1
|
Shah SZH, Rashid A, Majeed A, Ghafoor T, Azam N. Sanger Sequencing Reveals Novel Variants in GLO-1, ACE, and CBR1 Genes in Patients of Early and Severe Diabetic Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1540. [PMID: 39336582 PMCID: PMC11433688 DOI: 10.3390/medicina60091540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Diabetes is a global health issue, with approximately 50% of patients developing diabetic nephropathy (DN) and 25% experiencing early and severe forms of the disease. The genetic factors contributing to rapid disease progression in a subset of these patients are unclear. This study investigates genetic variations in the GLO-1, CBR-1, and ACE genes associated with early and severe DN. Materials and Methods: Sanger DNA sequencing of the exons of CBR1, GLO1, and ACE genes was conducted in 113 patients with early and severe DN (defined as occurring within 10 years of the diagnosis of diabetes and with eGFR < 45 mL/min/1.73 m2) and 100 controls. The impact of identified genetic variations was analyzed using computational protein models created in silico with SWISS-Model and SWISS-Dock for ligand binding interactions. Results: In GLO1, two heterozygous missense mutations, c.102G>T and c.147C>G, and one heterozygous nonsense mutation, c.148G>T, were identified in patients. The SNP rs1049346 (G>A) at location 6:38703061 (GRCh38) was clinically significant. The c.147C>G mutation (C19S) was associated with ligand binding disruption in the GLO1 protein, while the nonsense mutation resulted in a truncated, non-functional protein. In CBR1, two heterozygous variations, one missense c.358G>A, and one silent mutation c.311G>C were observed, with the former (D120N) affecting the active site. No significant changes were noted in ACE gene variants concerning protein structure or function. Conclusions: The study identifies four novel and five recurrent mutations/polymorphisms in GLO1, ACE, and CBR1 genes associated with severe DN in Pakistani patients. Notably, a nonsense mutation in GLO1 led to a truncated, non-functional protein, while missense mutations in GLO1 and CBR1 potentially disrupt enzyme function, possibly accelerating DN progression.
Collapse
Affiliation(s)
- Syed Zubair Hussain Shah
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Amir Rashid
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Asifa Majeed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Tariq Ghafoor
- Armed Forces Bone Marrow Transplant Center, Rawalpindi 46000, Pakistan;
| | - Nadeem Azam
- Pak Emirates Military Hospital, Rawalpindi 46000, Pakistan
| |
Collapse
|
2
|
Özge Karaşallı M, Derya Koyuncu Zeybek. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520090037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Kondzior M, Grabowska I. Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2014. [PMID: 32260217 PMCID: PMC7180895 DOI: 10.3390/s20072014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Suitable immobilization of a biorecognition element, such as an antigen or antibody, on a transducer surface is essential for development of sensitive and analytically reliable immunosensors. In this review, we report on (1) methods of antibody prefunctionalization using electroactive probes, (2) methods for immobilization of such conjugates on the surfaces of electrodes in electrochemical immunosensor construction and (3) the use of antibody-electroactive probe conjugates as bioreceptors and sensor signal generators. We focus on different strategies of antibody functionalization using the redox active probes ferrocene (Fc), anthraquinone (AQ), thionine (Thi), cobalt(III) bipyridine (Co(bpy)33+), Ru(bpy)32+ and horseradish peroxidase (HRP). In addition, new possibilities for antibody functionalization based on bioconjugation techniques are presented. We discuss strategies of specific, quantitative antigen detection based on (i) a sandwich format and (ii) a direct signal generation scheme. Further, the integration of different nanomaterials in the construction of these immunosensors is presented. Lastly, we report the use of a redox probe strategy in multiplexed analyte detection.
Collapse
Affiliation(s)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
4
|
Development of boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres with large pores for endotoxin removal. J Chromatogr A 2019; 1602:91-99. [PMID: 31229248 DOI: 10.1016/j.chroma.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
Abstract
Endotoxins are found almost everywhere and possess high toxicity in vivo and in vitro. Here we design a novel boronate affinity material, called boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres (Fe3O4@nSiO2@mSiO2-BA) with large pores (pore size > 20 nm) based on the chemical structure and physical properties of endotoxins, for facile and highly efficient removal of endotoxins. Dual modes for endotoxin removal were proposed and confirmed in this work: the endotoxin aggregates with size < 20 nm were bound with boronic acid ligands chemically modified on the inner and outer surface of the large pores of Fe3O4@nSiO2@mSiO2-BA microspheres; while the larger endotoxin micelles (size >20 nm) were absorbed on the outer surface of the prepared material based on boronate affinity. Transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms and Fourier transform infrared (FT-IR) spectroscopy confirm that Fe3O4@nSiO2@mSiO2-BA microspheres possess core/shell structure, uniform diameter (520 nm), high surface area (205.57 m2/g), large mesopores (21.8 nm) and boronic acid ligands. The purification procedures of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin were optimized, and 50 mM NH4HCO3 (pH 8.0) and 0.05 M fructose were selected as loading/washing, elution buffers, respectively. The binding capacity of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin was calculated to be 60.84 EU/g under the optimized conditions. Finally, the established analytical method was applied to remove endotoxins from plasmid DNA. After endotoxin removal, the endotoxin content in plasmid DNA was reduced from 0.0026 to 0.0006 EU/mL for two-fold concentration, and from 0.0088 to 0.0022 EU/mL for five-fold concentration after binding, respectively. Additional advantages of the prepared boronate affinity material include excellent stability, reusability/repeatability, and low cost. Boronate affinity materials with large pores could thus prove to be powerful adsorbents for endotoxin removal and the potential applications in the aspects of biological research, pharmaceutical industry, and life health.
Collapse
|
5
|
Current Status of HbA1c Biosensors. SENSORS 2017; 17:s17081798. [PMID: 28777351 PMCID: PMC5579747 DOI: 10.3390/s17081798] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
Glycated hemoglobin (HbA1c) is formed via non-enzymatic glycosylation reactions at the α–amino group of βVal1 residues in the tetrameric Hb, and it can reflect the ambient glycemic level over the past two to three months. A variety of HbA1c detection methods, including chromatography, immunoassay, enzymatic measurement, electrochemical sensor and capillary electrophoresis have been developed and used in research laboratories and in clinics as well. In this review, we summarize the current status of HbA1c biosensors based on the recognition of the sugar moiety on the protein and also their applications in the whole blood sample measurements.
Collapse
|
6
|
Boonyasit Y, Chailapakul O, Laiwattanapaisal W. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis. Anal Chim Acta 2016; 936:1-11. [DOI: 10.1016/j.aca.2016.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
|
7
|
Sridevi S, Vasu KS, Sampath S, Asokan S, Sood AK. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. JOURNAL OF BIOPHOTONICS 2016; 9:760-9. [PMID: 26266873 DOI: 10.1002/jbio.201580156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 05/05/2023]
Abstract
An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules.
Collapse
Affiliation(s)
- S Sridevi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - K S Vasu
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - S Sampath
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - S Asokan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, 560012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
A lateral flow immunosensor for direct, sensitive, and highly selective detection of hemoglobin A1c in whole blood. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:157-165. [DOI: 10.1016/j.jchromb.2016.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 01/19/2016] [Accepted: 01/30/2016] [Indexed: 01/19/2023]
|
9
|
Boonyasit Y, Heiskanen A, Chailapakul O, Laiwattanapaisal W. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes. Anal Bioanal Chem 2015; 407:5287-97. [PMID: 25956596 DOI: 10.1007/s00216-015-8680-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023]
Abstract
We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Due to the unique features of a novel 3-aminophenylboronic acid-modified ESM, selective binding was obtained via cis-diol interactions. This newly developed device provides clinical applicability as an affinity membrane-based biosensor for the identification of HbA1c over a clinically relevant range (2.3 - 14 %) with a detection limit of 0.19%. The proposed membrane-based biosensor also exhibited good reproducibility. When analysing normal and abnormal HbA1c levels, the within-run coefficients of variation were 1.68 and 1.83%, respectively. The run-to-run coefficients of variation were 1.97 and 2.02%, respectively. These results demonstrated that this method achieved the precise and selective measurement of HbA1c. Compared with a commercial HbA1c kit, the results demonstrated excellent agreement between the techniques (n = 15), demonstrating the clinical applicability of this sensor for monitoring glycaemic control. Thus, this low-cost sensing platform using the proposed membrane-based biosensor is ideal for point-of-care diagnostics.
Collapse
Affiliation(s)
- Yuwadee Boonyasit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
10
|
Chang KW, Li J, Yang CH, Shiesh SC, Lee GB. An integrated microfluidic system for measurement of glycated hemoglobin levels by using an aptamer-antibody assay on magnetic beads. Biosens Bioelectron 2015; 68:397-403. [PMID: 25618372 DOI: 10.1016/j.bios.2015.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Blood glycated hemoglobin (HbA1c), reflecting the average blood glucose level in the proceeding 2-3 months, is recommended for screening/diagnosing and patient management of diabetes. However, accurate measurement of the HbA1c level at the point of care is hampered by costly, large-scale instruments (such as high-performance liquid chromatography) or reagent instability of classical immunologic methods, which involve antibody-based immunoturbidimetry. In this work, an integrated microfluidic system using aptamer-based testing to measure HbA1c in blood samples is therefore presented. This measuring system used nucleic-acid aptamers that exhibited high sensitivity and high specificity for hemoglobin and HbA1c to perform a stable and robust testing. The compact microfluidic system consumed less samples and reagents and significantly shortened the detection time. Combining the advantages of microfluidics and aptamers, this integrated microsystem presents a promising tool for accurate and point-of-case HbA1c detection. To demonstrate its clinical utility, whole blood samples with clinically-relevant concentrations of HbA1c and Hb were automatically measured on the integrated microfluidic system. Experimental data showed that the developed aptamer-based microfluidic system is capable of detecting HbA1c and Hb with a good linear response. The entire process was completed within 25 min. The aptamer-antibody on-chip sandwich immunoassay may be further refined to allow diabetes screening and diagnosis at lower cost and earlier phase to minimize the risk of diabetic complications.
Collapse
Affiliation(s)
- Ko-Wei Chang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jinglun Li
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsuan Yang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Pandey R, Dingari NC, Spegazzini N, Dasari RR, Horowitz GL, Barman I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. Trends Analyt Chem 2015; 64:100-108. [PMID: 25598563 DOI: 10.1016/j.trac.2014.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the past decade, considerable attention has been focused on the measurement of glycemic markers, such as glycated hemoglobin and glycated albumin, that provide retrospective indices of average glucose levels in the bloodstream. While these biomarkers have been regularly used to monitor long-term glucose control in established diabetics, they have also gained traction in diabetic screening. Detection of such glycemic markers is challenging, especially in a point-of-care setting, due to the stringent requirements for sensitivity and robustness. A number of non-separation based measurement strategies were recently proposed, including photonic tools that are well suited to reagent-free marker quantitation. Here, we critically review these methods while focusing on vibrational spectroscopic methods, which offer highly specific molecular fingerprinting capability. We examine the underlying principles and the utility of these approaches as reagentless assays capable of multiplexed detection of glycemic markers and also the challenges in their eventual use in the clinic.
Collapse
Affiliation(s)
- Rishikesh Pandey
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Narahara Chari Dingari
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Nicolas Spegazzini
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Gary L Horowitz
- Division of Clinical Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Chopra A, Rawat S, Bhalla V, Suri CR. Point-of-Care Amperometric Testing of Diabetic Marker (HbA1c) Using Specific Electroactive Antibodies. ELECTROANAL 2014. [DOI: 10.1002/elan.201300646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Arimoto S, Kamei A, Yasukawa T, Mizutani F, Yoshioka T. Development of highly sensitive electrochemical measurement on dry chemistry measuring electrode potential shift. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Liu G, Iyengar SG, Gooding JJ. An Electrochemical Impedance Immunosensor Based on Gold Nanoparticle-Modified Electrodes for the Detection of HbA1c in Human Blood. ELECTROANAL 2012. [DOI: 10.1002/elan.201200233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Song SY, Han YD, Park YM, Jeong CY, Yang YJ, Kim MS, Ku Y, Yoon HC. Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens Bioelectron 2012; 35:355-362. [PMID: 22465449 DOI: 10.1016/j.bios.2012.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 11/30/2022]
Abstract
We developed an electrochemical glycated hemoglobin (HbA(1c)) biosensor for diagnosing diabetes in whole human blood based on the competitive binding reaction of glycated proteins. Until now, no studies have reported a simple and accurate electrochemical biosensor for the quantification of HbA(1c) in whole blood. This is because it is very difficult to correctly distinguish HbA(1c) from large amounts of hemoglobin and other components in whole blood. To detect glycated hemoglobin, we used electrodes modified with boronic acid, which forms a covalent bond between its diol group and the cis-diol group of the carbohydrate moiety of glycated proteins. For accurate HbA(1c) biosensing, we first removed blood components (except for hemoglobin) such as glycated proteins and blood glucose as they interfere with the boronate-based HbA(1c) competition analysis by reacting with the boronate-modified surface via a cis-diol interaction. After hemoglobin separation, target HbA(1c) and GOx at a predetermined concentration were reacted through a competition onto the boronate-modified electrode, allowing HbA(1c) to be detected linearly within a range of 4.5-15% of the separated hemoglobin sample (HbA(1c)/total hemoglobin). This range covers the required clinical reference range of diabetes mellitus. Hence, the proposed method can be used for measuring %HbA(1c) in whole human blood, and can also be applied to measuring the concentration of various glycated proteins that contain peripheral sugar groups.
Collapse
Affiliation(s)
- Seung Yeon Song
- Medical Diagnostics Team, Materials & Components Laboratory, LG Electronics Advanced Research Institute, Seoul 137724, Republic of Korea
| | - Yong Duk Han
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Yoo Min Park
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Chi Yong Jeong
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Yong Ju Yang
- Medical Diagnostics Team, Materials & Components Laboratory, LG Electronics Advanced Research Institute, Seoul 137724, Republic of Korea
| | - Moo Sub Kim
- Medical Diagnostics Team, Materials & Components Laboratory, LG Electronics Advanced Research Institute, Seoul 137724, Republic of Korea
| | - Yunhee Ku
- Medical Diagnostics Team, Materials & Components Laboratory, LG Electronics Advanced Research Institute, Seoul 137724, Republic of Korea
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea.
| |
Collapse
|
16
|
Liu G, Khor SM, Iyengar SG, Gooding JJ. Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 2012; 137:829-32. [DOI: 10.1039/c2an16034j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Egawa Y, Seki T, Takahashi S, Anzai JI. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.05.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Martić S, Labib M, Shipman PO, Kraatz HB. Ferrocene-peptido conjugates: From synthesis to sensory applications. Dalton Trans 2011; 40:7264-90. [DOI: 10.1039/c0dt01707h] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Son SY, Han YD, Lee KH, Yoon HC. Electrochemical Assay for Glycated Hemoglobin based on the Magnetic Particle-supported Concentration Coupled to Boronate-diol Interactions. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.7.2103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Determination of glycated hemoglobin on the basis of spectral shifting from protein-dye interaction. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Prabhulkar S, Alwarappan S, Liu G, Li CZ. Amperometric micro-immunosensor for the detection of tumor biomarker. Biosens Bioelectron 2009; 24:3524-30. [PMID: 19520564 DOI: 10.1016/j.bios.2009.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/22/2009] [Accepted: 05/07/2009] [Indexed: 11/16/2022]
Abstract
In this paper, a highly sensitive, reagentless, electrochemical strategy is reported for the detection of a cancer biomarker-Vascular Endothelial Growth Factor (VEGF). Disc shaped carbon fiber microelectrodes were used as the immunosensor platform. Ferrocene monocarboxylic acid labeled anti-VEGF was covalently immobilized on the microelectrode surface using a Jeffamine cross-linker. The formation of immunocomplexes leads to a decrease in the electrochemical signal of ferrocene monocarboxylic acid owing to increased spatial blocking of microelectrode surface. These signal changes enable quantitative detection of VEGF in solution. Voltammetric measurements were conducted to evaluate the interfacial immunoreactions and to quantitatively detect VEGF biomarker. The proposed immunosensing strategy allows a rapid and sensitive means of VEGF analysis with a limit of detection of about 38 pg/mL. This opens up the possibility of employing these electrodes for various single cell analysis and clinical applications. Further, experimental conditions such as concentration of the immobilized antibodies and incubation period were optimized. Following this, the stability and specificity of the immunosensors were also evaluated.
Collapse
Affiliation(s)
- Shradha Prabhulkar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174, USA
| | | | | | | |
Collapse
|
22
|
Tanaka T, Izawa K, Okochi M, Lim TK, Watanabe S, Harada M, Matsunaga T. On-chip type cation-exchange chromatography with ferrocene-labeled anti-hemoglobin antibody and electrochemical detector for determination of hemoglobin A1c level. Anal Chim Acta 2009; 638:186-90. [DOI: 10.1016/j.aca.2009.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
|
23
|
Hsu CT, Chung HH, Tsai DM, Fang MY, Hsiao HC, Zen JM. Fabrication of a Glucose Biosensor Based on Inserted Barrel Plating Gold Electrodes. Anal Chem 2008; 81:515-8. [DOI: 10.1021/ac8019619] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng-Teng Hsu
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsieh-Hsun Chung
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Dong-Mung Tsai
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Mei-Yen Fang
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Chan Hsiao
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Jyh-Myng Zen
- Zensor R&D, BIONIME Corporation, and Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
24
|
Park JY, Chang BY, Nam H, Park SM. Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Anal Chem 2008; 80:8035-44. [PMID: 18826248 DOI: 10.1021/ac8010439] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a novel concept of sensing glycated hemoglobin, HbA 1c, which is now the most important index for a long-term average blood glucose level, by first selectively immobilizing it on the thiophene-3-boronic acid (T3BA) self-assembled monolayer (SAM)-covered gold electrode by a selective chemical reaction with boronic acid. HbA 1c thus immobilized is then detected by the label-free electrochemical impedance spectroscopic (EIS) measurements with a redox probe, an equimolar mixture of K 3Fe(CN) 6 and K 4Fe(CN) 6, present. The rate of charge transfer between the electrode and the redox probe is shown to be modulated by the amount of HbA 1c in the matrix hemoglobin solution due to the blocking effect caused by the binding of HbA 1c with boronic acid. Both the formation of a well-defined T3BA-SAM on the gold surface and the chemical binding of its boronic acid with HbA 1c in solution were confirmed by quartz crystal microbalance, atomic force microscopy, and EIS experiments.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Korea
| | | | | | | |
Collapse
|
25
|
Warsinke A. Electrochemical biochips for protein analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:155-93. [PMID: 17928973 DOI: 10.1007/10_2007_079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Proteins bear important functions for most life processes. It is estimated that the human proteome comprises more than 250,000 proteins. Over the last years, highly sophisticated and powerful instruments have been developed that allow their detection and characterization with great precision and sensitivity. However, these instruments need well-equipped laboratories and a well-trained staff. For the determination of proteins in a hospital, in a doctor's office, or at home, low-budget protein analysis methods are needed that are easy to perform. In addition, for a proteomic approach, highly parallel measurements with small sample sizes are required. Biochips are considered as promising tools for such applications. The following chapter describes electrochemical biochips for protein analysis that use antibodies or aptamers as recognition elements.
Collapse
Affiliation(s)
- Axel Warsinke
- University of Potsdam, Institute of Biochemistry and Biology, iPOC Research Group, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany.
| |
Collapse
|
26
|
Azzaroni O, Yameen B, Knoll W. Effect of the electrostatic microenvironment on the observed redox potential of electroactive supramolecular bioconjugates. Phys Chem Chem Phys 2008; 10:7031-8. [DOI: 10.1039/b806445h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Nakamura H, Tohyama K, Tanaka M, Shinohara S, Tokunaga Y, Kurusu F, Koide S, Gotoh M, Karube I. Development of a package-free transparent disposable biosensor chip for simultaneous measurements of blood constituents and investigation of its storage stability. Biosens Bioelectron 2007; 23:621-6. [PMID: 17768044 DOI: 10.1016/j.bios.2007.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/28/2007] [Accepted: 07/24/2007] [Indexed: 11/16/2022]
Abstract
A package-free transparent disposable biosensor chip was developed by a screen-printing technique. The biosensor chip was fabricated by stacking a substrate with two carbon electrodes on its surface, a spacer consisting of a resist layer and an adhesive layer, and a cover. The structure of the chip keeps the interior of the reaction-detecting section airtight until use. The chip is equipped with double electrochemical measuring elements for the simultaneous measurement of multiple items, and the reagent layer was developed in sample-feeding path. The sample-inlet port and air-discharge port are simultaneously opened by longitudinally folding in two biosensor units with a notch as a boundary. Then the shape of the chip is changed to a V-shape. The reaction-detecting section of the chip has a 1.0 microl sample volume for one biosensor unit. Excellent results were obtained with the chip in initial simultaneous chronoamperometric measurements of both glucose (r=1.00) and lactate (r=0.998) in the same samples. The stability of the enzyme sensor signals of the chip was estimated at ambient atmosphere on 8 testing days during a 6-month period. The results were compared with those obtained for an unpackaged chip used as a control. The package-free chip proved to be twice as good as the control chip in terms of the reproducibility of slopes from 16 calibration curves (one calibration curve: 0, 100, 300, 500 mg dl(-1) glucose; n=3) and 4.6 times better in terms of the reproducibility of correlation coefficients from the 16 calibration curves.
Collapse
Affiliation(s)
- Hideaki Nakamura
- School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Seiwert B, Karst U. Ferrocene-based derivatization in analytical chemistry. Anal Bioanal Chem 2007; 390:181-200. [PMID: 17934723 DOI: 10.1007/s00216-007-1639-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022]
Abstract
Ferrocene-based derivatization has raised considerable interest in many fields of analytical chemistry. This is due to the well-established chemistry of ferrocenes, which allows rapid and easy access to a large number of reagents and derivatives. Furthermore, the electrochemical properties of ferrocenes are attractive with respect to their detection. This paper summarizes the available reagents, the reaction conditions and the different approaches for detection. While electrochemical detection is still most widely used to detect ferrocene derivatives, e.g., in the field of DNA analysis, the emerging combination of analytical separation methods with electrochemistry, mass spectrometry and atomic spectroscopy allows ferrocenes to be applied more universally and in novel applications where strongly improved selectivity and limits of detection are required.
Collapse
Affiliation(s)
- Bettina Seiwert
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 48149, Münster, Germany
| | | |
Collapse
|