1
|
Zhao Y, He J, Pang H, Li L, Cui X, Liu Y, Jiang W, Liu X. Anaerobic digestion and biochar/hydrochar enhancement of antibiotic-containing wastewater: Current situation, mechanism and future prospects. ENVIRONMENTAL RESEARCH 2025; 264:120087. [PMID: 39455046 DOI: 10.1016/j.envres.2024.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Junguo He
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinxin Cui
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Yunlong Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Weixun Jiang
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Xinping Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| |
Collapse
|
2
|
Deng Z, Sun C, Ma G, Zhang X, Guo H, Zhang T, Zhang Y, Hu Y, Li D, Li YY, Kong Z. Anaerobic treatment of nitrogenous industrial organic wastewater by carbon-neutral processes integrated with anaerobic digestion and partial nitritation/anammox: Critical review of current advances and future directions. BIORESOURCE TECHNOLOGY 2025; 415:131648. [PMID: 39447922 DOI: 10.1016/j.biortech.2024.131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Anaerobic digestion combined with partial nitritation/anammox technology holds promising potential for the carbon-neutral treatment of nitrogenous industrial organic wastewater, boasting remarkable advantages in effective removal of both organic matters and nitrogen, bio-energy recovery and carbon emission reduction. This study provides a concise overview of the development and advantages of anaerobic digestion combined with partial nitritation/anammox technology for treating nitrogenous industrial organic wastewater. The process excels in removing organic matter and nitrogen, recovering bio-energy, and reducing carbon emissions, compared to traditional physicochemical and biological methods. Case studies highlight its energy-saving and efficient attributes, especially for carbon-neutral nitrogen removal. Challenges for achieving stable operation in the future are discussed, and the study offers insights into the broader application of this integrated process in industrial wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Deng
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chengde Sun
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Tao Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Yao B, Liu M, Zhang J, Hu X, Wang B, Liang RJ, Chen Y. Effect of long-term exposure to non-biodegradable and biodegradable microplastics in continuous anoxic/aerobic bioreactors: Nitrogen removal performance, microbial communities and functional gene responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123712. [PMID: 39675334 DOI: 10.1016/j.jenvman.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH4+-N removal efficiencies were suppressed to 91.7 ± 5.5% and 80.8 ± 4.1% at concentrations of 10 and 100 mg/L PLA, significantly (p < 0.05) lower than 96.3 ± 1.0% and 95.0 ± 1.5% with the presence of PET. PLA resulted in a significant (p < 0.05) decrease in adenosine triphosphate of living cells (cATP) and dehydrogenase activities. PLA enhanced redox stress and induced a series of oxidative stress reactions that were detrimental to the normal growth and metabolism of microorganisms. The relative abundance of several functional microorganisms (Nitrosomonas,Nitrospira and Ellin6067) and genes (amoA, amoB and amoC) associated with NH4+-N conversion were reduced. The potential risk of biodegradable MPs to the long-term wastewater treatment process cannot be ignored and needs to be emphasized.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bin Wang
- Sichuan Engineering Research Center for Municipal Wastewater Distributed Treatment Technology, Chengdu, 610200, China
| | - Ren-Jun Liang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Yao B, Liu M, Yu L, Ni Q, Yuan C, Hu X, Feng H, Zhang J, Chen Y. Mechanism of biochar in alleviating the inhibition of anaerobic digestion under ciprofloxacin press. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135949. [PMID: 39341191 DOI: 10.1016/j.jhazmat.2024.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.9 and 303.0 mL/g COD, and the CIP degradation efficiencies reached 94.1 % and 96.6 %, significantly higher than those of 123.0 mL/g COD and 81.2 % in the Control system. BC avoided excessive reactive oxygen species in anaerobic systems and induced severe oxidative stress response, while protecting the cell membrane and cell wall of microorganisms. Microorganisms could consume and utilize more organic extracellular polymeric substances for their growth and metabolism. When BC was involved in AD, fewer toxic intermediates were generated during CIP biodegradation, reducing acute and chronic toxicity in anaerobic systems. Microbial diversity suggested that BC could enrich functional microorganisms involved in direct interspecies electron transfer like Methanosaeta, norank_f_Bacteroidetes_vadinHA17, JGI-0000079-D21 and Syntrophomonas, thus facilitating the methanogenic process and CIP degradation. Genetic analyses showed that BC could effectively upregulate functional genes related to the conversion of butyrate-to-acetate and acetyl-to-methane under CIP stress, while functional gene abundance associated with CIP degradation enhanced partially, about encoding translocases, oxidoreductases, lyases, and ligases. Therefore, BC can be added to AD under CIP press to address its inhibited methanogenic performance.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Liqiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Changjie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Song Y, Zhang Z, Liu Y, Peng F, Feng Y. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135514. [PMID: 39243542 DOI: 10.1016/j.jhazmat.2024.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
6
|
Xue W, Shi X, Guo J, Wen S, Lin W, He Q, Gao Y, Wang R, Xu Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. WATER RESEARCH 2024; 253:121309. [PMID: 38367381 DOI: 10.1016/j.watres.2024.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang 421001, PR China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|