1
|
Zhang Y, Yi K, Gong F, Tang Z, Feng Y, Tian Y, Xiang M, Zhou F, Liu M, Ji X, He Z. A simple, rapid and sensitive sandwich immunoassay based on poly(N-isopropylacrylamide) for the detection of alpha-fetoprotein. Talanta 2024; 274:125932. [PMID: 38537351 DOI: 10.1016/j.talanta.2024.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
Alpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM. In this method, a conjugate of PNIPAM and capture antibody (Ab1) was successfully synthesized as a capture probe and the synthetic method of PNIPAM-Ab1 was simple, while the detection antibody (Ab2) was labeled with fluorescein isothiocyanate (FITC) to form a fluorescent detection probe. By employing a sandwich immunoassay, the method achieved quantitative determination of AFP, exhibiting a wide linear range from 5 ng/mL to 200 ng/mL and a low detection limit of 2.44 ng/mL. Furthermore, it was successfully applied to the analysis of spiked human serum samples and the screening of patients with hepatic diseases in clinical samples, indicating its potential application prospect in the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yilong Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming Xiang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
2
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Gangopadhyay B, Roy A, Paul D, Panda S, Das B, Karmakar S, Dutta K, Chattopadhyay S, Chattopadhyay D. 3-Polythiophene Acetic Acid Nanosphere Anchored Few-Layer Graphene Nanocomposites for Label-Free Electrochemical Immunosensing of Liver Cancer Biomarker. ACS APPLIED BIO MATERIALS 2024; 7:485-497. [PMID: 38165836 DOI: 10.1021/acsabm.3c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
This study devised a label-free electrochemical immunosensor for the quantitative detection of alpha-fetoprotein (AFP). 3-Polythiophene acetic acid (3-PTAA) nanoparticles were anchored onto a few-layer graphene (FLG) nanosheet, and the resulting nanocomposite was utilized as the immunosensor platform. The AFP antibody (anti-AFP) was immobilized on 3-PTAA@FLG via a covalent interaction between the amine group of anti-AFP and the carboxylic group of 3-PTAA via ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling. FLG is largely responsible for providing electrochemical signals, whereas 3-PTAA nanoparticles are well-known for their ability to be compatible with biological molecules in neutral aqueous solutions. Moreover, the carboxyl group present in 3-PTAA effectively binds anti-AFP through EDC/NHS conjugation. Owing to good dispersibility and higher surface area of 3-PTAA, it is very convenient for casting the polymer directly on the electrode substrate followed by immobilization of anti-AFP. Thus, it is feasible to regulate the activity of AFP proteins and control the spatial distribution of the immobilized anti-AFP proteins. The electrochemical sensing performance was assessed via cyclic voltammetry and electrochemical impedance spectroscopy. For an increase in the bioconjugate concentration, the results demonstrated a surge in charge-transfer resistance and a consequent decline in the current response. This approach effectively detected AFP at an extended dynamic range of 0.0001-250 ng/mL with a detection limit of 0.047 pg/mL. Furthermore, the sensing capacity of the immunosensor for AFP detection has been demonstrated to be steady in real human serum cultures. Our approach exhibits good electrochemical performance in terms of reproducibility, selectivity, and stability, which would surely impart budding applications in the clinical diagnosis of several other tumor markers.
Collapse
Affiliation(s)
- Bhuman Gangopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Aindrila Roy
- Department of Electronic Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Debanjan Paul
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subrata Panda
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Srikanta Karmakar
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sanatan Chattopadhyay
- Center for Research in Nano Science and Nano Technology, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
- Department of Electronic Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
- Center for Research in Nano Science and Nano Technology, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
4
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
5
|
Er E, Sánchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzán LM, Prato M, Criado A. Metal Nanoparticles/MoS 2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8823-8831. [PMID: 33583183 PMCID: PMC7908013 DOI: 10.1021/acsami.0c22203] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
The detection of cancer biomarkers at an early stage of tumor development is vital for effective diagnosis and treatment of cancer. Current diagnostic tools can often detect cancer only when the biomarker levels are already too high, so that the tumors have spread and treatments are less effective. It is urgent therefore to develop highly sensitive assays for the detection of such biomarkers at the lowest possible concentration. In this context, we developed a sandwich immunoassay based on surface-enhanced Raman scattering (SERS) for the ultrasensitive detection of α-fetoprotein (AFP), which is typically present in human serum as a biomarker indicative of early stages of hepatocellular carcinoma. In the immunoassay design, molybdenum disulfide (MoS2) modified with a monoclonal antibody was used as a capture probe for AFP. A secondary antibody linked to an SERS-encoded nanoparticle was employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex "capture probe/target/SERS tag" was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of "hot spots" on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL-1 to 10 ng mL-1) with a limit of detection as low as 0.03 pg mL-1 toward AFP with good reproducibility (RSD < 6%) and stability. These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the detection of early-stage cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Engin Er
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Ana Sánchez-Iglesias
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Alessandro Silvestri
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Blanca Arnaiz
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|
6
|
Man J, Dong J, Wang Y, He L, Yu S, Yu F, Wang J, Tian Y, Liu L, Han R, Guo H, Wu Y, Qu L. Simultaneous Detection of VEGF and CEA by Time-Resolved Chemiluminescence Enzyme-Linked Aptamer Assay. Int J Nanomedicine 2020; 15:9975-9985. [PMID: 33363367 PMCID: PMC7754089 DOI: 10.2147/ijn.s286317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As two important tumor markers, vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) have a great value for clinical application in the early diagnosis of cancer. Due to the complex composition of biological samples, the results from combined detection of CEA and VEGF are often taken as a comprehensive indicator in order to make an accurate judgment on a disease. However, most of the current methods can only be used to detect the content of one biomarker. Therefore, it is necessary to explore a simple, rapid, low-cost, and highly sensitive method for the simultaneous detection of CEA and VEGF. METHODS Based on specific aptamers and magnetic separation, a time-resolved chemiluminescence enzyme-linked aptamer assay was developed for the simultaneous detections of CEA and VEGF in serum samples. RESULTS Under the optimal conditions, the linear range of the calibration curve for VEGF was from 0.5 to 80 ng mL-1, and the limit of detection was 0.1 ng mL-1. The linear range of the calibration curve for CEA was 0.5 to 160 ng mL-1, and the limit of detection was 0.1 ng mL-1. The established method was applied to detect VEGF and CEA in serum samples. The results were consistent with those of commercial kits. CONCLUSION The method has high sensitivity and can quickly obtain accurate results, which could greatly improve the measurement efficiency, reduce the cost, and also reduce the volume of sample consumed. It can be seen that the method established in this study has important application value and broad application prospect in clinical diagnosis.
Collapse
Affiliation(s)
- Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Jiajia Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Hongchao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan450001, People’s Republic of China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou, Henan450001, People’s Republic of China
| |
Collapse
|
7
|
Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int J Biol Macromol 2020; 166:884-892. [PMID: 33157139 DOI: 10.1016/j.ijbiomac.2020.10.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
Alpha-fetoprotein (AFP) is one of the most important biomarkers associated with primary liver cancer, and the main approaches for diagnosis are based on immunoassay. Affibody is a 58 amino acids peptide derived from the Z domain of staphylococcal protein A and generally applied in imaging diagnosis, clinical therapeutics and biotechnology research. The aim of this study was therefore to develop a novel affibody-based ELISA for detection of AFP. After three rounds of biopanning, six AFP-binding affibody peptides were selected using phage display technology, among them affibody ZAFPD2 showed high and specific binding affinity to AFP. An affibody dimer of ZAFPD2 was created, named (ZAFP D2)2, expressed in E.coli and the purified (ZAFP D2)2 recombinant protein showed higher binding affinity to AFP, as well as high thermal stability. A novel affibody-based two-site ELISA method using ZAFPD2 or (ZAFP D2)2 and polyclonal antibody to detect AFP was developed, the detection limit of the immunoassay using (ZAFP D2)2 was 2 ng mL-1 that was 4 times lower than ZAFPD2, which meets the requirements for practical application. Therefore, this concept of affibody-based ELISA may provide a new method for the detection of various cancer biomarkers.
Collapse
|
8
|
Xiao Q, Xu C. Research progress on chemiluminescence immunoassay combined with novel technologies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115780] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Gao H, Wen L, Hua W, Tian J, Lin Y. Highly sensitive immunosensing platform for one-step detection of genetically modified crops. Sci Rep 2019; 9:16117. [PMID: 31695115 PMCID: PMC6834675 DOI: 10.1038/s41598-019-52651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The wide cultivation of genetically modified (GM) insect-resistant crops has raised concerns on the risks to the eco-environment resulting from a release of Cry proteins. Therefore, it is vital to develop a method for the quantification of GM crops. Herein, A highly sensitive immunosensing platform has been developed for both colorimetric and chemiluminescent (CL) detection of Cry 1Ab using dual-functionalized gold nanoparticles (AuNPs) as signal amplification nanoprobes for the first time. In this work, anti-Cry 1Ab monoclonal antibody and horseradish peroxidase (HRP) are simultaneously functionalized on the surface of AuNPs with an exceptionally simple synthesis method. Combined with immunomagnetic separation, this immunosensing platform based on colorimetric method could detect Cry 1Ab in one step in a linear range from 1.0 to 40 ng mL−1 within 1.5 h, with a limit of detection of 0.50 ng mL−1. The sensitivity of fabricated nanoprobes was 15.3 times higher than that using commercial HRP-conjugated antibody. Meanwhile, the fabricated nanoprobes coupled with CL detection was successfully applied for Cry 1Ab detection with a minimum detection concentration of 0.050 ng mL−1 within a linear range of 0.10–20 ng mL−1. The proposed approach was validated with genuine GM crops, and the results showed a good correlation coefficient of 0.9906 compared to those of a commercial ELISA kit. Compared with ELISA, the developed immunosensing platform significantly simplified the assay procedure and shortened the analytical time, thus providing a new platform for the detection of genetically modified crops with high sensitivity, rapidity and simplicity.
Collapse
Affiliation(s)
- Hongfei Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Luke Wen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Tian
- MOE Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongjun Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Jiang T, Hou Y, Zhang T, Feng X, Li C. Construction of a CaHPO 4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3- O-mono- β-d-glucuronide preparation. Front Chem Sci Eng 2019; 13:554-562. [PMID: 32215221 PMCID: PMC7089396 DOI: 10.1007/s11705-019-1834-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/24/2019] [Indexed: 01/10/2023]
Abstract
Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using site-directed mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHPO4-PGUS1 hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid self-assembly. Under optimal conditions, 1.2 mg of a CaHPO4-PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHPO4-PGUS1 hybrid nanoflower. Moreover, the thermostability of the CaHPO4-PGUS1 hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHPO4-PGUS1 hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.
Collapse
Affiliation(s)
- Tian Jiang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Yuhui Hou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Tengjiang Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
11
|
Novel Competitive Chemiluminescence DNA Assay Based on Fe3O4@SiO2@Au-Functionalized Magnetic Nanoparticles for Sensitive Detection of p53 Tumor Suppressor Gene. Appl Biochem Biotechnol 2018; 187:152-162. [DOI: 10.1007/s12010-018-2808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/03/2018] [Indexed: 10/25/2022]
|
12
|
Yang S, Zhang F, Wang Z, Liang Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens Bioelectron 2018; 112:186-192. [PMID: 29705616 DOI: 10.1016/j.bios.2018.04.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/25/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
A label-free method for the determination of alpha-fetoprotein (AFP) was successfully developed by graphene oxide (GO)-based electrochemical aptasensor. This aptasensor was constructed by covalently immobilizing NH2-functionalized AFP-specific aptamer on GO with plenty of carboxylic groups. Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) analysis were carried out to investigate the practicability of the fabrication procedures. Fourier transform infrared spectra (FTIR), Raman, atomic force microscopy (AFM) and scanning electron microscope (SEM) were performed to indicate the changes of the sensing interface. CV was used to detect the signal change of the aptasensor. Peak current of CVs changed before and after incubating the aptasensor with different concentration of AFP solution. The changes of peak current were proportional to the AFP concentration, with a wide linear range of 0.01-100 ng mL-1, a low detection limit of 3 pg mL-1 and good specificity. The proposed simple and cost-effective label-free strategy is promising for the determination of clinical biomarkers such as AFP.
Collapse
Affiliation(s)
- Shaohong Yang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China; MOE Key Lab of Bioorganic Phosphorus & Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China.
| | - Qionglin Liang
- MOE Key Lab of Bioorganic Phosphorus & Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Yao Y, Wang X, Duan W, Li F. A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads. Analyst 2018; 143:709-714. [DOI: 10.1039/c7an01765k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free, versatile and low-background chemiluminescence sensing strategy based on gold nanocluster catalysis combined with magnetic separation was developed.
Collapse
Affiliation(s)
- Yueyue Yao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wenna Duan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
14
|
Golchin K, Golchin J, Ghaderi S, Alidadiani N, Eslamkhah S, Eslamkhah M, Davaran S, Akbarzadeh A. Gold nanoparticles applications: from artificial enzyme till drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:250-254. [DOI: 10.1080/21691401.2017.1305393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kazem Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Wu Y, Guo W, Peng W, Zhao Q, Piao J, Zhang B, Wu X, Wang H, Gong X, Chang J. Enhanced Fluorescence ELISA Based on HAT Triggering Fluorescence "Turn-on" with Enzyme-Antibody Dual Labeled AuNP Probes for Ultrasensitive Detection of AFP and HBsAg. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9369-9377. [PMID: 28252291 DOI: 10.1021/acsami.6b16236] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
At present, enzyme-linked immunosorbent assay (ELISA) is considered to be the most appropriate approach in clinical biomarker detection, with good specificity, low cost, and straightforward readout. However, unsatisfactory sensitivity severely hampers its wide application in clinical diagnosis. Herein, we designed a new kind of enhanced fluorescence enzyme-linked immunosorbent assay (FELISA) based on the human alpha-thrombin (HAT) triggering fluorescence "turn-on" signals. In this system, detection antibodies (Ab2) and HAT were labeled on the gold nanoparticles (AuNPs) to form the detection probes, and a bisamide derivative of Rhodamine110 with fluorescence quenched served as the substrate of HAT. After the sandwich immunoreaction, HAT on the sandwich structure could catalyze the cleavage of the fluorescence-quenched substrate, leading to a strong fluorescence signal for sensing ultralow levels of alpha fetoprotein (AFP) and hepatitis B virus surface antigen (HBsAg). Under the optimized reaction conditions, AFP and HBsAg were detected at the ultralow concentrations of 10-8 ng mL-1 and 5 × 10-4 IU mL-1, respectively, which were at least 104 times lower than those of the conventional fluorescence assay and 106 times lower than those of the conventional ELISA. In addition, we further discussed the efficiency of the sensitive FELISA in clinical serum samples, showing great potential in practical applications.
Collapse
Affiliation(s)
- Yudong Wu
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety National Center for Nanoscience and Technology , Beijing 100190, China
| | - Weipan Peng
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Qian Zhao
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jiafang Piao
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Bo Zhang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xiaoli Wu
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Hanjie Wang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xiaoqun Gong
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jin Chang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein. Sci Rep 2017; 7:42361. [PMID: 28186128 PMCID: PMC5301246 DOI: 10.1038/srep42361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022] Open
Abstract
In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nanoparticles (Au NPs) and toluidine blue (TB). As a kind of redox probe, TB can produce the electrochemical signal. Graphene owns large specific surface area, high electrical conductivity and good adsorption property to load a large number of TB. Fe3O4 NPs have good electrocatalytic performance towards the redox of TB. Au NPs have good biocompatibility to capture the antibodies. Due to the good electrochemical performance of TB-Au-Fe3O4-rGO, the effective and sensitive detection of AFP was achieved by the designed electrochemical immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide linear range from 1.0 × 10−5 ng/mL to 10.0 ng/mL with a low detection limit of 2.7 fg/mL for AFP. It also displayed good electrochemical performance including good reproducibility, selectivity and stability, which would provide potential applications in the clinical diagnosis of other tumor markers.
Collapse
|
17
|
Chen G, Jin M, Du P, Zhang C, Cui X, Zhang Y, Wang J, Jin F, She Y, Shao H, Wang S, Zheng L. A review of enhancers for chemiluminescence enzyme immunoassay. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2016.1272550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ge Chen
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Maojun Jin
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Pengfei Du
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Chan Zhang
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Xueyan Cui
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Yudan Zhang
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Jing Wang
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Fen Jin
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Yongxin She
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Hua Shao
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Shanshan Wang
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| | - Lufei Zheng
- Key Laboratory for Agro-Products Quality and Food Safety, Chinese Academy of Agricultural Sciences, Institute of Quality Standards & Testing Technology for Agro-Products, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Liu Z, Zhao F, Gao S, Shao J, Chang H. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection. NANOSCALE RESEARCH LETTERS 2016; 11:460. [PMID: 27757942 PMCID: PMC5069210 DOI: 10.1186/s11671-016-1686-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.
Collapse
Affiliation(s)
- Zezhong Liu
- Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Furong Zhao
- Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shandian Gao
- Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Junjun Shao
- Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Huiyun Chang
- Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
19
|
Fabrication of an electrochemical immunosensor for α-fetoprotein based on a poly-L-lysine-single-walled carbon nanotubes/Prussian blue composite film interface. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Yang YC, Tseng WL. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection. Anal Chem 2016; 88:5355-62. [PMID: 27091002 DOI: 10.1021/acs.analchem.6b00668] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Chemistry, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University , Kaohsiung 80424, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 80708, Taiwan.,Center for Nanoscience and Nanotechnology, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| |
Collapse
|
21
|
Li J, Fang X, Yang Y, Cheng X, Tang P. An Improved Chemiluminescence Immunoassay for the Ultrasensitive Detection of Aflatoxin B1. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0499-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
RETRACTED: A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein. Biosens Bioelectron 2016; 78:454-463. [DOI: 10.1016/j.bios.2015.11.092] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 01/30/2023]
|
23
|
Yu X, Sheng Y, Zhao Y, Fan A. Employment of bromophenol red and bovine serum albumin as luminol signal co-enhancer in chemiluminescent detection of sequence-specific DNA. Talanta 2016; 148:264-71. [DOI: 10.1016/j.talanta.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022]
|
24
|
Wang X, Zhou L, Wei G, Jiang T, Zhou J. SERS-based immunoassay using a core–shell SiO2@Ag immune probe and Ag-decorated NiCo2O4 nanorods immune substrate. RSC Adv 2016. [DOI: 10.1039/c5ra22884k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel sandwich structure consisting of the SiO2@Ag immune probe and the Ag-decorated NNRs substrate was used to detect AFP and a detection limit is as low as 2.1 fg mL−1.
Collapse
Affiliation(s)
- Xiaolong Wang
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo
- China
| | - Lu Zhou
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo
- China
| | - Guodong Wei
- College of Physics
- Jilin University
- Changchun
- China
| | - Tao Jiang
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo
- China
| | - Jun Zhou
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo
- China
| |
Collapse
|
25
|
Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles. J Chromatogr A 2016; 1431:197-204. [DOI: 10.1016/j.chroma.2015.12.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022]
|
26
|
Feng T, Qiao X, Wang H, Sun Z, Qi Y, Hong C. A porous CuO nanowire-based signal amplification immunosensor for the detection of carcinoembryonic antigens. RSC Adv 2016. [DOI: 10.1039/c5ra26828a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A novel electrochemical immunosensor was developed for the detection of CEA based on CNTs–AuNPs as a platform and pCuOw@Fc as labels. The immunosensor showed enhanced electrochemical performance toward the detection of CEA.
Collapse
Affiliation(s)
- Taotao Feng
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Haining Wang
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Zhao Sun
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Yu Qi
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| |
Collapse
|
27
|
Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem 2015; 408:1015-22. [DOI: 10.1007/s00216-015-9219-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
28
|
Xu R, Jiang Y, Xia L, Zhang T, Xu L, Zhang S, Liu D, Song H. A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 2015; 74:411-7. [DOI: 10.1016/j.bios.2015.06.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
29
|
Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal Chim Acta 2015; 895:1-11. [DOI: 10.1016/j.aca.2015.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 01/03/2023]
|
30
|
Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO 2 /Au nanocomposite. Biosens Bioelectron 2015; 71:82-87. [DOI: 10.1016/j.bios.2015.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/19/2015] [Accepted: 04/05/2015] [Indexed: 01/25/2023]
|
31
|
Liang X, Fang X, Yao M, Yang Y, Li J, Liu H, Wang L. Direct competitive chemiluminescence immunoassays based on gold-coated magnetic particles for detection of chloramphenicol. LUMINESCENCE 2015; 31:168-72. [DOI: 10.1002/bio.2940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/09/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Liang
- School of Science; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Xiangyi Fang
- School of Science; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Manwen Yao
- Tongji University; Shanghai People's Republic of China
| | - Yucong Yang
- Department of Clinical Laboratory The First Affiliated Hospital of Medical College; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Junfeng Li
- School of Science; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Hongjun Liu
- School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Linyu Wang
- School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| |
Collapse
|
32
|
Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 2015; 68:688-698. [DOI: 10.1016/j.bios.2015.01.066] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/12/2015] [Accepted: 01/28/2015] [Indexed: 01/16/2023]
|
33
|
Jiang L, Han J, Li F, Gao J, Li Y, Dong Y, Wei Q. A sandwich-type electrochemical immunosensor based on multiple signal amplification for α-fetoprotein labeled by platinum hybrid multiwalled carbon nanotubes adhered copper oxide. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Tawa K, Kondo F, Sasakawa C, Nagae K, Nakamura Y, Nozaki A, Kaya T. Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip. Anal Chem 2015; 87:3871-6. [PMID: 25719730 DOI: 10.1021/ac504642j] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two types of plasmonic silver- and gold-coated grating biosensor chips (plasmonic chip) were applied in the detection of α-fetoprotein (AFP) with a sandwich imunoassay and surface plasmon field-enhanced fluorescence. On the plasmonic chip, unlabeled marker in the sandwich immunoassay was first quantitatively detected over a wide range between 10(-12) and 10(-8) g/mL. The affinity constants between AFP and anti-AFP antibody, which were obtained by fitting the experimental data to the Langmuir isotherm adsorption curve, were 1 × 10(8) g(-1) mL regardless of the kind of metal in the plasmonic chips. Although the fluorescence intensity on the silver plasmonic chip was 5 times larger than that on the gold plasmonic chip, the limit of detection (LOD) was on the order of 10(-11) g/mL and not improved with a silver plasmonic chip. Herein, we used a new setup that generated less dispersions of both the fluorescence intensity for nonspecific adsorption and the background (optical blank) signal and improved the LOD of AFP to 4 pg/mL (55 fM) with the silver plasmonic chip. With the highly sensitive detection in the sandwich immunoassay, the development of a plasmonic chip for clinical diagnosis by a blood test is promising.
Collapse
Affiliation(s)
- Keiko Tawa
- †Health Research Institute, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,§Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Fusanori Kondo
- †Health Research Institute, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,§Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Chisato Sasakawa
- †Health Research Institute, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kousuke Nagae
- ‡Konica Minolta Inc., No.1 Sakuramachi, Hino-shi, Tokyo 191-8511, Japan
| | - Yukito Nakamura
- ‡Konica Minolta Inc., No.1 Sakuramachi, Hino-shi, Tokyo 191-8511, Japan
| | - Akitoshi Nozaki
- ‡Konica Minolta Inc., No.1 Sakuramachi, Hino-shi, Tokyo 191-8511, Japan
| | - Takatoshi Kaya
- ‡Konica Minolta Inc., No.1 Sakuramachi, Hino-shi, Tokyo 191-8511, Japan
| |
Collapse
|
35
|
Dobosz P, Morais S, Puchades R, Maquieira A. Nanogold bioconjugates for direct and sensitive multiplexed immunosensing. Biosens Bioelectron 2015; 69:294-300. [PMID: 25771301 DOI: 10.1016/j.bios.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/05/2023]
Abstract
The use of nanogold bioconjugates for direct detection of the antibody-antigen immunoreaction is addressed. The integration of gold nanoparticles tracers as signal generators in microarray immunosensing and compact disc detection technique show important advantages to reach sensitive, selective, high throughput, reliable and cost-effective assays. For that, a thorough study of the performances of the size of spherical nanogold particles and coating density was developed. The size of the nanoparticle determines the optimal antibody dilution, being the smaller particles the best performing ones. Enhancement effect of lower size is also studied. The gold labeling method do not affects the recognition capability of the labeled proteins. As a proof of concept, the nanoconjugates were used for the simultaneous and direct determination of small molecules. Employing nanogold bioconjugates as recognition labels resulted in robust and reliable assays, reaching a sensitivity of 0.03 and 1.3μg/L for sulfasalazine and atrazine, respectively. This shows that the use of nanogold bioconjugates for direct immunosensing is very competitive, achieving highly sensitive and reproducible assays (RSD<10%). This approach would simultaneously determine both small and large molecular size targets, in different formats, using the same detection mode what paves the way for many other applications in different scenarios.
Collapse
Affiliation(s)
- P Dobosz
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain
| | - S Morais
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain
| | - R Puchades
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain
| | - A Maquieira
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain.
| |
Collapse
|
36
|
Lei J, Lei C, Wang T, Yang Z, Zhou Y. Investigation of targeted biomolecules in a micro-fluxgate-based bio-sensing system. Biomed Microdevices 2014; 16:237-43. [PMID: 24292779 DOI: 10.1007/s10544-013-9827-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An investigation of targeted biomolecules was accomplished by combining a micro-fluxgate-based bio-sensing system and Dynabeads. The fluxgate sensor for biomolecule detection was fabricated by Micro Electro-Mechanical system technology, including thick photoresist lithography, electroplating and chemical wet etching. The magnetic core of the sensor was made of Fe-based amorphous ribbon core and three dimension solenoid coils were used as magnetic sensitive elements. The micro-fluxgate-based bio-sensing system was characterized firstly in different concentrations of Dynabeads, and a concentration as low as 100 ng/ml was detected with an external dc magnetic field in the range of 525 μT to 875 μT. Sandwich assays are performed using antibody-antigen pair combination of biotin-streptavidin on a separated Au film substrate surface with a self-assembled layer. Detection of Alpha Fetoprotein antigens with different concentrations was performed and a minimum detectable concentration of 1 pg/ml was achieved by the bio-sensing system. It is of considerable interest due to its potential application in the biomedical field based on known specific binding of target and labels.
Collapse
Affiliation(s)
- Jian Lei
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
37
|
Qu Z, Xu H, Xu P, Chen K, Mu R, Fu J, Gu H. Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Anal Chem 2014; 86:9367-71. [PMID: 25196700 DOI: 10.1021/ac502522b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Improving the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is of utmost importance for meeting the demand of early disease diagnosis. Herein we report an ultrasensitive ELISA system using horseradish peroxidase (HRP)-loaded nanospherical poly(acrylic acid) brushes (SPAABs) as labels. HRP was covalently immobilized in SPAABs with high capacity and activity via an efficient "chemical conjugation after electrostatic entrapment" (CCEE) process, thus endowing SPAABs with high amplification capability as labels. The periphery of SPAAB-HRP was further utilized to bind a layer of antibody with high density for efficient capture of analytes owing to the three-dimensional architecture of SPAABs. Using human chorionic gonadotrophin (hCG) as a model analyte, the SPAAB-amplified system drastically boosted the detection limit of ELISA to 0.012 mIU mL(-1), a 267-fold improvement as compared to conventional ELISA systems.
Collapse
Affiliation(s)
- Zhenyuan Qu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University , Shanghai 200030, P. R. China
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang Z, Luo S, Li J, Shen J, Yu S, Hu X, Dionysiou DD. A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor. Anal Chim Acta 2014; 839:67-73. [DOI: 10.1016/j.aca.2014.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/19/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
|
39
|
Iranifam M. Analytical applications of chemiluminescence methods for cancer detection and therapy. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Qi Y, Xiu FR, Li B. One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles. Anal Biochem 2014; 449:1-8. [DOI: 10.1016/j.ab.2013.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
41
|
Xiao FN, Wang M, Wang FB, Xia XH. Graphene-Ruthenium(II) complex composites for sensitive ECL immunosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:706-16. [PMID: 23926125 DOI: 10.1002/smll.201301566] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 05/07/2023]
Abstract
Non-covalent modification method has been proven as an effective strategy for enhancing the chemical properties of graphene while the structure and electronic properties of graphene can be retained. This work describes a novel strategy to fabricate a solid-state electrochemiluminescent (ECL) immunosensor based on ruthenium(II) complex/3,4,9,10-perylenetetracarboxylic acid (PTCA)/graphene nanocomposites (Ru-PTCA/G) for sensitive detection of α-fetoprotein (AFP). It is found that immobilization of PTCA and reduction of GO can be simultaneously achieved in one-pot synthesis method under alkaline condition and moderate temperature, forming PTCA/G nanocomposites. Further covalent attachment of ruthenium(II) complex to the PTCA assembled on graphene sheets produces the functional Ru-PTCA/G nanocomposites which show good electrochemical activity and ca. 21 times higher luminescence quantum efficiency than the adsorbed derivative ruthenium(II) complex. The Ru-PTCA/G nanocomposites based solid-state ECL sensor exhibits high stability toward the determination of tripropylamine (TPA) coreactant. In addition, a new ECL immunosensor based on steric hindrance effect is fabricated by cross-linking α-fetoprotein antibody (anti-AFP) with chitosan covered on Ru-PTCA/G composites modified electrode for detection of cancer biomarker AFP. This ECL immunosensor shows an extremely sensitive response to AFP in a linear range of 5 pg·mL(-1) -10 ng·mL(-1) with a detection limit of 0.2 pg·mL(-1) . The present approach is effective for various molecules immobilization and may become a promising technique for biomolecular detection.
Collapse
Affiliation(s)
- Fang-Nan Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
42
|
An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags. Biosens Bioelectron 2014; 51:421-5. [DOI: 10.1016/j.bios.2013.07.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/21/2022]
|
43
|
Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Zhang C, Liu Z, Li Y, Li Q, Song C, Xu Z, Zhang Y, Zhang Y, Ma Y, Sun Y, Chen L, Fang L, Yang A, Yang K, Jin B. High sensitivity chemiluminescence enzyme immunoassay for detecting staphylococcal enterotoxin A in multi-matrices. Anal Chim Acta 2013; 796:14-9. [DOI: 10.1016/j.aca.2013.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
45
|
Wang YK, Yan YX, Ji WH, Wang HA, Zou Q, Sun JH. Novel chemiluminescence immunoassay for the determination of zearalenone in food samples using gold nanoparticles labeled with streptavidin-horseradish peroxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4250-4256. [PMID: 23581862 DOI: 10.1021/jf400731j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel highly sensitive chemiluminescence immunoassay (CLIA) was developed to detect zearalenone in food samples by using both biotinylated zearalenone conjugates and gold (Au) nanoparticles labeled with streptavidin-horseradish peroxidase for signal amplification. Biotinylated zearalenone-ovalbumin conjugates and Au nanoparticles labeled with streptavidin-horseradish peroxidase were synthesized separately. The concentrations of immunoreagents and the reaction times of these immunoreagents were optimized to improve the performances of analytical methods. For the CLIA based on biotinylated zearalenone conjugates and Au nanoparticles labeled with streptavidin-horseradish peroxidase, the limit of detection was 0.008 ng/mL and the IC50 was 0.11 ng/mL. The linear working range was 0.02-0.51 ng/mL. The cross-reactivities with the zearalenone analogues (α-zearalanol, zearalanone, α-zearalenol, β-zearalanol, and β-zearalenol) were 32, 17, 12, 0.3, and 0.1%, respectively. The recovery rates in spiked food samples were 97-117%, and the intraday and interday relative standard deviations were both <10%. Parallel analysis of natural food samples showed a good correlation between this novel CLIA and liquid chromatography-tandem mass spectrometry. This method provides a rapid, accurate, and highly sensitive method to determine levels of zearalenone in food samples.
Collapse
Affiliation(s)
- Yuan-Kai Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
46
|
Yang Z, Shen J, Li J, Zhu J, Hu X. An ultrasensitive streptavidin-functionalized carbon nanotubes platform for chemiluminescent immunoassay. Anal Chim Acta 2013; 774:85-91. [DOI: 10.1016/j.aca.2013.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
|
47
|
Hao M, Ma Z. An ultrasensitive chemiluminescence biosensor for carcinoembryonic antigen based on autocatalytic enlargement of immunogold nanoprobes. SENSORS 2012; 12:17320-9. [PMID: 23443399 PMCID: PMC3571839 DOI: 10.3390/s121217320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 12/02/2022]
Abstract
A sensitive flow injection chemiluminescence assay for carcinoembryonic antigen (CEA) detection based on signal amplification with gold nanoparticles (NPs) is reported in the present work. The sandwich system of CEA/anti-CEA/goat-anti-mouse IgG functionalized Au nanoparticles was used as the sensing platform. In order to improve detection sensitivity, a further gold enlargement step was developed based on the autocatalytic Au deposition of gold nanoprobes via the reduction of AuCl4− to Au0 on their surface in the presence of NH2OH·HCl. AuCl4−, which is a soluble product of gold nanoprobes, served as an analyte in the CL reaction for the indirect measurement of CEA. Under optimized conditions, the CL intensity of the system was linearly related to the logarithm of CEA concentration in the range of 100 pg·mL−1 to 1,000 ng·mL−1, with a detection limit of 20 pg·mL−1.
Collapse
Affiliation(s)
| | - Zhanfang Ma
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6890-2491
| |
Collapse
|
48
|
Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta 2012; 758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/17/2022]
Abstract
Methods based on sandwich-type immunosensors and immunoassays have been developed for detection of multivalent antigens/analytes with more than one eptiope due to the use of two matched antibodies. High-affinity antibodies and appropriate labels are usually employed for the amplification of detectable signal. Recent research has looked to develop innovative and powerful novel nanoparticle labels, controlling and tailoring their properties in a very predictable manner to meet the requirements of specific applications. This articles reviews recent advances, exploiting nanoparticle labels, in the sandwich-type immunosensors and immunoassays. Routine approaches involve noble metal nanoparticles, carbon nanomaterials, semiconductor nanoparticles, metal oxide nanostructures, and hybrid nanostructures. The enormous signal enhancement associated with the use of nanoparticle labels and with the formation of nanoparticle-antibody-antigen assemblies provides the basis for sensitive detection of disease-related proteins or biomolecules. Techniques commonly rely on the use of biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tag-doped nanoparticles. Rather than being exhaustive, this review focuses on selected examples to illustrate novel concepts and promising applications. Approaches described include the biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tage-doped nanoparticles. Further, promising application in electrochemical, mass-sensitive, optical and multianalyte detection are discussed in detail.
Collapse
Affiliation(s)
- Xiaomei Pei
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Hun X, Mei Z, Wang Z, He Y. Indole-3-acetic acid biosensor based on G-rich DNA labeled AuNPs as chemiluminescence probe coupling the DNA signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 95:114-119. [PMID: 22613129 DOI: 10.1016/j.saa.2012.04.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/12/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
A highly sensitive chemiluminescence (CL) method for detection of phytohormone indole-3-acetic acid (IAA) was developed by using G-rich DNA labeled gold nanoparticles (AuNPs) as CL probe coupling the DNA signal amplification technology. The IAA antibody was immobilized on carboxyl terminated magnetic beads (MBs). In the presence of IAA, antibody labeled AuNPs were captured by antibody functionalized MBs. The DNA on AuNPs is released by a ligand exchange process induced by the addition of DTT. The released DNA is then acted as the linker and hybridized with the capture DNA on MBs and probe DNA on AuNPs CL probe. The CL signal is obtained via the instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxyl-phenylglyoxal (TMPG), and the G-rich DNA on AuNPs CL probe. IAA can be detected in the concentration range from 0.02 ng/mL to 30 ng/mL, and the limit of detection is 0.01 ng/mL.
Collapse
Affiliation(s)
- Xu Hun
- Key Laboratory of Eco-chemical Engineering, Qingdao 266042, China.
| | | | | | | |
Collapse
|
50
|
Wang H, Yuan R, Chai Y, Niu H, Cao Y, Liu H. Bi-enzyme synergetic catalysis to in situ generate coreactant of peroxydisulfate solution for ultrasensitive electrochemiluminescence immunoassay. Biosens Bioelectron 2012; 37:6-10. [DOI: 10.1016/j.bios.2012.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/11/2012] [Accepted: 04/09/2012] [Indexed: 12/17/2022]
|