1
|
Yan J, Zhao C, Ma Y, Yang W. Covalently Attaching Hollow Silica Nanoparticles on a COC Surface for the Fabrication of a Three-Dimensional Protein Microarray. Biomacromolecules 2022; 23:2614-2623. [PMID: 35603741 DOI: 10.1021/acs.biomac.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 μg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.
Collapse
|
2
|
Yan J, Zhao C, Ma Y, Yang W. Three-dimensional protein microarrays fabricated on reactive microsphere modified COC substrates. J Mater Chem B 2021; 10:293-301. [PMID: 34913463 DOI: 10.1039/d1tb02238e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of three-dimensional (3D) surface structures for the high density immobilization of biomolecules is an effective way to prepare highly sensitive biochips. In this work, a strategy to attach polymeric microspheres on a cyclic olefin copolymer (COC) substrate for the preparation of a 3D protein chip was developed. The COC surface was firstly functionalized by the photograft technique with epoxy groups, which were subsequently converted to amine groups. Then monodisperse poly(styrene-alt-maleic anhydride) (PSM) copolymer microspheres were prepared by self-stabilized precipitation polymerization and deposited as a single layer on a modified COC surface to form a 3D surface texture. The surface roughness of the COC support undergoes a significant increase from 1.4 nm to 37.1 nm after deposition of PSM microspheres with a size of 460 nm, and the modified COC still maintains a transmittance of more than 63% at the fluorescence excitation wavelengths (555 nm and 647 nm). The immobilization efficiency of immunoglobulin G (IgG) on the 3D surface reached 75.6% and the immobilization density was calculated to be 0.255 μg cm-2, at a probe protein concentration of 200 μg mL-1. The 3D protein microarray can be rapidly blocked by gaseous ethylenediamine within 10 minutes due to the high reactivity of anhydride groups in PSM microspheres. Immunoassay results show that the 3D protein microarray achieved specific identification of the target protein with a linear detection range from 6.25 ng mL-1 to 250 ng mL-1 (R2 > 0.99) and a limit of detection of 8.87 ng mL-1. This strategy offers a novel way to develop high performance polymer-based 3D protein chips.
Collapse
Affiliation(s)
- Jian Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. .,Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. .,Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Antibody Printing Technologies. Methods Mol Biol 2020. [PMID: 33237416 DOI: 10.1007/978-1-0716-1064-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antibody microarrays are routinely employed in the lab and in the clinic for studying protein expression, protein-protein, and protein-drug interactions. The microarray format reduces the size scale at which biological and biochemical interactions occur, leading to large reductions in reagent consumption and handling times while increasing overall experimental throughput. Specifically, antibody microarrays, as a platform, offer a number of different advantages over traditional techniques in the areas of drug discovery and diagnostics. While a number of different techniques and approaches have been developed for creating micro and nanoscale antibody arrays, issues relating to sensitivity, cost, and reproducibility persist. The aim of this review is to highlight current state-of the-art techniques and approaches for creating antibody arrays by providing latest accounts of the field while discussing potential future directions.
Collapse
|
4
|
Yoo CH, Yu JK, Seong Y, Choi JK. Microarrays Incorporating Gold Grid Patterns for Protein Quantification. ACS OMEGA 2020; 5:16664-16669. [PMID: 32685833 PMCID: PMC7364605 DOI: 10.1021/acsomega.0c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Protein microarrays are miniaturized two-dimensional arrays, incorporating thousands of immobilized proteins, typically printed in minute amounts on functionalized solid substrates, which can be analyzed in a high-throughput fashion. Irreproducibility of the printing techniques adopted, resulting in inconsistently and nonuniformly deposited microscopic spots, nonuniform signal intensities from the printed microspots, and significantly high background noise are some of the critical issues that affect protein analysis using traditional protein microarrays. To overcome such issues, in this study, we introduced a novel gold grid pattern-based protein microarray. The grid patterns incorporated in our microarray are equivalent to the spots used for protein analysis in conventional protein microarrays. We utilized the signal intensities from the grid patterns acting as spots for quantifying the protein concentration levels. To demonstrate the utility of our novel design concept, we quantified as low as 66.7 ng/mL of bovine serum albumin using our gold grid pattern-based protein microarray. Our grid pattern-based design concept for protein quantification overcame the signal nonuniformity issues and ensured that the dominance of any distorted signal from a single spot did not affect the overall protein quantification results as encountered in conventional protein microarrays.
Collapse
Affiliation(s)
- Chang-Hyuk Yoo
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| | | | - Yeju Seong
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| | - Jun-Kyu Choi
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| |
Collapse
|
5
|
Qi Y, Wang Y, Chen C, Zhao C, Ma Y, Yang W. Facile Surface Functionalization of Cyclic Olefin Copolymer Film with Anhydride Groups for Protein Microarray Fabrication. ACS APPLIED BIO MATERIALS 2020; 3:3203-3209. [PMID: 35025362 DOI: 10.1021/acsabm.0c00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immobilization of protein at high efficiency is a challenge for fabricating polymer-based protein chips. Here, a simple but effective approach was developed to fabricate a cyclic olefin copolymer (COC)-based protein microarray with a high immobilization density. In this strategy, poly(maleic anhydride-co-vinyl acetate) (poly(MAH-co-VAc)) brushes were facilely attached on the COC surface via UV-induced graft copolymerization. The introduction of poly(MAH-co-VAc) brushes resulted in an obvious increase in the surface roughness of COC. The functionalized COC showed little reduction in transparency compared with pristine COC, indicating that the photografting treatment did not alter its optical property. The graft density of the anhydride groups on the modified COC could be tuned from 0.46 to 3.2 μmol/cm2. The immobilization efficiency of immunoglobulin G (IgG) on functionalized COC reached 88% due to the high reactivity between anhydride groups and amine groups of IgGs. An immunoassay experiment demonstrated that the microarray showed high sensitivity to the target analyte.
Collapse
|
6
|
Ramiya Ramesh Babu HK, Gheber LA. Fluorescence-based kinetic analysis of miniaturized protein microarrays. Biosens Bioelectron 2018; 122:290-299. [PMID: 30292097 DOI: 10.1016/j.bios.2018.09.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022]
Abstract
Ideal monitoring devices should enjoy a combination of characteristics, e.g. high sensitivity, multiplexing, portability, short time-to-result (TTR). Typically, no device meets all of these demands since some of them are contradictory, to some extent. Herein, we present a miniaturized platform based on fluorescent detection, which is sensitive, readily allows multiplexing, and allows real-time monitoring of the signal, thus allowing extraction of kinetic information as well as drastic reduction of TTR. This is achieved via miniaturization of active spots, integration with microfluidics, and algorithmic approaches. We validate its performance by comparing with evanescent field excitation, which obtains similar results, however without the addition of the necessary complex hardware.
Collapse
Affiliation(s)
- Heman Kumar Ramiya Ramesh Babu
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Levi A Gheber
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
7
|
Sauer U. Analytical Protein Microarrays: Advancements Towards Clinical Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E256. [PMID: 28146048 PMCID: PMC5335935 DOI: 10.3390/s17020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.
Collapse
Affiliation(s)
- Ursula Sauer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, 3430 Tulln, Austria.
| |
Collapse
|
8
|
Kékedy-Nagy L, Shipovskov S, Ferapontova EE. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes. Anal Chem 2016; 88:7984-90. [DOI: 10.1021/acs.analchem.6b01020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- László Kékedy-Nagy
- Interdisciplinary
Nanoscience Center, and ‡Center for DNA Nanotechnology at
iNANO, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| | - Stepan Shipovskov
- Interdisciplinary
Nanoscience Center, and ‡Center for DNA Nanotechnology at
iNANO, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| | - Elena E. Ferapontova
- Interdisciplinary
Nanoscience Center, and ‡Center for DNA Nanotechnology at
iNANO, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Abstract
Protein biochips are the heart of many medical and bioanalytical applications. Increasing interest of protein biochip fabrication has been focused on surface activation and subsequent functionalization strategies for the immobilization of these molecules.
Collapse
Affiliation(s)
- Manuel Fuentes
- Proteomics Unit, Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Center/IBMCC (USAL/CSIC) - IBSAL, University of Salamanca, 37007, Salamanca, Spain.
| | - Paula Díez
- Proteomics Unit, Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Center/IBMCC (USAL/CSIC) - IBSAL, University of Salamanca, 37007, Salamanca, Spain
| | - Juan Casado-Vela
- Spanish National Research Council (CSIC) - Spanish National Biotechnology Centre (CNB), Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Abstract
The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.
Collapse
Affiliation(s)
| | - Abootaleb Sedighi
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Paul C H Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.
| |
Collapse
|
11
|
Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst 2015; 139:1303-26. [PMID: 24479125 DOI: 10.1039/c3an01577g] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.
Collapse
Affiliation(s)
- Valentin Romanov
- Wasatch Microfluidics, LLC, 825 N. 300 W., Suite C325, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Sedighi A, Li PC. Challenges and Future Trends in DNA Microarray Analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Herranz S, Marciello M, Olea D, Hernández M, Domingo C, Vélez M, Gheber LA, Guisán JM, Moreno-Bondi MC. Dextran–Lipase Conjugates as Tools for Low Molecular Weight Ligand Immobilization in Microarray Development. Anal Chem 2013; 85:7060-8. [DOI: 10.1021/ac400631t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonia Herranz
- Department of Analytical Chemistry,
Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Marzia Marciello
- Department of Biocatalysis,
Institute of Catalysis and Petroleochemistry, CSIC, 28049 Cantoblanco, Madrid, Spain
| | - David Olea
- Department of Biocatalysis,
Institute of Catalysis and Petroleochemistry, CSIC, 28049 Cantoblanco, Madrid, Spain
| | | | | | - Marisela Vélez
- Department of Biocatalysis,
Institute of Catalysis and Petroleochemistry, CSIC, 28049 Cantoblanco, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Cantoblanco,
Madrid, Spain
| | - Levi A. Gheber
- Department
of Biotechnology
Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Jose M. Guisán
- Department of Biocatalysis,
Institute of Catalysis and Petroleochemistry, CSIC, 28049 Cantoblanco, Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry,
Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
15
|
Yang H, Gijs MAM. Microtextured Substrates and Microparticles Used as in Situ Lenses for On-Chip Immunofluorescence Amplification. Anal Chem 2013; 85:2064-71. [DOI: 10.1021/ac303471x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Yang
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| |
Collapse
|
16
|
Luna Coronell JA, Syed P, Sergelen K, Gyurján I, Weinhäusel A. The current status of cancer biomarker research using tumour-associated antigens for minimal invasive and early cancer diagnostics. J Proteomics 2012; 76 Spec No.:102-15. [PMID: 22842156 DOI: 10.1016/j.jprot.2012.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022]
Abstract
Tumour-associated antigens (TAA) can be detected prior to clinical diagnosis and thus would be ideal biomarkers for early detection of cancer using only a few microliters of a patient's serum. In this article we provide a summary of TAA screening and serum-profiling conducted for breast, prostate, lung and colon cancers. Different methodological approaches, including SEREX, SERPA, and phage display for TAA identification and TAA panels are summarised, and a revision of array based techniques is provided. The most promising studies performed on these cancers (performed with 80-400 serum samples, including controls) obtained sensitivities in a range of 44-95% and specificities of 80-100%. From the various studies reviewed, only one performed cross validation (AUC=0.71) in a prostate cancer study. Thus, albeit receiver operation characteristics are very promising, cross validation of most studies is still missing. Additionally, the concerted action of research groups for standardization of serum-TAA testing and cross validation is required. Along with today's technological options, the chances of establishing TAA biomarkers are now higher than ever before. This may also be true for confirmation and validation of already existing data, which is a prerequisite for implementation of TAA biomarkers into clinical diagnostics. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Johana A Luna Coronell
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|