formed in a N2 atmosphere without heteroatom doping. The results showed that binary nitrogen- and sulfur-doped CLBC exhibited remarkable PAH-removal performance of 99 % with the lowest toxic equivalency (TEQ) value of 9 ng g-1. Overall, this study presents novel insights into the development of a heteroatom-based modification approach for reducing CLBC-borne PAHs and creating value-added products from cellulose biomass.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Divyashakti Sureshchandra Gautam
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Dong CD, Huang CP, Chen CW, Hung CM. The remediation of marine sediments containing polycyclic aromatic hydrocarbons by peroxymonosulfate activated with Sphagnum moss-derived biochar and its benthic microbial ecology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122912. [PMID: 37956766 DOI: 10.1016/j.envpol.2023.122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
This research was to study the efficiency of Sphagnum moss-derived biochar (SMBC) in removing polycyclic aromatic hydrocarbons (PAHs) from marine sediment using a peroxymonosulfate (PMS)-based carbon-advanced oxidation process (PMS-CAOPs). Sphagnum moss-derived biochar (SMBC) was generated via a simple thermochemical process for PMS activation toward enhancing decontamination of sediments. At pH 6, the SMBC/PMS system achieved a PAH removal efficiency exceeding 78% in 12 h reaction time. Moreover, PAHs of 6-, 5-, 4-, 3-, and 2-ring structures exhibited 98%, 74%, 68%, 85%, and 91%, of removal, respectively. The SMBC activation of PMS generated both radicals (SO4•- and HO•) and nonradical (1O2), species responsible for PAHs degradation, attributed primarily to inherent iron and carbon moieties. The significant PAHs degradation efficiency showcased by the SMBC/PMS process holds promise for augmenting the performance of indigenous benthic microbial activity in sediment treatment contexts. The response of sediment microbial communities to PAH-induced stress was particularly associated with the Proteobacteria phylum, specifically the Sulfurovum genus. The findings of the present study highlight the efficacy of environmentally benign reactive radical/nonradical-based PMS-CAOP using pristine carbon materials, offering a sustainable strategy for sediment treatment.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Sørmo E, Krahn KM, Flatabø GØ, Hartnik T, Arp HPH, Cornelissen G. Distribution of PAHs, PCBs, and PCDD/Fs in products from full-scale relevant pyrolysis of diverse contaminated organic waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132546. [PMID: 37769451 DOI: 10.1016/j.jhazmat.2023.132546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Biomass pyrolysis is the anoxic thermal conversion of biomass into a carbon rich, porous solid, often called biochar. This could be a better waste management alternative for contaminated organic wastes than incineration, due to the useful properties of biochar and potential for carbon sequestration. There are, however, concerns about the potential formation/destruction of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). Six organic wastes, including digested sewage sludges, wood wastes, and food waste reject, were pyrolyzed (500-800°C) in a full-scale relevant unit (1-5 kg biochar hr-1). Removal efficiencies for PCBs and PCDD/Fs were > 99% in the produced biochars. Biochar PAH-content (2.7-118 mgkg-1) was not significantly correlated to feedstock or temperature. PAHs (2563-8285 mgkg-1), PCBs (22-113 µgkg-1), and PCDD/Fs (1.8-50 ngTEQ kg-1) accumulated in the pyrolysis condensate, making this a hazardous waste best handled as a fuel for high temperature combustion. Emission concentrations for PAHs (0.22-421 µgNm-3) and PCDD/Fs (≤2.7 pgTEQ Nm-3) were mainly associated with particles and were below the European Union's waste incineration thresholds. Emission factors ranged from 0.0002 to 78 mg tonne-1 biochar for PAHs and 0.002-0.45 µgTEQ tonne-1 biochar for PCDD/Fs. PCDD/F-formation was negligible during high temperature (≥500 °C) biomass pyrolysis (69-90% net loss).
Collapse
Affiliation(s)
- Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | | | - Gudny Øyre Flatabø
- VOW ASA, 1384 Asker, Norway; University of South-Eastern Norway (USN), 3918 Porsgrunn, Norway
| | - Thomas Hartnik
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway.
| |
Collapse
|
7
|
Hung CM, Chen CW, Huang CP, Dong CD. Effects of pyrolysis conditions and heteroatom modification on the polycyclic aromatic hydrocarbons profile of biochar prepared from sorghum distillery residues. BIORESOURCE TECHNOLOGY 2023:129295. [PMID: 37311529 DOI: 10.1016/j.biortech.2023.129295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
The formation of 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) in sorghum distillery residue-derived biochar (SDRBC) was evaluated under different thermochemical pyrolysis conditions of carbonization atmosphere (N2 or CO2), temperature (300-900 °C) and doping with nonmetallic elements, i.e., N, B, O, P, N + B, and N + S. The results indicated that without surface modification, PAHs formation was 944 ± 74 ng g-1, the highest level, and 181 ± 16 ng g-1, the lowest level, at 300 °C in N2 and CO2 atmosphere, respectively. Boron doping of SDRBC significantly reduced the PAHs content (by 97%) under N2 at 300 °C. Results demonstrated that boron modified SDRBC exhibited the highest degree of PAH reduction. Combined pyrolysis temperature and atmosphere in addition to heteroatom doping is a robust and viable strategy for efficient suppression of PAHs formation and high-value utilization of pyrolysis products of low carbon footprint.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|