1
|
Kemmegne-Mbouguen JC, Tamne GB, Ngo-Ngwem MC, Toma HE, Araki K, Constantino VRL, Angnes L. Glassy carbon electrode modified with a film of tetraruthenated nickel(ii) porphyrin located in natural smectite clay's interlayer for the simultaneous sensing of dopamine, acetaminophen and tryptophan. RSC Adv 2024; 14:19592-19602. [PMID: 38895529 PMCID: PMC11184656 DOI: 10.1039/d4ra03253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
A supramolecular complex μ-meso-tetra(4-pyridyl) porphyrinate nickel(ii)tetrakis[bis(bipyridine)(chloro)ruthenium(ii)] ([NiTPyP{Ru(bipy)2Cl}4]4+) was intercalated into the interlayer space of natural smectite clay (shortened as Ba) collected in a Cameroonian deposit at Bagba hill. Physicochemical characterization of the resulting material using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) confirmed the intercalation of the porphyrin within the interlayer space of the clay. The intercalated clay was then used to form a stable thin film onto a glassy carbon electrode (GCE) by drop casting a suspension of the hybrid material. The GCE modified with the intercalated organoclay endowed the electrode with a larger electrochemically active surface area, good stability, high selectivity, and sensitivity toward dopamine (DA), acetaminophen (AC) and tryptophan (Trp). In addition, it was observed that the modified electrodes exhibited good and pH-dependent electrocatalytic properties toward these analytes. The simultaneous determination of DA, AC and Trp at [NiTPyP{Ru(bipy)2Cl}4]4+-Ba/GCE was thus possible without the interference of one analyte on the others, and the resulting calibration curve exhibits two segments for the three analytes. For DA, AC and Trp, the detection limits were found to be 0.8 μM, 0.3 μM and 0.3 μM, respectively. The [NiTPyP{Ru(bipy)2Cl}4]4+-Ba/GCE modified electrodes were successfully applied for the determination of AC in Paracetamol, a commercial product, and Trp in real pharmaceutical formulation samples.
Collapse
Affiliation(s)
- Justin Claude Kemmegne-Mbouguen
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P.O. Box 812 Yaounde Cameroon
| | - Guy Bertrand Tamne
- Department of Chemistry, High Teacher Training College, University of Yaounde 1 P.O. Box 49 Yaounde Cameroon
| | - Marcelline Carine Ngo-Ngwem
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P.O. Box 812 Yaounde Cameroon
| | - Henrique Eisi Toma
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| | - Koiti Araki
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| | | | - Lúcio Angnes
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| |
Collapse
|
2
|
Mouafo-Tchinda E, Kemmegne-Mbouguen JC, Nanseu-Njiki CP, Langmi HW, Kowenje C, Musyoka NM, Mokaya R. Solvothermal synthesis of organoclay/Cu-MOF composite and its application in film modified GCE for simultaneous electrochemical detection of deoxyepinephrine, acetaminophen and tyrosine. RSC Adv 2023; 13:20816-20829. [PMID: 37441040 PMCID: PMC10334263 DOI: 10.1039/d3ra03850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
An organoclay/copper-based metal-organic framework (MOF) composite was synthesized using a solvothermal method by growing a Cu-BTC (copper(ii) benzene-1,3,5-tricarboxylate) MOF from a mixture of the MOF precursor solution in which various amounts of organoclay had been dispersed. The organoclay was obtained by intercalating a cationic dye, namely thionin, into a natural Cameroonian clay sampled in Sagba deposit (North West of Cameroon). The organoclay and the as-synthesized composites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) techniques. From Scherrer's equation, the crystallite size of the composite was found to be between 55 and 58 nm, twice as large as the pristine MOF's crystallite size. The organoclay/Cu-MOF composite (Sa-TN50/Cu3(BTC)2) exhibiting a BET surface area of 192 m2 g-1, about twice that of pristine clay and about one seventh that of pristine MOF, was then utilized to form a stable thin film onto glassy carbon electrodes (GCE) by drop coating (Sa-TN50/Cu3(BTC)2/GCE). These electrodes demonstrated electrocatalytic behavior toward deoxyepinephrine (DXEP) and thus enabled selective and simultaneous sensitive detection of three analytes: DXEP, acetaminophen (AC) and tyrosine (TYR) compared with bare GCE and clay modified electrode. Under optimum conditions, Sa-TN50/Cu3(BTC)2/GCE exhibited good performance including large calibration curves ranging from 5.0 μM to 138.0 μM for DXEP, 4.0 μM to 153.0 μM for AC and 1.0 μM to 29.4 μM for TYR. The detection limits were found to be, 0.4 μM, 0.7 μM and 0.2 μM for DXEP, AC and TYR, respectively. The developed sensors have been applied successfully in the quantification of AC in a commercial tablet of AC, and DXEP, AC and TYR in tap water.
Collapse
Affiliation(s)
- Edwige Mouafo-Tchinda
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P. O. Box 812 Yaoundé Cameroon
- Laboratoire d'Electrochimie et de Génie des Materiaux, Faculté des Science B. P 812 Yaoundé Cameroon
| | - Justin Claude Kemmegne-Mbouguen
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P. O. Box 812 Yaoundé Cameroon
| | | | - Henrietta W Langmi
- Department of Chemistry, University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| | - Chrispin Kowenje
- Department of Chemistry, Maseno University P. O. Box 333-40105 Maseno Kenya
| | - Nicholas M Musyoka
- Nanotechnology Research and Application Center (SUNUM), Sabanci University Istanbul 34956 Turkey
| | - Robert Mokaya
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| |
Collapse
|
3
|
Ngwem MCN, Kemmegne‐Mbouguen JC, Langmi HW, Musyoka NM, Mokaya R. Electrochemical Sensor for Ascorbic Acid, Acetaminophen and Nitrite Based on Organoclay/Zr‐MOF Film Modified Glassy Carbon Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202202308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcelline Carine Ngo Ngwem
- Laboratory of Nanomaterials for Sensors and Energy Faculty of Science University of Yaounde I, P.O.Box. 812 Yaounde Cameroon
| | - Justin Claude Kemmegne‐Mbouguen
- Laboratory of Nanomaterials for Sensors and Energy Faculty of Science University of Yaounde I, P.O.Box. 812 Yaounde Cameroon
| | - Henrietta W. Langmi
- Department of Chemistry University of Pretoria Private Bag X20 Pretoria, Hatfield 0028 South Africa
| | - Nicholas M. Musyoka
- Nanostructures and Advanced Materials (CeNAM) Chemicals Cluster Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria 0001 South Africa
| | - Robert Mokaya
- School of Chemistry University Park University of Nottingham Nottingham NG7 2RD United Kingdom
| |
Collapse
|
4
|
Ngassa GBP, Fafard J, Tonle IK. Kaolinite‐based Hybrid Material from Interlayer Grafting of 1‐(2‐hydroxyethyl)piperazine and Application to the Sensitive Voltammetric Detection of Lead. ELECTROANAL 2022. [DOI: 10.1002/elan.202100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guy B. Piegang Ngassa
- Department of Chemistry Faculty of Science University of Douala, P.O. Box 24 157 Douala Cameroon
- Laboratory of Analytical Chemistry Faculty of Science University of Yaoundé 1, P.O. Box 812 Yaoundé Cameroon
- Department of Chemistry and Center for Catalysis Research and Innovation University of Ottawa 10 Marie Curie K1 N6 N5 Ottawa Ontario Canada
| | - Jonathan Fafard
- Department of Chemistry and Center for Catalysis Research and Innovation University of Ottawa 10 Marie Curie K1 N6 N5 Ottawa Ontario Canada
| | - Ignas K. Tonle
- Electrochemistry and Chemistry of Materials Department of Chemistry Faculty of Science University of Dschang PO Box 67 Dschang Cameroon
| |
Collapse
|
5
|
Simultaneous determination of acetaminophen and tyrosine using a glassy carbon electrode modified with a tetraruthenated cobalt(II) porphyrin intercalated into a smectite clay. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1985-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Melataguia Tchieno FM, Guenang Sonfack L, Ymelé E, Ngameni E, Kenfack Tonle I. Electroanalytical Application of Amine-grafted Attapulgite to the Sensitive Quantification of the Bioactive Compound Mangiferin. ELECTROANAL 2016. [DOI: 10.1002/elan.201600381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Leopoldine Guenang Sonfack
- Electrochemistry and Chemistry of Materials, Department of Chemistry; University of Dschang; Dschang Cameroon
- Department of Chemistry; University of Buea; Buea Cameroon
| | - Ervice Ymelé
- Electrochemistry and Chemistry of Materials, Department of Chemistry; University of Dschang; Dschang Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Department of Inorganic Chemistry; University of Yaoundé 1; Yaoundé Cameroon
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry; University of Dschang; Dschang Cameroon
- Laboratory of Analytical Chemistry, Department of Inorganic Chemistry; University of Yaoundé 1; Yaoundé Cameroon
| |
Collapse
|
7
|
Kemmegne-Mbouguen JC, Angnes L, Mouafo-Tchinda E, Ngameni E. Electrochemical Determination of Uric Acid, Dopamine and Tryptophan at Zinc Hexacyanoferrate Clay Modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Tonle IK, Ngameni E, Tchieno FMM, Walcarius A. Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-014-2728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Mbouguen JCK, Kenfack IT, Walcarius A, Ngameni E. Electrochemical response of ascorbic and uric acids at organoclay film modified glassy carbon electrodes and sensing applications. Talanta 2011; 85:754-62. [DOI: 10.1016/j.talanta.2011.04.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/03/2011] [Accepted: 04/23/2011] [Indexed: 11/28/2022]
|
10
|
Zhou CH, Shen ZF, Liu LH, Liu SM. Preparation and functionality of clay-containing films. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11479d] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Mousty C. Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 2009; 396:315-25. [PMID: 19936720 DOI: 10.1007/s00216-009-3274-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/27/2022]
Abstract
Two-dimensional layered inorganic solids, such as cationic clays and layered double hydroxides (LDHs), also defined as anionic clays, have open structures which are favourable for interactions with enzymes and which intercalate redox mediators. This review aims to show the interest in clays and LDHs as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. It is meant to provide an overview of the various types of electrochemical biosensors that have been developed with these 2D layered materials, along with significant advances over the last several years. The different biosensor configurations and their specific transduction procedures are discussed.
Collapse
Affiliation(s)
- Christine Mousty
- Laboratoire des Matériaux Inorganiques (LMI, UMR UBP-CNRS 6002), Université Blaise Pascal (Clermont-Ferrand), 24, Avenue des Landais, 63177, Aubière cedex, France.
| |
Collapse
|
12
|
Ben-Yoav H, Biran A, Pedahzur R, Belkin S, Buchinger S, Reifferscheid G, Shacham-Diamand Y. A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.01.061] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sánchez-Paniagua López M, Tamimi F, López-Cabarcos E, López-Ruiz B. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement. Biosens Bioelectron 2009; 24:2574-9. [DOI: 10.1016/j.bios.2009.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/16/2022]
|
14
|
Topcu Sulak M, Erhan E, Keskinler B. Amperometric Phenol Biosensor Based on Horseradish Peroxidase Entrapped PVF and PPy Composite Film Coated GC Electrode. Appl Biochem Biotechnol 2009; 160:856-67. [DOI: 10.1007/s12010-009-8534-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|