1
|
Palakollu VN, Veera Manohara Reddy Y, Shekh MI, Vattikuti SVP, Shim J, Karpoormath R. Electrochemical immunosensing of tumor markers. Clin Chim Acta 2024; 557:117882. [PMID: 38521164 DOI: 10.1016/j.cca.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, India; Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Mehdihasan I Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
2
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
3
|
Wang J, Dong W, Yang X, Li Y, Jin B. Biosensors based on DNA-functionalized CdTe quantum dots for the enhanced electrochemical detection of human-IgG. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37424508 DOI: 10.1039/d3ay00676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Electrochemical detection of human-IgG via biosensors is vital in clinical diagnostics, owing to their simple equipment, facile operation, high selectivity, economical, short diagnostic time, fast response, and easy miniaturization, but the need to improve sensitivity for protein detection is still a barrier limiting its wider practical applications. A hypersensitized electrochemical biosensor based on steric effects for IgG detection was developed in this work. The results indicate that IgG-modified sig-DNA attached to CdTe quantum dots (CdTe-sig-DNA) limited the ability of CdTe-sig-DNA or CdTe-sig-DNA-IgG conjugate to hybridize through the captured DNA strand (cap-DNA) immobilized on a chitosan/nitrogen-doped carbon nanocomposite (CS/N-C) modified glassy carbon electrode surface (GCE). The concentration of IgG based on CdTe concentration was detected by differential pulse anode stripping voltammetry (DPASV) on the electrode surface. The efficiency for hybridizing CdTe-sig-DNA with cap-DNA was found to be logarithmically inverse to the concentration of IgG attached. A highly sensitive and selective detection of IgG from 5 pM to 50 μM with a relatively low detection limit of 1.7 pM was achieved. Therefore, the steric hindrance effect of IgG limited the quantity of DNA that could be functionalized on CdTe QDs, significantly improving the signal, and providing a practical strategy for the clinical analysis of IgG.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Wenhui Dong
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People's Hospital of Chuzhou, Chuzhou 239001, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Yadav AK, Verma D, Kumar A, Bhatt AN, Solanki PR. Biocompatible epoxysilane substituted polymer-based nano biosensing platform for label-free detection of cancer biomarker SP17 in patient serum samples. Int J Biol Macromol 2023; 239:124325. [PMID: 37054852 DOI: 10.1016/j.ijbiomac.2023.124325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Herein, we report the results of the studies relating to developing a simple, sensitive, cost-effective, and disposable electrochemical-based label-free immunosensor for real-time detection of a new cancer biomarker, sperm protein-17 (SP17), in complex serum samples. An indium tin oxide (ITO) coated glass substrate modified with self-assembled monolayers (SAMs) of 3-glycidoxypropyltrimethoxysilane (GPTMS) was functionalized via covalent immobilization of monoclonal anti-SP17 antibodies using EDC(1-(3-(dimethylamine)-propyl)-3-ethylcarbodiimide hydrochloride) - NHS (N-hydroxy succinimide) chemistry. The developed immunosensor platform (BSA/anti-SP17/GPTMS@SAMs/ITO) was characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA), Fourier transform infrared (FT-IR) spectroscopic, and electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The fabricated BSA/anti-SP17/GPTMS@SAMs/ITO immunoelectrode platform was used to measure changes in the magnitude of the current of the electrodes through an electrochemical CV and DPV technique. A calibration curve between current and SP17 concentrations exhibited a broad linear detection range of (100-6000 & 50-5500 pg mL-1), with enhanced sensitivity (0.047 & 0.024 μA pg mL-1 cm-2), limit of detection (LOD) and limit of quantification (LOQ) of 47.57 & 142.9 pg mL-1 and 158.58 & 476.3 pg mL-1, by CV and DPV technique, respectively with a rapid response time of 15 min. It possessed exceptional repeatability, outstanding reproducibility, five-time reusability, and high stability. The biosensor's performance was evaluated in human serum samples, giving satisfactory findings obtained via the commercially available enzyme-linked immunosorbent assay (ELISA) technique, proving the clinical applicability for early diagnosis of cancer patients. Moreover, various in vitro studies in murine fibroblast cell line L929 have been performed to assess the cytotoxicity of GPTMS. The results demonstrated that GPTMS has excellent biocompatibility and can be used for biosensor fabrication.
Collapse
Affiliation(s)
- Amit K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhishek Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Lee I, So H, Kim J, Auh JH, Wall MM, Li Y, Ho K, Jun S. Selective Detection of Escherichia coli K12 and Staphylococcus aureus in Mixed Bacterial Communities Using a Single-Walled Carbon Nanotube (SWCNT)-Functionalized Electrochemical Immunosensor with Dielectrophoretic Concentration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:985. [PMID: 36985878 PMCID: PMC10051117 DOI: 10.3390/nano13060985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102-3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.
Collapse
Affiliation(s)
- Inae Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Heejin So
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Jungyoon Kim
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Marisa M. Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Yong Li
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Kacie Ho
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Soojin Jun
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| |
Collapse
|
7
|
Abdelrahman A, Erchiqui F, Nedil M, Mohamed S. Enhancing Fluidic Polymeric Solutions' Physical Properties with Nano Metals and Graphene Additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Stability improvement of polyaniline nanocomposite immunosensor for early detection of insulin receptor antibody as biomarker of type 2 diabetes. Mikrochim Acta 2022; 189:439. [DOI: 10.1007/s00604-022-05503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/17/2022] [Indexed: 11/09/2022]
|
9
|
An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Kohls A, Maurer Ditty M, Dehghandehnavi F, Zheng SY. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6287-6306. [PMID: 35090107 PMCID: PMC9254017 DOI: 10.1021/acsami.1c20423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.
Collapse
|
11
|
Ultrasensitive early detection of insulin antibody employing novel electrochemical nano-biosensor based on controllable electro-fabrication process. Talanta 2022; 238:122947. [PMID: 34857352 DOI: 10.1016/j.talanta.2021.122947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
An ultrasensitive novel electrochemical nano-biosensor for rapid detection of insulin antibodies against diabetes antigens was developed in this research. The presence of insulin antibodies has been demonstrated to be a strong predictor for the development of type 1 diabetes in individuals who do not have diabetes but are genetically predisposed. The proposed nano-biosensor fabrication process was based on the optimized sequential electropolymerization of polyaniline and electrodeposition of gold nanoparticles on the surface of the functionalized gold electrode. The morphological and chemical characterization of the modified electrode was studied by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and micro Raman spectroscopy. Moreover, the role of each component in the modification of the electrode was studied by electrochemical methods systematically. After immobilizing insulin antigen and blocking with bovine serum albumin, the nano-biosensor was used for determining different concentrations of insulin antibody under the optimal conditions. This nano-biosensor could respond to insulin antibody with a linear calibration range from 0.001 ng ml-1 to 1000 ng ml-1 with the detection limit of 0.017 pg ml-1 and 0.034 pg ml-1 and selectivity of 18.544 μA ng-1 ml.cm-2 and 31.808 μA ng-1 ml.cm-2 via differential pulse voltammetry and square wave voltammetry, respectively. This novel nano-biosensor exhibited a short response time, high sensitivity, and good reproducibility. It was successfully used in determining the insulin antibody in human samples with a standard error of less than 0.178. Therefore, the nano-biosensor has the potential for the application of early detection of type 1 diabetes. To our best knowledge, label-free electrochemical detection of insulin antibody based on immunosensor is developed for the first time.
Collapse
|
12
|
Wu H, Saito Y, Yoshizaki G, Yoshiura Y, Ohnuki H, Endo H. Study on the development of carbon nanotube enhanced biosensor for gender determination of fish. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
14
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Zhao R, Zhao L, Feng H, Chen X, Zhang H, Bai Y, Feng F, Shuang S. A label-free fluorescent aptasensor based on HCR and G-quadruplex DNAzymes for the detection of prostate-specific antigen. Analyst 2021; 146:1340-1345. [PMID: 33367331 DOI: 10.1039/d0an02188a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prostate specific antigen (PSA) has been considered as the most potential serological biomarker for the early stage detection of prostate cancer. Here, a label-free fluorescence aptasensing strategy for detecting PSA based on hybridization chain reaction (HCR) and G-quadruplex DNAzymes has been developed. This designed strategy consists of three DNA probes, aptamer probe (AP), hairpin probe 1 (H1) and hairpin probe 2 (H2). In the presence of target PSA, the aptamer sequences in AP specifically recognized PSA to form a PSA-aptamer complex, causing an AP conformation change and thus releasing the initiator, which triggered the chain-like assembly of H1 and H2 that yielded extended nicked double-stranded DNA through HCR. Upon the addition of hemin, the G-rich segments at the end of H1 and H2 self-assembled into the peroxidase-mimicking hemin/G-quadruplex DNAzymes, which catalyzed the hydrogen peroxide-mediated oxidation of thiamine to give a fluorescence signal dependent on the concentration of PSA. Under optimal conditions, a limit of detection of 0.05 nM and a linear range from 0.1 nM to 1 nM (R2 = 0.9942) were achieved by this assay. In addition, other interfering proteins, such as IgG, AFP and CEA, did not produce any significant change in the fluorescence intensity response, indicating good selectivity of this sensor for PSA detection. Finally, this proposed aptasensor was successfully used for diluted serum samples.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China. and College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Lu Zhao
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Haidi Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Xiaoliang Chen
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Huilin Zhang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Yunfeng Bai
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
16
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Feng D, Su J, Xu Y, He G, Wang C, Wang X, Pan T, Ding X, Mi X. DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system. MICROSYSTEMS & NANOENGINEERING 2021; 7:33. [PMID: 34567747 PMCID: PMC8433179 DOI: 10.1038/s41378-021-00258-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Prostate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic-electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1-100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the "gold-standard" chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.
Collapse
Affiliation(s)
- Dezhi Feng
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Guifang He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiao Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingrui Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, 518055 Shenzhen, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xianqiang Mi
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- CAS Center for Excellence in Superconducting Electronics, (CENSE), 200050 Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024 Hangzhou, China
| |
Collapse
|
18
|
Ghanavati M, Tadayon F, Bagheri H. A novel label-free impedimetric immunosensor for sensitive detection of prostate specific antigen using Au nanoparticles/MWCNTs- graphene quantum dots nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Song Y, Cao K, Li W, Ma C, Qiao X, Li H, Hong C. Optimal film thickness of rGO/MoS2 @ polyaniline nanosheets of 3D arrays for carcinoembryonic antigen high sensitivity detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Yao J, Li S, Zhang L, Yang Y, Gopinath SC, Lakshmipriya T, Zhou Y. Aptamer-antibody dual probes on single-walled carbon nanotube bridged dielectrode: Comparative analysis on human blood clotting factor. Int J Biol Macromol 2020; 151:1133-1138. [DOI: 10.1016/j.ijbiomac.2019.10.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
|
21
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
22
|
Liu X, Yue T, Qi K, Qiu Y, Guo X. Porous graphene based electrochemical immunosensor using Cu 3(BTC) 2 metal-organic framework as nonenzymatic label. Talanta 2020; 217:121042. [PMID: 32498912 DOI: 10.1016/j.talanta.2020.121042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
An electrochemical immunosensor for highly sensitive detection of cancer biomarkers has been developed based on the combination of a sensing platform of polydopamine modified porous graphene and a nonenzymatic label of metal-organic framework (MOF) conjugated secondary antibody. This approach achieves a wide range of linear response from 0.1 to 10 ng/mL, low detection limit of 0.025 ng/mL (at a signal to noise ratio of 3), good reproducibility and selectivity for the detection of prostate specific antigen (PSA) as a model analyte. The high performance of the immunosensor is attributed to the high surface area from porous graphene and the strong adhesion of polydopamine, allowing a high load of the primary antibody of PSA, as well as the highly electrocatalytic activity of the Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylic acid) MOF toward H2O2 to provide greatly amplified sensitivity. In this respect, the MOF-based nonenzymatic label shows promising application for the point-of-care detection of different cancer biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaobang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Ting Yue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Kai Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Yubing Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
23
|
Butmee P, Tumcharern G, Thouand G, Kalcher K, Samphao A. An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe 3O 4@Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry 2020; 132:107452. [PMID: 31927189 DOI: 10.1016/j.bioelechem.2019.107452] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A novel electrochemical immunosensor was developed for label-free detection of carcinoembryonic antigen (CEA) as a cancer biomarker. The designed immunosensor was based on CEA antibody (anti-CEA) anchored with core shell Fe3O4@Au nanoparticles which were immobilized on a screen-printed carbon electrode modified with manganese dioxide decorating on graphene nanoplatelets (SPCE/GNP-MnO2/Fe3O4@Au-antiCEA). The SPCE was placed onto a home-made electrode holder for easy handling. The approach was based on direct binding of CEA to a fixed amount of anti-CEA on the modified electrode for the specific detection using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) monitored in a solution containing 5 mM [Fe(CN)63-/4-] prepared in 0.1 M phosphate buffer at pH 7.4. The difference in signal response owing to the redox reaction of [Fe(CN)6]3-/4- before and after interaction with CEA was regarded as the immunosensor response corresponding directly to the CEA concentration. Under optimized conditions, the linear range of 0.001-100 ng/mL, and the detection limits of 0.10 pg/mL (LSV) and 0.30 pg/mL (EIS) were evaluated. The applicability of the immunosensor was verified by well-corresponding determination of CEA in diluted human serum samples by electrochemiluminescence (ECL) immunoassay. Therefore, the proposed immunosensor could be suitable enough for a real sample analysis of CEA.
Collapse
Affiliation(s)
- Preeyanut Butmee
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand
| | - Gamolwan Tumcharern
- National Nanotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Gerald Thouand
- Nntes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche sur Yon, France
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, A-8010 Graz, Austria.
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand.
| |
Collapse
|
24
|
Saghaeian Jazi M. A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis. JOURNAL OF CLINICAL AND BASIC RESEARCH 2020. [DOI: 10.29252/jcbr.4.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
26
|
Dendritic core-shell rhodium@platinum-cobalt nanocrystals for ultrasensitive electrochemical immunoassay of squamous cell carcinoma antigen. J Colloid Interface Sci 2019; 555:647-654. [DOI: 10.1016/j.jcis.2019.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022]
|
27
|
Bhardwaj H, Pandey MK, Rajesh, Sumana G. Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Mikrochim Acta 2019; 186:592. [DOI: 10.1007/s00604-019-3701-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022]
|
28
|
Electrochemiluminescence study of AuNPs/CdTe-QDs/SWCNTs/chitosan nanocomposite modified carbon nanofiber screen-printed electrode with [Ru(bpy)3]2+/TPrA. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Lin X, Chen X. Gold nanoparticles stabilized with four kinds of amino acid-derived carbon dots for colorimetric and visual discrimination of proteins and microorganisms. Mikrochim Acta 2019; 186:513. [DOI: 10.1007/s00604-019-3602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
|
30
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Rizwan M, Keasberry NA, Ahmed MU. Efficient double electrochemiluminescence quenching based label-free highly sensitive detection of haptoglobin on a novel nanocomposite modified carbon nanofibers interface. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Wang H, Xiu Y, Chen Y, Sun L, Yang L, Chen H, Niu X. Electrochemical immunosensor based on an antibody-hierarchical mesoporous SiO 2 for the detection of Staphylococcus aureus. RSC Adv 2019; 9:16278-16287. [PMID: 35521412 PMCID: PMC9064347 DOI: 10.1039/c9ra00907h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
The outbreak of food-borne pathogens has become a serious concern; therefore, the detection of pathogenic bacteria in food is required. Untreated, sensitive, and reliable sensors should be developed for the detection of Staphylococcus aureus (S. aureus). In this study, a sensitive antibody-based electrochemical immunosensor was developed using antibody (Ab)-hierarchical mesoporous silica (HMS) bio-conjugates for label-free detection of low concentrations of S. aureus. First, a bio-template method based on butterfly wings was used to prepare the HMS. Then, the carrier material was amino-functionalized to cross-link the antibody with glutaraldehyde. The Ab-HMS bio-conjugates were then immobilized on a glassy carbon electrode (GCE), and the presence of S. aureus was detected by analyzing the changes in the peak currents after the antigen-antibody complex formation. Differential pulse voltammetry (DPV) was performed with bacterial concentrations ranging from 10 to 2 × 103 colony forming units (CFU) mL-1. Selective tests were performed using Escherichia coli (E. coli), Listeria monocytogenes (L. monocytohenes), and Salmonella, and the selective assays showed specific detection of S. aureus using the sensor. In addition, the immunosensor showed a good linear relationship between the peak current increase and logarithmic S. aureus concentration (R 2 = 0.9759) with a fast detection time (20 min) and detection limit of 11 CFU mL-1. When the electrochemical impedance spectroscopy (EIS) was performed under the same conditions, the results showed a good linear relationship between the impedance change value and the bacterial concentration (R 2 = 0.9720), the limit of detection (LOD) was 12 CFU mL-1. The performance of the sensor was compared with that of the colony counting method in the spiked milk sample test. The results showed no significant difference in the test results. Hence, this electrochemical immunosensor can be used to quickly detect S. aureus in actual food samples with a high sensitivity, specificity and stability.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Yi Xiu
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Yan Chen
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Liping Sun
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Libin Yang
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Honghao Chen
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University Changchun 130062 People's Republic of China +86-431-87836376 +86-431-87836376
| |
Collapse
|
33
|
Karami P, Bagheri H, Johari-Ahar M, Khoshsafar H, Arduini F, Afkhami A. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta 2019; 202:111-122. [PMID: 31171159 DOI: 10.1016/j.talanta.2019.04.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
A new dual-modality immunosensor based on molecularly imprinted polymer (MIP) and a nanostructured biosensing layer has fabricated for the simultaneous detection of two important markers including prostate-specific antigen (PSA) and myoglobin (Myo) in human serum and urine samples. In the first step, 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP) was self-assembled on a gold screen printed electrode (SPE). Then, the target proteins were attached covalently to the DSP-SPE. The imprinted cocktail polymer ((MIP(PSA, Myo)-SPE)) was synthesized at the SPE surface using acrylamide as monomer, N,N'-methylenebisacrylamide as a crosslinker, and PSA and Myo as the templates, respectively. The MIP-SPE was specific for the impedimetric sensing of PSA and Myo. After that, a nanocomposite (NCP) was synthesized based on the decorated magnetite nanoparticles with multi-walled carbon nanotube, graphene oxide and specific antibody for PSA (Ab). Then, NCP incubated with (MIP(PSA, Myo)-SPE. The modified electrodes and synthesized nanoparticles were characterized using electrochemical impedance spectroscopy, dynamic light scattering, surface plasmon resonance and scanning electron microscopy. The limits of detections were found to be 5.4 pg mL-1 and 0.83 ng mL-1 with the linear dynamic ranges of 0.01-100 and 1-20000 ng mL-1 for PSA and Myo, respectively. The ability of proposed biosensor to detect PSA and Myo simultaneously with high sensitivity and specificity offers a powerful opportunity for the new generation of biosensors. This dual-analyte specific receptors-based device is highly desired for the integration with lab-on-chip kits to measure a wide panel of biomarkers present at ultralow levels during early stages of diseases progress.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Johari-Ahar
- Biosensors and Bioelectronics Research Center (BBRC), Ardabil University of Medical Sciences, Ardabil, Iran; Department of Bioanalytical Sciences and Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
34
|
Quintero-Jaime AF, Berenguer-Murcia Á, Cazorla-Amorós D, Morallón E. Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Front Chem 2019; 7:147. [PMID: 30972319 PMCID: PMC6445958 DOI: 10.3389/fchem.2019.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Different functionalized Multi-Wall Carbon Nanotube and gold nanoparticles (AuNPs) were synthesized as biosensor electrodes. These materials have been applied to the detection of the Prostate Specific Antigen (PSA). The synthesis of AuNPs was carried out using polyvinylpyrrolidone (PVP) as protecting agent. The PVP/Au molar ratio (0.5 and 50) controls the nanoparticle size distribution, obtaining a wide and narrow distribution with an average diameter of 9.5 and 6.6 nm, respectively. Nanoparticle size distribution shows an important effect in the electrochemical performance of the biosensor, increasing the electrochemical active surface area (EASA) and promoting the electron-transfer from the redox probe (Ferrocene/Ferrocenium) to the electrode. Furthermore, a narrow and small nanoparticle size distribution enhances the amount of antibodies immobilized on the transducer material and the performance during the detection of the PSA. Significant results were obtained for the quantification of PSA, with a limit of detection of 1 ng·ml−1 and sensitivities of 0.085 and 0.056 μA·mL·ng−1 for the two transducer materials in only 5 min of detection.
Collapse
Affiliation(s)
- Andrés Felipe Quintero-Jaime
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Emilia Morallón
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| |
Collapse
|
35
|
Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Liu H, Zhao P, Chen L, Liu Y, Li Y, Dong Y. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron 2019; 127:174-180. [DOI: 10.1016/j.bios.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
36
|
An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5010003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbon nanotubes (CNTs) are known as nano-architectured allotropes of carbon, having graphene sheets that are wrapped forming a cylindrical shape. Rolling of graphene sheets in different ways makes CNTs either metals or narrow-band semiconductors. Over the years, researchers have devoted much attention to understanding the intriguing properties CNTs. They exhibit some unusual properties like a high degree of stiffness, a large length-to-diameter ratio, and exceptional resilience, and for this reason, they are used in a variety of applications. These properties can be manipulated by controlling the diameter, chirality, wall nature, and length of CNTs which are in turn, synthesis procedure-dependent. In this review article, various synthesis methods for the production of CNTs are thoroughly elaborated. Several characterization methods are also described in the paper. The applications of CNTs in various technologically important fields are discussed in detail. Finally, future prospects of CNTs are outlined in view of their commercial applications.
Collapse
|
37
|
Dutta G, Lillehoj PB. Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Sci Rep 2018; 8:17129. [PMID: 30459336 PMCID: PMC6244414 DOI: 10.1038/s41598-018-35471-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Currently, the diagnosis of many diseases relies on laboratory-based immunoassays (ELISA, Western Blot), which are laborious, time-consuming and expensive. To address these limitations, we report a wash-free and label-free electrochemical immunoassay for rapid measurements of protein biomarkers in blood samples. This immunosensor employs a unique detection scheme based on electrochemical-chemical (EC) redox cycling for signal amplification combined with an affinity-based protein quantification strategy. All of the reagents required for this assay are dried and stored on a stacked membrane assembly, consisting of a Vivid Plasma Separation membrane and two cellulose membranes situated above the sensor, enabling excellent stability at room temperature for up to 2 months. Proof of concept was carried out by performing measurements of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in whole blood samples, which could be detected from 100 ng/mL to 100 µg/mL with excellent specificity and reproducibility. Each measurement requires only two liquid dispensing steps and can completed in 5 min, making this diagnostic platform promising for point-of-care testing in resource-limited settings.
Collapse
Affiliation(s)
- Gorachand Dutta
- Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Centre for Biosensors, Bioelectronics and Biodevices, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
38
|
Kuss S, Amin HMA, Compton RG. Electrochemical Detection of Pathogenic Bacteria-Recent Strategies, Advances and Challenges. Chem Asian J 2018; 13:2758-2769. [DOI: 10.1002/asia.201800798] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sabine Kuss
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ UK
| | - Hatem M. A. Amin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ UK
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
39
|
Han L, Xia H, Yin L, Petrenko VA, Liu A. Selected landscape phage probe as selective recognition interface for sensitive total prostate-specific antigen immunosensor. Biosens Bioelectron 2018; 106:1-6. [PMID: 29414074 DOI: 10.1016/j.bios.2018.01.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
The level of total prostate-specific antigen (t-PSA) is generally known as the key index of prostate cancer. Here, phage probes against t-PSA were selected from f8/8 landscape phage library. After three rounds of biopanning, four t-PSA-binding phage clones were isolated and identified by the DNA sequencing. Based on the phage capture assay, the phage clone displaying the fusion peptide ATRSANGM showed highest affinity and specificity against t-PSA. Subsequently, the t-PSA-specific phage was used as t-PSA capture probe in a sandwich enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV) assay systems. Both assay methods showed high specificity and acceptable reliability for real serum samples analysis. By comparison, DPV method showed wider linear range (0.01-100 ng mL-1) and lower limit of detection (3 pg mL-1) than those (3.3-330 ng mL-1 and 1.6 ng mL-1) of ELISA. Moreover, DPV system showed smaller distinction to the authoritative method in real samples assay. Excitingly, the phage probe based DPV immunosensor showed high sensitivity for the detection of t-PSA and LOD achieved the pg mL-1 level, which was far lower than those values (usually above 0.1 ng mL-1) for reported immunosensors based on antibodies. Due to the biocompatibility, multivalency, stability, and high structural homogeneity, the t-PSA-specific landscape phage demonstrates as a novel specific interface in biosensors.
Collapse
Affiliation(s)
- Lei Han
- Institute for Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, China
| | - Hongqi Xia
- Institute for Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
| | - Long Yin
- Institute for Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Valery A Petrenko
- Department of Pathobiology, Auburn University, 269 Greene Hall, Auburn, AL 36849-5519, United States
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Department of Drug Metabolism and Analysis,School of Pharmacy, Medical College, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
40
|
Rizwan M, Elma S, Lim SA, Ahmed MU. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens Bioelectron 2018; 107:211-217. [DOI: 10.1016/j.bios.2018.02.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/13/2023]
|
41
|
Dong J, Salem DP, Sun JH, Strano MS. Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS NANO 2018; 12:3769-3779. [PMID: 29614219 DOI: 10.1021/acsnano.8b00980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.
Collapse
Affiliation(s)
- Juyao Dong
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Daniel P Salem
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jessica H Sun
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Michael S Strano
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
42
|
Microfluidic Line-Free Mass Sensor Based on an Antibody-Modified Mechanical Resonator. MICROMACHINES 2018; 9:mi9040177. [PMID: 30424110 PMCID: PMC6187352 DOI: 10.3390/mi9040177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/03/2022]
Abstract
This research proposes a mass sensor based on mechanical resonance that is free from power supply lines (line-free) and incorporates both microfluidic mechanisms and label-free techniques to improve its sensitivity and reusability. The microfluidic line-free mass sensor comprises a disk-shaped mechanical resonator, a separate piezoelectric element used to excite vibrations in the resonator, and a microfluidic mechanism. Electrical power is used to actuate the piezoelectric element, leaving the resonator free from power lines. The microfluidic mechanism allows for rapid, repeat washings to remove impurities from a sample. The microfluidic line-free mass sensor is designed as a label-free sensor to enable high-throughput by modifying and dissociating an antibody on the resonator. The resonator was fabricated by photolithography and the diameter and thickness were 4 mm and 0.5 mm, respectively. The line-free mass sensor enabled a high Q-factor and resonance frequency of 7748 MHz and 1.402 MHz, respectively, to be achieved even in liquids, facilitating the analysis of human salivary cortisol. The line-free mass sensor could be used for repeated measurements with the microfluidic mechanism, and the resonator could be fully washed out. It was concluded that the microfluidic line-free mass sensor was suitable to analyze the concentration of a salivary hormone, cortisol, in human saliva samples, and that it provided high-throughput suitable for point-of-care testing.
Collapse
|
43
|
Young BR, Aminayi P. Single-walled carbon nanotube (SWNT)-carboxymethylcellulose (CMC) dispersions in aqueous solution and electronic transport properties when dried as thin film conductors. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1452759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- B. R. Young
- Chemical and Paper Engineering, College of Engineering and Applied Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - P. Aminayi
- Chemical and Paper Engineering, College of Engineering and Applied Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
44
|
Wang R, Wang AJ, Liu WD, Yuan PX, Xue Y, Luo X, Feng JJ. A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosens Bioelectron 2018; 102:276-281. [DOI: 10.1016/j.bios.2017.11.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/03/2023]
|
45
|
Li J, Li X, Huang Y, Zhong Y, Lan Q, Wu X, Hu R, Zhang G, Hu X, Yang Z. Biofunctionalized mesoporous silica nanospheres for the ultrasensitive chemiluminescence immunoassay of tumor markers. NEW J CHEM 2018. [DOI: 10.1039/c8nj02203h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous silica nanospheres (SiO2) are synthesized and biofunctionalized for the development of an ultrasensitive chemiluminescent (CL) immunosensor for tumor markers.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Xinhui Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Ying Huang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Yihong Zhong
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Qingchun Lan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Ruixuan Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Geshan Zhang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
- P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
46
|
Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 2017; 103:151-157. [PMID: 29291595 DOI: 10.1016/j.bios.2017.12.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
A sensitive label-free electrochemical immunosensor was designed using a novel signal amplification system for quantitative detecting hepatitis B surface antigen (HBsAg). Nitrogen-doped graphene quantum dots (N-GQDs) supported surfactant-free AuPdCu ternary nanoparticles (AuPdCu/N-GQDs), which featured with good conductivity and excellent catalytic properties for the reduction of hydrogen peroxide (H2O2), was synthesized by a simple and benign hydrothermal procedure. At the same time, the electroactive polymer nanospheres (PS) was synthesized by infinite coordination polymers of ferrocenedicarboxylic acid, which could play as carrier and electronic mediator to load AuPdCu/N-GQDs. The PS not only improved the ability to load antibodies because of the good biocompatibility, but also accelerated electron transport of the electrode interface attribute to plentiful ferrocene unit. Thus, the prepared AuPdCu/N-GQDs@PS has abilities of good biocompatibility, catalytic activity and electrical conductivity to be applied as transducing materials to amplify electrochemical signal in detection of HBsAg. Under optimal conditions, the fabricated immunosensor exhibited high sensitivity and stability in the detection of HBsAg. A linear relationship between current signals and the concentrations of HBsAg was obtained in the range from 10fg/mL to 50ng/mL and the detection limit of HBsAg was 3.3fg/mL (signal-to-noise ratio of 3). Moreover, the designed immunosensor with excellent selectivity, reproducibility and stability shows excellent performance in detection of human serum samples. Furthermore, this label-free electrochemical immunosensor has promising application in clinical diagnosis of HBsAg.
Collapse
Affiliation(s)
- Qin Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
47
|
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 2017; 98:267-284. [DOI: 10.1016/j.bios.2017.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
|
48
|
Devarakonda S, Singh R, Bhardwaj J, Jang J. Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2597. [PMID: 29137115 PMCID: PMC5713655 DOI: 10.3390/s17112597] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/04/2023]
Abstract
Although many studies concerning the detection of influenza virus have been published, a paper-based, label-free electrochemical immunosensor has never been reported. Here, we present a cost-effective, handmade paper-based immunosensor for label-free electrochemical detection of influenza virus H1N1. This immunosensor was prepared by modifying paper with a spray of hydrophobic silica nanoparticles, and using stencil-printed electrodes. We used a glass vaporizer to spray the hydrophobic silica nanoparticles onto the paper, rendering it super-hydrophobic. The super-hydrophobicity, which is essential for this paper-based biosensor, was achieved via 30-40 spray coatings, corresponding to a 0.39-0.41 mg cm-2 coating of nanoparticles on the paper and yielding a water contact angle of 150° ± 1°. Stencil-printed carbon electrodes modified with single-walled carbon nanotubes and chitosan were employed to increase the sensitivity of the sensor, and the antibodies were immobilized via glutaraldehyde cross-linking. Differential pulse voltammetry was used to assess the sensitivity of the sensors at various virus concentrations, ranging from 10 to 10⁴ PFU mL-1, and the selectivity was assessed against MS2 bacteriophages and the influenza B viruses. These immunosensors showed good linear behaviors, improved detection times (30 min), and selectivity for the H1N1 virus with a limit of detection of 113 PFU mL-1, which is sufficiently sensitive for rapid on-site diagnosis. The simple and inexpensive methodologies developed in this study have great potential to be used for the development of a low-cost and disposable immunosensor for detection of pathogenic microorganisms, especially in developing countries.
Collapse
Affiliation(s)
- Sivaranjani Devarakonda
- Department of Mechanical Engineering, School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Renu Singh
- Department of Mechanical Engineering, School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jyoti Bhardwaj
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jaesung Jang
- Department of Mechanical Engineering, School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
49
|
Wei X, Wang Y, Zhao Y, Chen Z. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|