1
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Zhao J, Ghannam R, Htet KO, Liu Y, Law M, Roy VAL, Michel B, Imran MA, Heidari H. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review. Adv Healthc Mater 2020; 9:e2000779. [PMID: 32729228 DOI: 10.1002/adhm.202000779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Implantable technologies are becoming more widespread for biomedical applications that include physical identification, health diagnosis, monitoring, recording, and treatment of human physiological traits. However, energy harvesting and power generation beneath the human tissue are still a major challenge. In this regard, self-powered implantable devices that scavenge energy from the human body are attractive for long-term monitoring of human physiological traits. Thanks to advancements in material science and nanotechnology, energy harvesting techniques that rely on piezoelectricity, thermoelectricity, biofuel, and radio frequency power transfer are emerging. However, all these techniques suffer from limitations that include low power output, bulky size, or low efficiency. Photovoltaic (PV) energy conversion is one of the most promising candidates for implantable applications due to their higher-power conversion efficiencies and small footprint. Herein, the latest implantable energy harvesting technologies are surveyed. A comparison between the different state-of-the-art power harvesting methods is also provided. Finally, recommendations are provided regarding the feasibility of PV cells as an in vivo energy harvester, with an emphasis on skin penetration, fabrication, encapsulation, durability, biocompatibility, and power management.
Collapse
Affiliation(s)
- Jinwei Zhao
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Rami Ghannam
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Kaung Oo Htet
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Yuchi Liu
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Man‐kay Law
- State Key Laboratory of Analog and Mixed‐Signal VLSI AMSV University of Macao Macao China
| | | | - Bruno Michel
- Smart System Integration IBM Research GmbH Rueschlikon CH‐8803 Switzerland
| | - Muhammad Ali Imran
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Hadi Heidari
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
3
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Rafiee-Pour HA, Nejadhosseinian M, Firouzi M, Masoum S. Catalase immobilization onto magnetic multi-walled carbon nanotubes: optimization of crucial parameters using response surface methodology. NEW J CHEM 2019. [DOI: 10.1039/c8nj03517b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study catalase (CAT) immobilization onto magnetic multi-walled carbon nanotubes (mMWCNTs) was undertaken and response surface methodology (RSM) employed to determine the optimum immobilization conditions.
Collapse
Affiliation(s)
- Hossain-Ali Rafiee-Pour
- Biotechnology Division
- Department of Cell and Molecular Biology
- Faculty of Chemistry
- University of Kashan
- Kashan
| | | | - Masoumeh Firouzi
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Islamic Republic of Iran
| | - Saeed Masoum
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- Islamic Republic of Iran
| |
Collapse
|
5
|
Bojórquez-Vázquez L, Cano-Castillo U, Vazquez-Duhalt R. Membrane-less enzymatic fuel cell operated under acidic conditions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Bolibok P, Roszek K, Wiśniewski M. Chemical and Biochemical Approach to Make a Perfect Biocatalytic System on Carbonaceous Matrices. Methods Enzymol 2018; 609:221-245. [PMID: 30244791 DOI: 10.1016/bs.mie.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymatic processes are widely used in food industry, pharmacy, cosmetic and household chemistry, and medicine. However, the common and efficient application of the biological catalysts is limited by a number of factors that influence enzymes activity. One of the most frequent methods to improve the biocatalysts' properties is immobilization. This chapter presents a recent overview of our attempts to obtain the perfect biocatalytic system. The experimental approach, proposed in this chapter, includes the critical points like: the choice of adequate immobilization method, most suitable carrier, determination of enzyme kinetic parameters, stability, and toxicity of obtained systems. As carbon materials including graphene-derived materials offer unique properties and a plenty of different modifications, these parameters seem to be of decisive importance to understand chemistry of complex systems. Consideration of all the mentioned requirements lead us to the conclusion that graphene oxide could be the best candidate for support in perfect biocatalytic systems.
Collapse
Affiliation(s)
- Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
7
|
Sobhan A, Oh JH, Park MK, Kim SW, Park C, Lee J. Assessment of peanut allergen Ara h1 in processed foods using a SWCNTs-based nanobiosensor. Biosci Biotechnol Biochem 2018; 82:1134-1142. [DOI: 10.1080/09168451.2018.1453295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
The goals of this research were to develop a rapid single-walled carbon nanotube (SWCNT)-based biosensor and to employ it to commercial food products for Ara h1 detection. The SWCNT-based biosensor was fabricated with SWCNTs immobilized with antibody (pAb) through hybridization of 1-pyrenebutanoic acid succinimidyl ester (1-PBASE) as a linker. The resistance difference (ΔR) was calculated by measuring linear sweep voltammetry (LSV) using a potentiostat. Resistance values increased as the concentration of Ara h1 increased over the range of 1 to 105 ng/L. The specific binding of anti-Ara h1 pAb to antigen including Ara h1 was confirmed by both indirect ELISA kit and biosensor assay. The biosensor was exposed to extracts prepared from commercial processed food containing peanuts, or no peanuts, and could successfully distinguish the peanut containing foods. In addition, the application of present biosensor approach documented the precise detection of Ara h1 concentrations in commercially available peanut containing foods.
Collapse
Affiliation(s)
- Abdus Sobhan
- Department of Plant and Food Sciences, Sangmyung University , Cheonan-Si, Republic of Korea
| | - Jun-Hyun Oh
- Department of Plant and Food Sciences, Sangmyung University , Cheonan-Si, Republic of Korea
| | - Mi-Kyung Park
- Department of Food Science and Biotechnology, Kyungpook National University , Daegu, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University , Seoul, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University , Seoul, Republic of Korea
| | - Jinyoung Lee
- Department of Plant and Food Sciences, Sangmyung University , Cheonan-Si, Republic of Korea
| |
Collapse
|
8
|
Single walled carbon nanotube based biosensor for detection of peanut allergy-inducing protein ara h1. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0259-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
10
|
Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of Staphylococcus aureus. J FOOD QUALITY 2017. [DOI: 10.1155/2017/5239487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this research is to develop a single-walled carbon nanotube- (SWCNT-) based biosensor to detect Staphylococcus aureus. The specificity of 11 bacteria and polyclonal anti-Staphylococcus aureus antibodies (pAbs) was determined using an indirect ELISA. The pAbs were immobilized onto sensor platform after the hybridization of 1-pyrenebutanoic acid succinimidyl ester (PBASE). The resistance difference (ΔR) was calculated using a potentiostat. The bacteria detected by the biosensor were observed using a scanning electron microscope (SEM). The optimum concentration of SWCNTs on the platform was determined to be 0.1 mg/mL. The binding of pAbs with S. aureus resulted in a significant increase in resistance value of the biosensor (P<0.05). The SEM images confirmed the specific binding of S. aureus on the biosensor. The SWCNT-based biosensor was able to detect S. aureus with a limit of detection (LOD) of 4 logCFU/mL.
Collapse
|
11
|
Babadi AA, Bagheri S, Hamid SB. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 2016; 79:850-60. [DOI: 10.1016/j.bios.2016.01.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 01/25/2023]
|
12
|
Kim SB, Kim DS, Yang JH, Lee J, Kim SW. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system. Enzyme Microb Technol 2016; 85:32-7. [DOI: 10.1016/j.enzmictec.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/16/2022]
|
13
|
Frusawa H, Yoshii G. Anisotropic micro-cloths fabricated from DNA-stabilized carbon nanotubes: one-stop manufacturing with electrode needles. NANOSCALE RESEARCH LETTERS 2015; 10:107. [PMID: 25852402 PMCID: PMC4385237 DOI: 10.1186/s11671-015-0817-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 05/16/2023]
Abstract
Among a variety of solution-based approaches to fabricate anisotropic films of aligned carbon nanotubes (CNTs), we focus on the dielectrophoretic assembly method using AC electric fields in DNA-stabilized CNT suspensions. We demonstrate that a one-stop manufacturing system using electrode needles can draw anisotropic DNA-CNT hybrid films of 10 to 100 µm in size (i.e., free-standing DNA-CNT micro-cloths) from the remaining suspension into the atmosphere while maintaining structural order. It has been found that a maximal degree of polarization (ca. 40%) can be achieved by micro-cloths fabricated from a variety of DNA-CNT mixtures. Our results suggest that the one-stop method can impart biocompatibility to the downsized CNT films and that the DNA-stabilized CNT micro-cloths directly connected to an electrode could be useful for biofuel cells in terms of electron transfer and/or enzymatic activity.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- Institute for Nanotechnology, Kochi University of Technology, Tosa-Yamada, 782-8502 Kochi Japan
| | - Gen Yoshii
- Institute for Nanotechnology, Kochi University of Technology, Tosa-Yamada, 782-8502 Kochi Japan
| |
Collapse
|
14
|
|
15
|
de Poulpiquet A, Ciaccafava A, Lojou E. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.133] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Uk Lee H, Young Yoo H, Lkhagvasuren T, Seok Song Y, Park C, Kim J, Wook Kim S. Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzymeelectrode. Biosens Bioelectron 2013; 42:342-8. [DOI: 10.1016/j.bios.2012.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 11/15/2022]
|
17
|
|
18
|
Wang AJ, Li YF, Li ZH, Feng JJ, Sun YL, Chen JR. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1640-7. [DOI: 10.1016/j.msec.2012.04.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/09/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
|
19
|
Lee HU, Park C, Kim SW. Immobilization of glucose oxidase onto cobalt based on silica core/shell nanoparticles as carrier. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Song YS, Shin HY, Lee JY, Park C, Kim SW. β-Galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Fabrication of a chitosan/glucose oxidase–poly(anilineboronic acid)–Aunano/Au-plated Au electrode for biosensor and biofuel cell. Biosens Bioelectron 2012; 31:357-62. [DOI: 10.1016/j.bios.2011.10.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/24/2022]
|
22
|
Feng W, Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol Adv 2011; 29:889-95. [PMID: 21820044 DOI: 10.1016/j.biotechadv.2011.07.007] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/25/2022]
Abstract
Enzyme immobilizations on carbon nanotubes for fabrication of biosensors and biofuel cells and for preparation of biocatalysts are rapidly emerging as new research areas. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. The method of immobilization has an effect on the preservation of the enzyme structure and retention of the native biological function of the enzyme. In this review, we focus on recent advances in methodology for enzyme immobilization on carbon nanotubes.
Collapse
Affiliation(s)
- Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing, China.
| | | |
Collapse
|
23
|
|
24
|
Chen M, Zhang W, Jiang R, Diao G. Development of glucose amperometric biosensor based on a novel attractive enzyme immobilization matrix: Amino derivative of thiacalix[4]arene. Anal Chim Acta 2011; 687:177-83. [DOI: 10.1016/j.aca.2010.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 11/16/2022]
|