1
|
Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021; 13:cancers13164063. [PMID: 34439219 PMCID: PMC8393380 DOI: 10.3390/cancers13164063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Thyroid cancer (TC) is rare relative to cancers of many other organs (breast, prostate, lung, and colon). The majority of TCs are differentiated tumors that are relatively easy to treat and have a good prognosis. However, for anaplastic TC, a rapidly growing and aggressive tumor, treatment is suboptimal because the effective drugs cause severe adverse effects. Drug delivery by nanocarriers can improve treatment by reducing side effects. This can either be mediated through better retention in the tumor tissue due to size (passive targeting) or through the attachment of specific molecules that zero in on the cancer cells (active targeting). Nanoparticles are already used for diagnosis and imaging of TC. For unresectable anaplastic TC, nanoparticle-based treatments, less suitable for deeply located cancers, could be useful, based on low-intensity focused ultrasound and near-infrared irradiation. All potential applications of nanoparticles in TC are still in the preclinical phase. Abstract Cancers of the endocrine system are rare. The majority are not highly malignant tumors. Thyroid cancer (TC) is the most common endocrine cancer, with differentiated papillary and follicular tumors occurring more frequently than the more aggressive poorly differentiated and anaplastic TC. Nanoparticles (NP) (mainly mesoporous silica, gold, carbon, or liposomes) have been developed to improve the detection of biomarkers and routine laboratory parameters (e.g., thyroid stimulating hormone, thyroglobulin, and calcitonin), tumor imaging, and drug delivery in TC. The majority of drug-loaded nanocarriers to be used for treatment was developed for anaplastic tumors because current treatments are suboptimal. Further, doxorubicin, sorafenib, and gemcitabine treatment can be improved by nanotherapy due to decreased adverse effects. Selective delivery of retinoic acid to TC cells might improve the re-differentiation of de-differentiated TC. The use of carbon NPs for the prevention of parathyroid damage during TC surgery does not show a clear benefit. Certain technologies less suitable for the treatment of deeply located cancers may have some potential for unresectable anaplastic carcinomas, namely those based on low-intensity focused ultrasound and near-infrared irradiation. Although some of these approaches yielded promising results in animal studies, results from clinical trials are currently lacking.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, 8036 Graz, Austria;
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Richard Wahl
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-2983136
| |
Collapse
|
2
|
Koyappayil A, Lee MH. Ultrasensitive Materials for Electrochemical Biosensor Labels. SENSORS 2020; 21:s21010089. [PMID: 33375629 PMCID: PMC7796367 DOI: 10.3390/s21010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Since the fabrication of the first electrochemical biosensor by Leland C. Clark in 1956, various labeled and label-free sensors have been reported for the detection of biomolecules. Labels such as nanoparticles, enzymes, Quantum dots, redox-active molecules, low dimensional carbon materials, etc. have been employed for the detection of biomolecules. Because of the absence of cross-reaction and highly selective detection, labeled biosensors are advantageous and preferred over label-free biosensors. The biosensors with labels depend mainly on optical, magnetic, electrical, and mechanical principles. Labels combined with electrochemical techniques resulted in the selective and sensitive determination of biomolecules. The present review focuses on categorizing the advancement and advantages of different labeling methods applied simultaneously with the electrochemical techniques in the past few decades.
Collapse
Affiliation(s)
| | - Min-Ho Lee
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
3
|
Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. NANOMATERIALS 2019; 9:nano9101361. [PMID: 31547500 PMCID: PMC6836269 DOI: 10.3390/nano9101361] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
This work reviews the field of DNA biosensors based on electrochemical determination of nanoparticle labels. These labeling platforms contain the attachment of metal nanoparticles (NPs) or quantum dots (QDs) on the target DNA or on a biorecognition reporting probe. Following the development of DNA bioassay, the nanotags are oxidized to ions, which are determined by voltammetric methods, such as pulse voltammetry (PV) and stripping voltammetry (SV). The synergistic effects of NPs amplification (as each nanoprobe releases a large number of detectable ions) and the inherent sensitivity of voltammetric techniques (e.g., thanks to the preconcentration step of SV) leads to the construction of ultrasensitive, low cost, miniaturized, and integrated biodevices. This review focuses on accomplishments in DNA sensing using voltammetric determination of nanotags (such as gold and silver NPs, and Cd- and Pb-based QDs), includes published works on integrated three electrode biodevices and paper-based biosystems, and discusses strategies for multiplex DNA assays and signal enhancement procedures. Besides, this review mentions the electroactive NP synthesis procedures and their conjugation protocols with biomolecules that enable their function as labels in DNA electrochemical biosensors.
Collapse
|
4
|
Azzouzi S, Mak WC, Kor K, Turner AP, Ali MB, Beni V. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Biosens Bioelectron 2017; 92:154-161. [DOI: 10.1016/j.bios.2017.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
|
5
|
Tram DTN, Wang H, Sugiarto S, Li T, Ang WH, Lee C, Pastorin G. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol Adv 2016; 34:1275-1288. [PMID: 27686397 PMCID: PMC7127209 DOI: 10.1016/j.biotechadv.2016.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023]
Abstract
Nanotechnology has gained much attention over the last decades, as it offers unique opportunities for the advancement of the next generation of sensing tools. Point-of-care (POC) devices for the selective detection of biomolecules using engineered nanoparticles have become a main research thrust in the diagnostic field. This review presents an overview on how the POC-associated nanotechnology, currently applied for the identification of nucleic acids, proteins and antibodies, might be further exploited for the detection of infectious pathogens: although still premature, future integrations of nanoparticles with biological markers that target specific microorganisms will enable timely therapeutic intervention against life-threatening infectious diseases.
Collapse
Affiliation(s)
- Dai Thien Nhan Tram
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore.
| | - Hao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Sigit Sugiarto
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Tao Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Giorgia Pastorin
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore; NanoCore, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore 117456, Singapore.
| |
Collapse
|
6
|
Jin M, Liu X, van den Berg A, Zhou G, Shui L. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles. NANOTECHNOLOGY 2016; 27:335102. [PMID: 27378514 DOI: 10.1088/0957-4484/27/33/335102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10(-18) mol l(-1) for t-DNA has been achieved.
Collapse
Affiliation(s)
- Mingliang Jin
- Institute of Electronic paper Displays, Academy of South China Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Kang BJ, Jeun M, Jang GH, Song SH, Jeong IG, Kim CS, Searson PC, Lee KH. Diagnosis of prostate cancer via nanotechnological approach. Int J Nanomedicine 2015; 10:6555-69. [PMID: 26527873 PMCID: PMC4621223 DOI: 10.2147/ijn.s91908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is one of the leading causes of cancer-related deaths among the Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients have been overly or underly treated resulting in a controversy regarding the reliability of current conventional diagnostic approaches. This review discusses the state-of-the-art research in the development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled with suggested diagnostic strategies for their clinical implication.
Collapse
Affiliation(s)
- Benedict J Kang
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Minhong Jeun
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Gun Hyuk Jang
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Sang Hoon Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Kwan Hyi Lee
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
8
|
Kokkinos C, Economou A, Speliotis T, Petrou P, Kakabakos S. Flexible microfabricated film sensors for the in situ quantum dot-based voltammetric detection of DNA hybridization in microwells. Anal Chem 2014; 87:853-7. [PMID: 25514352 DOI: 10.1021/ac503791j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new flexible miniaturized integrated device was microfabricated for the in situ ultrasensitive voltammetric determination of DNA mutation in a microwell format, using quantum dots (QDs) labels. The integrated device consisted of thin Bi, Ag, and Pt films (serving as the working, reference, and counter electrode, respectively) deposited by sputtering on a flexible polyimide substrate. A DNA assay was employed in microwell format, where an immobilized complementary oligonucleotide probe hybridized with the biotinylated target oligonucleotide followed by reaction with streptavidin-conjugated PbS QDs. After the acidic dissolution of the QDs, the flexible sensor was rolled and inserted into the microwell and the Pb(II) released was determined in situ by anodic stripping voltammetry. Since the analysis took place directly in the microwell, the volume of the working solution was only 100 μL and the target DNA could be detected at a concentration down to 1.1 fmol L(-1). The proposed flexible microdevice addresses the restrictions of conventional rigid electrodes while it provides a low cost integrated transducer for the ultrasensitive detection of important biomolecules.
Collapse
Affiliation(s)
- Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina , Ioannina, 45110, Greece
| | | | | | | | | |
Collapse
|
9
|
Kokkinos C, Economou A, Petrou PS, Kakabakos SE. Microfabricated Tin–Film Electrodes for Protein and DNA Sensing Based on Stripping Voltammetric Detection of Cd(II) Released from Quantum Dots Labels. Anal Chem 2013; 85:10686-91. [DOI: 10.1021/ac402783t] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christos Kokkinos
- Laboratory of
Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Economou
- Laboratory of
Analytical Chemistry, Department of Chemistry, University of Athens, 157 71 Athens, Greece
| | - Panagiota S. Petrou
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, Athens 153 10, Greece
| | - Sotirios E. Kakabakos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, Athens 153 10, Greece
| |
Collapse
|
10
|
Wu W, Chen J, Fang Z, Ge C, Xiang Z, Ouyang C, Lie P, Xiao Z, Yu L, Wang L, Zeng L. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism. Anal Chim Acta 2013; 804:235-9. [PMID: 24267087 DOI: 10.1016/j.aca.2013.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/04/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin M, Pei H, Yang F, Fan C, Zuo X. Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3490-6. [PMID: 23977699 PMCID: PMC7159368 DOI: 10.1002/adma.201301333] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The situation of infectious diseases and biothreats all over the world remains serious. The effective identification of such diseases plays a very important role. In recent years, gold nanoparticles have been widely used in biosensor design to improve the performance for the detection of infectious diseases and biothreats. Here, recent advances of gold-nanoparticle-based biosensors in this field are summarized.
Collapse
Affiliation(s)
- Meihua Lin
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hao Pei
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Fan Yang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
12
|
Ai X, Ma Q, Su X. Multiplex DNA sensor for BRAF and BRCA detection. Anal Biochem 2013; 438:22-8. [DOI: 10.1016/j.ab.2013.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
|
13
|
Wu CC, Ko FH, Yang YS, Hsia DL, Lee BS, Su TS. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron 2009; 25:820-5. [PMID: 19765969 DOI: 10.1016/j.bios.2009.08.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/03/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
Abstract
We have developed a silicon nanowire field-effect transistor (NWFET) that allows deoxyribonucleic acid (DNA) biosensing. The nanowire (NW) was fabricated on a silicon-on-insulator wafer to provide effective ohmic contact. The NWFET sensor displayed n-channel depletion characteristics. To demonstrate the sensing capacity of the NWFET, we employed the BRAF(V599E) mutation gene, which correlates to the occurrence of cancers, as the target DNA sequence. The threshold voltage of the NWFET increased when the mutation gene was hybridized with the capture DNA strands on the nanowire, and decreased to the original level after de-hybridization of the gene. The shift in the drain current-gate voltage (I(D)-V(G)) curves revealed that the electrical signal had a logarithmic relationship with respect to the concentration of the mutation gene of up to six orders of magnitude, with the detection limit in the sub-femtomolar level. The detection results of mismatched DNA sequences, including one- and five-base-mismatched DNA strands, could be distinguished from complementary DNA gene by this sensor. The excellent electrical results obtained using this label-free NWFET sensor suggest that such devices might be potentially useful tools for biological research and oncogene screening.
Collapse
Affiliation(s)
- Chi-Chang Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | | | | | | | | |
Collapse
|