1
|
Rana S, Bharti A, Singh S, Bhatnagar A, Prabhakar N. Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin. Mikrochim Acta 2020; 187:626. [DOI: 10.1007/s00604-020-04599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023]
|
2
|
Omer W, El-Kemary MA, Elsaady MM, Abou-Omar MN, Youssef AO, Sayqal AA, Gouda AA, Attia MS. Highly Efficient Gold Nano-Flower Optical Biosensor Doped in a Sol-Gel/PEG Matrix for the Determination of a Calcitonin Biomarker in Different Serum Samples. ACS OMEGA 2020; 5:5629-5637. [PMID: 32226838 PMCID: PMC7097903 DOI: 10.1021/acsomega.9b02833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/19/2020] [Indexed: 05/08/2023]
Abstract
We developed a novel, simple, sensitive, accurate, and precise method for the determination of calcitonin in different serum samples with medullar thyroid carcinoma. The designed flower-like thin film gold nanoparticles doped in a sol-gel/polyethylene glycol mold are used as an optical biosensor for the efficient determination of calcitonin. The sensor was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray microanalysis, and Fourier-transform infrared spectroscopy. The efficiency of the considered bio-sensor is done using the quencher calcitonin of the emission band at 360 nm of biomarker obtained at λex = 333 nm in acetonitrile solvent. The sensing mechanism was based on fluorescence resonance energy transfer. The remarkable quenching of the fluorescence intensity at 360 nm of optical sensor by various concentrations of calcitonin was successfully used as an optical biosensor for the assessment of calcitonin for different serum samples of patients with medullar thyroid carcinoma. The calibration plot was prepared for the concentration range 0.01-1000 pg/mL of calcitonin with a correlation coefficient of 0.99 and a detection limit of 0.707 pg/mL. The suggested method augments the sensitivity of calcitonin as a useful biomarker for the early diagnosis of medullar thyroid carcinoma. This method is considered as a gateway for the construction of a new prototype for the follow-up of thyroid cancer in the spinal cord during and after treatment.
Collapse
Affiliation(s)
- Walaa
E. Omer
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, 33516 Kafr El-Shaikh, Egypt
| | - Maged A. El-Kemary
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, 33516 Kafr El-Shaikh, Egypt
| | - Mostafa M. Elsaady
- Department
of Chemistry, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
| | - Mona N. Abou-Omar
- Department
of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, 11566 Cairo, Egypt
| | - Ahmed O. Youssef
- Department
of Chemistry, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
| | - Ali A. Sayqal
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, 24231 Makkah, Saudi Arabia
| | - Ayman A. Gouda
- Faculty
of Public Health and Health Informatics, Umm Al-Qura University, 24231 Makkah, Saudi Arabia
| | - Mohamed S. Attia
- Department
of Chemistry, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
- E-mail: , . Phone: +(202)
1229867311, +(202) 1060818922
| |
Collapse
|
3
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
4
|
Sun X, Ye Y, He S, Wu Z, Yue J, Sun H, Cao X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens Bioelectron 2019; 143:111607. [PMID: 31445384 DOI: 10.1016/j.bios.2019.111607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 02/01/2023]
Abstract
As a well-known allergenic indicator in kidney beans, lectins have always been the serious threats for human health. Herein, we introduced a new label-free voltammetric immunosensor for the direct determination of kidney bean lectin (KBL) with potential allergenic activity. Gold nanoparticles-polyethyleneimine-multiwalled carbon nanotubes nanocomposite was one-pot synthesized and modified onto the glass carbon electrode to enhance catalytic currents of oxygen reduction reaction. The KBL polyclonal antibody, acquired from rabbit immunization, was orientedly immobilized on the electrode modified with recombinant staphylococcal protein A via fragment crystallizable (Fc) region of antibody. Under the optimized condition, the immunosensor displayed a good linear response (R2 = 0.978) to KBL with a range from 0.05 to 100 μg/mL and a detection limit of 0.023 μg/mL. Simultaneously, the immunosensor exhibited well selectivity, interference-resistant ability, stability (4 °C) and reproducibility. Compared with the conventional enzyme-linked immunosorbent assay (ELISA) method, the immunosensor was successfully applied to quantify allergenic activity of lectin in raw and cooked (boiled for 30 min) kidney bean milk samples. This new approach provides new perspectives both for rapid quantification of lectin in kidney beans-derived foodstuffs and as a real-time monitoring tool for the allergenic potential during the whole production and consumption process.
Collapse
Affiliation(s)
- Xianbao Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Yongkang Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China.
| | - Zeyu Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Junyang Yue
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China
| | - Xiaodong Cao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, Anhui, 236500, PR China.
| |
Collapse
|
5
|
Jiang P, Wang Y, Zhao L, Ji C, Chen D, Nie L. Applications of Gold Nanoparticles in Non-Optical Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E977. [PMID: 30486293 PMCID: PMC6315477 DOI: 10.3390/nano8120977] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Due to their unique properties, such as good biocompatibility, excellent conductivity, effective catalysis, high density, and high surface-to-volume ratio, gold nanoparticles (AuNPs) are widely used in the field of bioassay. Mainly, AuNPs used in optical biosensors have been described in some reviews. In this review, we highlight recent advances in AuNP-based non-optical bioassays, including piezoelectric biosensor, electrochemical biosensor, and inductively coupled plasma mass spectrometry (ICP-MS) bio-detection. Some representative examples are presented to illustrate the effect of AuNPs in non-optical bioassay and the mechanisms of AuNPs in improving detection performances are described. Finally, the review summarizes the future prospects of AuNPs in non-optical biosensors.
Collapse
Affiliation(s)
- Pengfei Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Chenyang Ji
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Dongchu Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
6
|
Kwon J, Ahn KS, Jeong D, Choi HN, Lee WY. Highly Sensitive Determination of Concanavalin A Lectin Based on Silver-Enhanced Electrogenerated Chemiluminescence of Luminol. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1405965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jinju Kwon
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Soo Ahn
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Daeho Jeong
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Han Nim Choi
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Won-Yong Lee
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Anal Chim Acta 2017; 961:12-32. [DOI: 10.1016/j.aca.2017.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
|
8
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
9
|
Ahn KS, Lim KR, Jeong D, Lee BY, Kim KS, Lee WY. Fluorescence energy transfer inhibition bioassay for cholera toxin based on galactose-stabilized gold nanoparticles and amine-terminated quantum dots. Microchem J 2016. [DOI: 10.1016/j.microc.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Wang B, Anzai JI. Recent Progress in Lectin-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8590-8607. [PMID: 28793731 PMCID: PMC5458863 DOI: 10.3390/ma8125478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
11
|
Yang J, Moraillon A, Siriwardena A, Boukherroub R, Ozanam F, Gouget-Laemmel AC, Szunerits S. Carbohydrate Microarray for the Detection of Glycan–Protein Interactions Using Metal-Enhanced Fluorescence. Anal Chem 2015; 87:3721-8. [DOI: 10.1021/ac504262b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jie Yang
- Physique
de la Matière Condensée, Ecole Polytechnique-CNRS, 91128 Palaiseau, France
| | - Anne Moraillon
- Physique
de la Matière Condensée, Ecole Polytechnique-CNRS, 91128 Palaiseau, France
| | - Aloysius Siriwardena
- Laboratoire
de Glycochimie des Antimicrobiens et des Agroressources (LG2A), (FRE
3517-CNRS), Université de Picardie Jules Verne, 33 Rue St
Leu, 80039 Amiens, France
| | - Rabah Boukherroub
- Institut
d’Electronique, de Microélectronique et de Nanotechnologie
(IEMN, CNRS-8520), Université Lille 1, Cité Scientifique,
Avenue Poincaré B.P. 60069, 59652 Villeneuve d’Ascq, France
| | - François Ozanam
- Physique
de la Matière Condensée, Ecole Polytechnique-CNRS, 91128 Palaiseau, France
| | | | - Sabine Szunerits
- Institut
d’Electronique, de Microélectronique et de Nanotechnologie
(IEMN, CNRS-8520), Université Lille 1, Cité Scientifique,
Avenue Poincaré B.P. 60069, 59652 Villeneuve d’Ascq, France
| |
Collapse
|
12
|
Qin X, Xu A, Liu L, Deng W, Chen C, Tan Y, Fu Y, Xie Q, Yao S. Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem Commun (Camb) 2015; 51:8540-3. [DOI: 10.1039/c5cc01439e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemical sandwich immunoassay method that can be sensitive to a few protein molecules (human immunoglobulin G or human prostate-specific antigen) is reported based on in situ duple amplification of gold nanoparticle biolabel signals.
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Ling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Yingchun Fu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
13
|
Köber M, Moros M, Franco Fraguas L, Grazú V, de la Fuente JM, Luna M, Briones F. Nanoparticle-Mediated Monitoring of Carbohydrate–Lectin Interactions Using Transient Magnetic Birefringence. Anal Chem 2014; 86:12159-65. [DOI: 10.1021/ac503122y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariana Köber
- IMM-Instituto
de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - Maria Moros
- Instituto
de Nanociencia de Aragón, University of Zaragoza, Campus Río
Ebro, Edif. I+D c/Mariano Esquillor, 50018 Zaragoza, Spain
| | - Laura Franco Fraguas
- Cátedra
de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República , CC 1157 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto
de Nanociencia de Aragón, University of Zaragoza, Campus Río
Ebro, Edif. I+D c/Mariano Esquillor, 50018 Zaragoza, Spain
| | - Jesus M. de la Fuente
- Instituto
de Nanociencia de Aragón, University of Zaragoza, Campus Río
Ebro, Edif. I+D c/Mariano Esquillor, 50018 Zaragoza, Spain
| | - Mónica Luna
- IMM-Instituto
de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - Fernando Briones
- IMM-Instituto
de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
14
|
Zhu BW, Cai L, He XP, Chen GR, Long YT. Anthraquinonyl glycoside facilitates the standardization of graphene electrodes for the impedance detection of lectins. Chem Cent J 2014; 8:67. [PMID: 25435901 PMCID: PMC4245500 DOI: 10.1186/s13065-014-0067-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Construction of electrochemical impedance sensors by the self-assembly technique has become a promising strategy for the ‘label-free’ detection of protein-ligand interactions. However, previous impedance sensors are devoid of an inherent electrochemical signal, which limits the standardization of the sensors for protein recognition in a reproducible manner. Results We designed and synthesized an anthraquinonyl glycoside (AG) where the anthraquinone (AQ) moiety can bind to the surface of a graphene-based working electrode while the glycoside serving as a ligand for lectin. By measuring the inherent voltammetric signal of AQ, the glycosides decorated on the working electrode could be simply quantified to obtain electrodes with a unified signal window. Subsequently, impedance analysis showed that the ‘standardized’ electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins. Conclusion Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible, selective analysis of ligand-protein interactions. Electronic supplementary material The online version of this article (doi:10.1186/s13065-014-0067-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bi-Wen Zhu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 PR China
| | - Liang Cai
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 PR China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 PR China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 PR China
| |
Collapse
|
15
|
A point-of-care testing system with Love-wave sensor and immunogold staining enhancement for early detection of lung cancer. Biomed Microdevices 2014; 16:927-35. [DOI: 10.1007/s10544-014-9897-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Dechtrirat D, Gajovic-Eichelmann N, Wojcik F, Hartmann L, Bier FF, Scheller FW. Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli. Biosens Bioelectron 2014; 58:1-8. [DOI: 10.1016/j.bios.2014.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
17
|
Zeng H, Yu J, Jiang Y, Zeng X. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins. Biosens Bioelectron 2013; 55:157-61. [PMID: 24373955 DOI: 10.1016/j.bios.2013.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise.
Collapse
Affiliation(s)
- Hongjuan Zeng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China; School of Life Science and Technology, UESTC, Chengdu 610054, P.R. China.
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
18
|
Pan Y, Shan W, Fang H, Guo M, Nie Z, Huang Y, Yao S. Sensitive and visible detection of apoptotic cells on Annexin-V modified substrate using aminophenylboronic acid modified gold nanoparticles (APBA-GNPs) labeling. Biosens Bioelectron 2013; 52:62-8. [PMID: 24021657 DOI: 10.1016/j.bios.2013.07.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/16/2022]
Abstract
A new strategy for sensitive detection of early stage apoptosis was proposed based on silver-enhanced gold nanoparticle (GNP) label method. Annexin-V modified substrate was constructed via layer-by-layer (LBL) method for specific capture of early stage apoptotic Jurkat cells. A new kind of aminophenylboronic acid modified gold nanoparticle (APBA-GNP) was synthesized and utilized for labeling cells, followed by silver enhancement. Anodic stripping voltammetry (ASV) was applied to sensitive detection of Ag(+) dissolved from the deposited silver particles, which reflected the number of cells. A good linear range from 1 × 10(2) to 3.5 × 10(3) cells was achieved, with a detection limit of 38 apoptotic cells. Moreover, the gray color of silver enhancement could be observed by the naked eye, which could be used to tell apoptotic cells apart from normal cells. Therefore, using the silver-enhanced GNP label method, apoptotic cells could not only be sensitively detected via electrochemical technique, but also can be discriminated from normal cells by the naked eye.
Collapse
Affiliation(s)
- Yuliang Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Martos-Maldonado MC, Thygesen MB, Jensen KJ, Vargas-Berenguel A. Gold-Ferrocene Glyco-Nanoparticles for High-Sensitivity Electrochemical Detection of Carbohydrate-Lectin Interactions. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
ZHAO JING, BO BING, YIN YONGMEI, LI GENXI. GOLD NANOPARTICLES-BASED BIOSENSORS FOR BIOMEDICAL APPLICATION. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984412300087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gold nanoparticles are the most extensively studied nanomaterials for biomedical application due to their unique properties, such as rapid and simple synthesis, large surface area, strong adsorption ability and facile conjugation to various biomolecules. The remarkable photophysical properties of gold nanoparticles have provided plenty of opportunities for the preparation of gold nanoparticles-based optical biosensors, while the excellent biocompatibility, conductivity, catalytic properties and large surface-to-volume ratio have facilitated the application of gold nanoparticles in the construction of electrochemical biosensors. In this review, we mainly detail the gold nanoparticles-based optical and electrochemical biosensors for biomedical application in the recent two years, which have exhibited greatly enhanced analytical performances in the detection of DNA, proteins and some important small molecules.
Collapse
Affiliation(s)
- JING ZHAO
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - BING BO
- Department of Oncology, The First Affiliated, Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - YONG-MEI YIN
- Department of Oncology, The First Affiliated, Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - GEN-XI LI
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
21
|
Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Cederquist KB, Kelley SO. Nanostructured biomolecular detectors: pushing performance at the nanoscale. Curr Opin Chem Biol 2012; 16:415-21. [DOI: 10.1016/j.cbpa.2012.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
|
23
|
Zhou Y, Yin H, Meng X, Xu Z, Fu Y, Ai S. Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Nietzold C, Lisdat F. Fast protein detection using absorption properties of gold nanoparticles. Analyst 2012; 137:2821-6. [PMID: 22569135 DOI: 10.1039/c2an35054h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we describe the use of gold nanoparticles as a fast detection system for the sensitive analysis of proteins. The immunological method allows for protein analysis at the nanogram level, as required for clinical diagnosis. Initially a test protein is used for the development of the assay. The system is subsequently adopted for alpha-fetoprotein, which is a relevant tumor marker. This work demonstrates that antibody functionalized gold nanoparticles can be used for the detection of proteins by forming gold nanoparticle aggregates. The influence of the size of the gold nanoparticles on the sensitivity of the assay is investigated in the range from 20-60 nm particles; the larger particles show here the highest relative changes. The formation of antigen-gold nanoparticle aggregates is detected by an increase in hydrodynamic diameter by dynamic light scattering (DLS). UV/Vis spectroscopy also allows assay monitoring by quantifying the red shift of the plasmon resonance wavelength. Alpha-fetoprotein can be analysed in the concentration range of 0.1-0.4 μg ml(-1). The influence of pH, ionic strength and ratio of sample to Au-NP solution is studied. With this method, the protein AFP can be rapidly detected as demanded for clinical diagnosis.
Collapse
Affiliation(s)
- C Nietzold
- Biosystems Technology, University of Applied Science Wildau, Bahnhofstrasse 1, 15745 Wildau, Germany
| | | |
Collapse
|
25
|
Pandey B, Tan YH, Fujikawa K, Demchenko AV, Stine KJ. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold. J Carbohydr Chem 2012; 31:466-503. [PMID: 23519474 PMCID: PMC3601678 DOI: 10.1080/07328303.2012.683909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein.
Collapse
Affiliation(s)
- Binod Pandey
- Department of Chemistry and Biochemistry, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA ; Center for Nanoscience, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA
| | | | | | | | | |
Collapse
|
26
|
Bellapadrona G, Tesler AB, Grünstein D, Hossain LH, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I. Optimization of Localized Surface Plasmon Resonance Transducers for Studying Carbohydrate–Protein Interactions. Anal Chem 2011; 84:232-40. [DOI: 10.1021/ac202363t] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giuliano Bellapadrona
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander B. Tesler
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Grünstein
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biology, 14195 Berlin, Germany
| | - Laila H. Hossain
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
| | - Raghavendra Kikkeri
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biology, 14195 Berlin, Germany
| | - Alexander Vaskevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
27
|
Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 2011; 417:1-16. [DOI: 10.1016/j.ab.2011.05.027] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
|