1
|
Chen C, La M, Yi X, Huang M, Xia N, Zhou Y. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label. BIOSENSORS 2023; 13:855. [PMID: 37754089 PMCID: PMC10526794 DOI: 10.3390/bios13090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical immunosensors have shown great potential in clinical diagnosis, food safety, environmental protection, and other fields. The feasible and innovative combination of enzyme catalysis and other signal-amplified elements has yielded exciting progress in the development of electrochemical immunosensors. Alkaline phosphatase (ALP) is one of the most popularly used enzyme reporters in bioassays. It has been widely utilized to design electrochemical immunosensors owing to its significant advantages (e.g., high catalytic activity, high turnover number, and excellent substrate specificity). In this work, we summarized the achievements of electrochemical immunosensors with ALP as the signal reporter. We mainly focused on detection principles and signal amplification strategies and briefly discussed the challenges regarding how to further improve the performance of ALP-based immunoassays.
Collapse
Affiliation(s)
- Changdong Chen
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Ming La
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Mengjie Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yanbiao Zhou
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| |
Collapse
|
2
|
Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces. Sci Rep 2022; 12:22444. [PMID: 36575248 PMCID: PMC9794789 DOI: 10.1038/s41598-022-26768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 100.63 EID50 mL-1, 100.48 EID50 mL-1, 100.37 EID50 mL-1 and 100.46 EID50 mL-1 ARV (S/N = 3) and quantification limits of 101.15 EID50 mL-1, and 101.00 EID50 mL-1, 100.89 EID50 mL-1 and 100.98 EID50 mL-1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0-105.82 EID50 mL-1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0-104.82 EID50 mL-1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0-103.82 EID50 mL-1 ARV) or EDC/NHS (0-103.82 EID50 mL-1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.
Collapse
|
3
|
Ultrasensitive sandwich-typed electrochemical immunoassay for detection of squamous cell carcinoma antigen based on highly branched PtCo nanocrystals and dendritic mesoporous SiO 2@AuPt nanoparticles. Mikrochim Acta 2022; 189:416. [PMID: 36219254 DOI: 10.1007/s00604-022-05520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
Squamous cell carcinoma antigen (SCCA) is one of the common squamous cell carcinomas (SCC) in women, which usually works as a tumor biomarker for cervical cancer in diagnostic applications. Herein, bimetallic PtCo highly branched nanocrystals (PtCo BNCs) acted as electrode substrates to construct sandwich-typed electrochemical immunosensor for ultrasensitive detection of SCCA, by using dendritic mesoporous SiO2@AuPt nanoparticles (DM-SiO2@AuPt NPs) to adsorb electroactive thionine (Thi) as a signal label. The PtCo BNCs enlarged the loading of the primary antibody (Ab1), showing effective improvement in conductivity and sensitivity. The DM-SiO2 had abundant pores to incorporate more Thi, on which the decorated AuPt NPs created a great number of active sites to immobilize the secondary antibodies (Ab2), thereby obviously amplifying the detection signals. The prepared sensor exhibited a broader linear range (0.001-120 ng mL-1) and a lower detection limit (0.33 pg mL-1, S/N = 3), combined with high reproducibility, a low relative standard deviation (below 2.5%) and acceptable recovery (from 98.5 to 110.0%) even in diluted human serum samples. This research provides a substantial platform for clinical diagnosis of SCCA in practice.
Collapse
|
4
|
Autocatalytic photoredox Chan-Lam coupling of free diaryl sulfoximines with arylboronic acids. Nat Commun 2021; 12:932. [PMID: 33568641 PMCID: PMC7876119 DOI: 10.1038/s41467-021-21156-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
N-Arylation of NH-sulfoximines represents an appealing approach to access N-aryl sulfoximines, but has not been successfully applied to NH-diaryl sulfoximines. Herein, a copper-catalyzed photoredox dehydrogenative Chan-Lam coupling of free diaryl sulfoximines and arylboronic acids is described. This neutral and ligand-free coupling is initiated by ambient light-induced copper-catalyzed single-electron reduction of NH-sulfoximines. This electron transfer route circumvents the sacrificial oxidant employed in traditional Chan-Lam coupling reactions, increasing the environmental friendliness of this process. Instead, dihydrogen gas forms as a byproduct of this reaction. Mechanistic investigations also reveal a unique autocatalysis process. The C–N coupling products, N-arylated sulfoximines, serve as ligands along with NH-sulfoximine to bind to the copper species, generating the photocatalyst. DFT calculations reveal that both the NH-sulfoximine substrate and the N-aryl product can ligate the copper accounting for the observed autocatalysis. Two energetically viable stepwise pathways were located wherein the copper facilitates hydrogen atom abstraction from the NH-sulfoximine and the ethanol solvent to produce dihydrogen. The protocol described herein represents an appealing alternative strategy to the classic oxidative Chan-Lam reaction, allowing greater substrate generality as well as the elimination of byproduct formation from oxidants. N-Arylation of NH-diaryl sulfoximines faces synthetic challenges among reported methods. Here, the authors present a mild copper-catalyzed photoredox dehydrogenative Chan-Lam coupling of free diaryl sulfoximines and arylboronic acids via an auto-catalytic process.
Collapse
|
5
|
Wu L, Wang Y, Zhou S, Zhu Y, Chen X. Enzyme-induced Cu 2+/Cu + conversion as the electrochemical signal for sensitive detection of ethyl carbamate. Anal Chim Acta 2021; 1151:338256. [PMID: 33608078 DOI: 10.1016/j.aca.2021.338256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Traditional enzyme-linked immunosorbent assay (t-ELISA) method suffers from its relatively low sensitivity or accuracy in the detection of trace level of analyte in complicated samples. In this work, to extend the application of ELISA in practical samples, a newly electrochemical immunoassay (ECIA) was developed based on an enzyme-induced Cu2+/Cu+ conversion for the determination of ethyl carbamate (EC). Wherein, three rounds of signal transformation-the catalysis of ALP enzyme, the conversion of Cu2+/Cu+ and signal output of square wave voltammetry (SWV), can be realized to obtain higher sensitivity as compared to t-ELISA. The ECIA method combines the advantages of electrochemistry and ELISA, behaving superior detection performance, such as good selectivity, high sensitivity, and low background signal. For the wine samples, the method showed a linear detection range from 2.5 nM to 2.5 × 104 nM with a limit of detection of 2.28 nM (S/N = 3), which reveals that the ECIA sensor is a promising platform for the detection of trace level of EC in practical samples.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China; College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, PR China.
| | - Yasheng Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Shuhong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yongheng Zhu
- College of Food Science and Technology, And Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| |
Collapse
|
6
|
Tamashevski A, Harmaza Y, Viter R, Jevdokimovs D, Poplausks R, Slobozhanina E, Mikoliunaite L, Erts D, Ramanaviciene A, Ramanavicius A. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells. Talanta 2019; 200:378-386. [PMID: 31036199 DOI: 10.1016/j.talanta.2019.03.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/14/2023]
Abstract
Zinc oxide (ZnO) based nanostructures owing unique physical properties - high photoluminescence, biocompatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85-95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5-9% of these cells. Two types of antibodies labeled by fluorescein isothiocyanate (FITC) were used for the labeling of human leukemic cells: FITC-conjugated mouse antibodies against Human CD19 protein (anti-CD19-FITC*) and FITC-conjugated mouse antibodies against Human IgG1 protein (anti-IgG1-FITC*). In order to demonstrate the applicability of zinc oxide nanorods (ZnO-NRs) based platforms three types of ZnO-NRs-based structures were investigated: (i) ZnO-NRs modified by anti-CD19-FITC*; (ii) ZnO-NRs modified by IM9 cells, which were pre-incubated with anti-CD19-FITC*; (iii) ZnO-NRs modified by PBMC cells, which were pre-incubated with anti-CD19-FITC*. It was demonstrated that IM9 cells after specific interaction with anti-CD19-FITC* bind to ZnO-NRs (ZnO-NRs/IM9 +anti-CD19-FITC*) and photoluminescence based signal significantly increase in comparison with that observed in control samples, which contained PBMC cells incubated with anti-CD19-FITC* (ZnO-NRs/PBMC+anti-CD19-FITC*). The photoluminescence results are in good correlation with the data obtained by flow cytometry. This study illustrate that ZnO-NRs exhibit a photoluminescence signal suitable for the determination of anti-CD19-FITC* labeled IM9 cell line at concentrations - from 10 till 500 cells adsorbed per 1 mm2 of ZnO-NRs platform.
Collapse
Affiliation(s)
- Alexander Tamashevski
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus.
| | - Yuliya Harmaza
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia; Medical Institute, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine.
| | - Daniels Jevdokimovs
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Raimond Poplausks
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Ekaterina Slobozhanina
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Donats Erts
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Almira Ramanaviciene
- NanoTechnas - Centre of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
7
|
Huang X, Deng X, Zhu H, Qi W, Wu D. Ag@Fe2O3-graphene oxide nanocomposite as a novel redox probe for electrochemical immunosensor for alpha-fetoprotein detection. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4139-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
|
9
|
Integrated multi-ISE arrays with improved sensitivity, accuracy and precision. Sci Rep 2017; 7:44771. [PMID: 28303939 PMCID: PMC5356001 DOI: 10.1038/srep44771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Abstract
Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl− electrodes, 10 F− electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.
Collapse
|
10
|
Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:185-91. [PMID: 27040210 DOI: 10.1016/j.msec.2016.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Mingyuan Guan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guoyin Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hengming Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhengcheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
11
|
Sharma A, Kameswara Rao V, Vrat Kamboj D, Jain R. Electrochemical Immunosensor for Staphylococcal Enterotoxin B (SEB) Based on Platinum Nanoparticles-Modified Electrode Using Hydrogen Evolution Inhibition Approach. ELECTROANAL 2014. [DOI: 10.1002/elan.201400100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 2013; 47:1-11. [DOI: 10.1016/j.bios.2013.02.045] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
|
13
|
LIU HY, ZHU JJ. Preparation of Electrochemical Immunosensor Using Gold Nanoclusters as Signal Amplification Labels. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60646-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Zhang J, Ting BP, Ying JY. Theoretical Assessment of Binding and Mass-Transport Effects in Electrochemical Affinity Biosensors That Utilize Nanoparticle Labels for Signal Amplification. Chemistry 2012; 18:15167-77. [DOI: 10.1002/chem.201201384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/23/2012] [Indexed: 11/06/2022]
|
15
|
Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron 2012; 34:12-24. [DOI: 10.1016/j.bios.2011.10.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
16
|
Feng LN, Peng J, Zhu YD, Jiang LP, Zhu JJ. Synthesis of Cd2+-functionalized titanium phosphate nanoparticles and application as labels for electrochemical immunoassays. Chem Commun (Camb) 2012; 48:4474-6. [DOI: 10.1039/c2cc31552a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Amperometric xanthine biosensors based on electrodeposition of platinum on polyvinylferrocenium coated Pt electrode. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Detecting 5-morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical impedimetric immunosensor. Food Control 2011. [DOI: 10.1016/j.foodcont.2011.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Tao M, Li X, Wu Z, Wang M, Hua M, Yang Y. The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 2011; 412:550-5. [DOI: 10.1016/j.cca.2010.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
21
|
Liang M, Yuan R, Chai Y, Min L, Song Z. Double layer enzyme modified carbon nanotubes as label for sandwich-type immunoassay of tumor markers. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0502-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Affiliation(s)
- Benjamin J Privett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
23
|
Tian D, Duan C, Wang W, Cui H. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosens Bioelectron 2010; 25:2290-5. [DOI: 10.1016/j.bios.2010.03.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/30/2022]
|
24
|
Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosens Bioelectron 2010; 25:1699-704. [DOI: 10.1016/j.bios.2009.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/26/2009] [Accepted: 12/10/2009] [Indexed: 11/23/2022]
|
25
|
Yin Z, Cui R, Liu Y, Jiang L, Zhu JJ. Ultrasensitive electrochemical immunoassay based on cadmium ion-functionalized PSA@PAA nanospheres. Biosens Bioelectron 2010; 25:1319-24. [DOI: 10.1016/j.bios.2009.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 11/27/2022]
|
26
|
de la Escosura-Muñiz A, Merkoçi A. Electrochemical detection of proteins using nanoparticles: applications to diagnostics. ACTA ACUST UNITED AC 2009; 4:21-37. [DOI: 10.1517/17530050903386661] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Huang J, Yang G, Meng W, Wu L, Zhu A, Jiao X. An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients' stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosens Bioelectron 2009; 25:1204-11. [PMID: 19932018 DOI: 10.1016/j.bios.2009.10.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
A novel electrochemical impedimetric immunosensor based on O-carboxymethylchitosan surface modified Fe(3)O(4) nanoparticles (denoted as OCMCS-Fe(3)O(4) nanoparticles) was developed for rapid detection of Campylobacter jejuni, which is becoming the most common cause of gastroenteritis in developed countries and raising major public health concerns worldwide. In the present study, anti-FlaA monoclonal antibodies 2D12 (denoted as 2D12McAbs) were immobilized on OCMCS-Fe(3)O(4) nanoparticles. The detection was performed by measuring relative change in impedance before and after 2D12McAbs-Campylobacter jejuni reaction with the technique of electrochemical impedance spectroscopy. Under the optimized conditions, the relative change in impedance was proportional to the logarithmic value of Campylobacter jejuni concentrations in the range of 1.0x10(3) to 1.0x10(7) CFU/mL (r=0.991). The advantages of the OCMCS-Fe(3)O(4) nanoparticle-based immunosensor are simplicity of use, fast response, wide linear range, acceptable reproducibility and long stability. Moreover, the immunosensor could be regenerated by being treated with glycine-HCl buffer solution (pH 2.8). We demonstrate the convenient application of the novel immunosensor for the detection of Campylobacter jejuni in diarrhea patients' stool samples.
Collapse
Affiliation(s)
- Jinlin Huang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Bojorge Ramírez N, Salgado AM, Valdman B. The evolution and developments of immunosensors for health and environmental monitoring: problems and perspectives. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2009. [DOI: 10.1590/s0104-66322009000200001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - B. Valdman
- Universidade Federal de Rio de Janeiro, Brasil
| |
Collapse
|