1
|
Gerdan Z, Saylan Y, Denizli A. Biosensing Platforms for Cardiac Biomarker Detection. ACS OMEGA 2024; 9:9946-9960. [PMID: 38463295 PMCID: PMC10918812 DOI: 10.1021/acsomega.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that occurs when there is an elevated demand for myocardial oxygen as a result of the rupture or erosion of atherosclerotic plaques. Globally, the mortality rates associated with MI are steadily on the rise. Traditional diagnostic biomarkers employed in clinical settings for MI diagnosis have various drawbacks, prompting researchers to investigate fast, precise, and highly sensitive biosensor platforms and technologies. Biosensors are analytical devices that combine biological elements with physicochemical transducers to detect and quantify specific compounds or analytes. These devices play a crucial role in various fields including healthcare, environmental monitoring, food safety, and biotechnology. Biosensors developed for the detection of cardiac biomarkers are typically electrochemical, mass, and optical biosensors. Nanomaterials have emerged as revolutionary components in the field of biosensing, offering unique properties that significantly enhance the sensitivity and specificity of the detection systems. This review provides a comprehensive overview of the advancements and applications of nanomaterial-based biosensing systems. Beginning with an exploration of the fundamental principles governing nanomaterials, we delve into their diverse properties, including but not limited to electrical, optical, magnetic, and thermal characteristics. The integration of these nanomaterials as transducers in biosensors has paved the way for unprecedented developments in analytical techniques. Moreover, the principles and types of biosensors and their applications in cardiovascular disease diagnosis are explained in detail. The current biosensors for cardiac biomarker detection are also discussed, with an elaboration of the pros and cons of existing platforms and concluding with future perspectives.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Department
of Biomedical Engineering, Istanbul Beykent
University, Istanbul 34398, Turkey
| | - Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Almehizia AA, Naglah AM, Alrasheed LS, Alanazi MG, Amr AEGE, Kamel AH. Point-of-care paper-based analytical device for potentiometric detection of myoglobin as a cardiovascular disease biomarker. RSC Adv 2023; 13:15199-15207. [PMID: 37213337 PMCID: PMC10193383 DOI: 10.1039/d3ra02375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
One of the cardiac biomarkers, myoglobin (Mb), is important in the rapid identification of cardio-vascular disorders. Therefore, point-of-care monitoring is essential. Pursuing this goal, a robust, reliable, and affordable paper-based analytical apparatus for potentiometric sensing has been developed and characterized. The molecular imprint technique was used to create a customized biomimetic antibody for myoglobin (Mb) on the surface of carboxylated multiwalled carbon nanotubes (MWCNT-COOH). This was accomplished by attaching Mb to carboxylated MWCNTs' surfaces and then filling the empty spaces through the mild polymerization of acrylamide in N,N-methylenebisacrylamide and ammonium persulphate. The modification of the MWCNTs' surface was verified by SEM and FTIR analysis. A hydrophobic paper substrate coated with fluorinated alkyl silane (CF3(CF2)7CH2CH2SiCl3, CF10) has been coupled with a printed all-solid-state Ag/AgCl reference electrode. The presented sensors showed a linear range of 5.0 × 10-8 to 1.0 × 10-4 M with a potentiometric slope of -57.1 ± 0.3 mV decade-1 (R2 = 0.9998) and a detection limit of 28 nM at pH 4. Compared to creatinine, sucrose, fructose, galactose, sodium glutamate, thiamine, alanine, ammonium, uric acid, albumin, glutamine, guanine, troponine T, and glucose, the sensor showed good selectivity for Mb. It demonstrated a good recovery for the detection of Mb in several fake serum samples (93.0-103.3%), with an average relative standard deviation of 4.5%. The current approach might be viewed as a potentially fruitful analytical tool for obtaining disposable, cost-effective paper-based potentiometric sensing devices. These types of analytical devices can be potentially manufacturable at large scales in clinical analysis.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Lamees S Alrasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mashael G Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdel El-Galil E Amr
- Applied Organic Chemistry Department, National Research Center Dokki Giza 12622 Egypt
| | - Ayman H Kamel
- Department, College of Science, University of Bahrain Sokheer 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
3
|
Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. BIOSENSORS 2022; 12:bios12080585. [PMID: 36004981 PMCID: PMC9406182 DOI: 10.3390/bios12080585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
In this article, we describe the fabrication and characterization of a sensor for acute myocardial infarction that detects myoglobin biomarkers using chromium (Cr)-doped zinc oxide (ZnO) nanoparticles (NPs). Pure and Cr-doped ZnO NPs (13 × 1017, 20 × 1017, and 32 × 1017 atoms/cm3 in the solid phase) were synthesized by a facile low-temperature sol-gel method. Synthesized NPs were examined for structure and morphological analysis using various techniques to confirm the successful formation of ZnO NPs. Zeta potential was measured in LB media at a negative value and increased with doping. XPS spectra confirmed the presence of oxygen deficiency in the synthesized material. To fabricate the sensor, synthesized NPs were screen-printed over a pre-fabricated gold-coated working electrode for electrochemical detection of myoglobin (Mb). Cr-doped ZnO NPs doped with 13 × 1017 Cr atomic/cm3 revealed the highest sensitivity of ~37.97 μA.cm−2nM−1 and limit of detection (LOD) of 0.15 nM for Mb with a response time of ≤10 ms. The interference study was carried out with cytochrome c (Cyt-c) due to its resemblance with Mb and human serum albumin (HSA) abundance in the blood and displayed distinct oxidation potential and current values for Mb. Cr-doped ZnO NP-based Mb biosensors showed 3 times higher sensitivity as compared to pure ZnO NP-based sensors.
Collapse
Affiliation(s)
- Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Mazharul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| | - Shafeeque G. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Zubaida A. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| |
Collapse
|
4
|
Piloto AML, Ribeiro DSM, Rodrigues SSM, Santos JLM, Sampaio P, Sales G. Imprinted Fluorescent Cellulose Membranes for the On-Site Detection of Myoglobin in Biological Media. ACS APPLIED BIO MATERIALS 2021; 4:4224-4235. [PMID: 35006835 DOI: 10.1021/acsabm.1c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, the conjugation of molecularly imprinted polymers (MIPs) to quantum dots (QDs) was successfully applied in the assembly of an imprinted cellulose membrane [hydroxy ethyl cellulose (HEC)/MIP@QDs] for the specific recognition of the cardiac biomarker myoglobin (Myo) as a sensitive, user-friendly, and portable system with the potential for point-of-care (POC) applications. The concept is to use the MIPs as biorecognition elements, previously prepared on the surface of semiconductor cadmium telluride QDs as detection particles. The fluorescent quenching of the membrane occurred with increasing concentrations of Myo, showing linearity in the interval range of 7.39-291.3 pg/mL in a1000-fold diluted human serum. The best membrane showed a linear response below the cutoff values for myocardial infarction (23 ng/mL), a limit of detection of 3.08 pg/mL, and an imprinting factor of 1.65. The incorporation of the biorecognition element MIPs on the cellulose substrate brings an approach toward a portable and user-friendly device in a sustainable manner. Overall, the imprinted membranes display good stability and selectivity toward Myo when compared with the nonimprinted membranes (HEC/NIP@QDs) and have the potential to be applied as a sensitive system for Myo detection in the presence of other proteins. Moreover, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical label-free detection method, reaching concentration levels with clinical significance.
Collapse
Affiliation(s)
- Ana Margarida L Piloto
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
| | - David S M Ribeiro
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - S Sofia M Rodrigues
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - João L M Santos
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Paula Sampaio
- i3S-Institute for Research and Innovation in Health, Porto University, 4200-135 Porto, Portugal.,IBMC-Institute of Molecular and Cell Biology, Porto University, 4200-135 Porto, Portugal
| | - Goreti Sales
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal.,BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Asrami PN, Al-Othman A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021; 184:113252. [PMID: 33895688 DOI: 10.1016/j.bios.2021.113252] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Shilpi Agarwal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vinod K Gupta
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775 Arica, Chile
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal.
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | | | | | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| |
Collapse
|
6
|
Li S, Zheng Y, Zou Q, Liao G, Liu X, Zou L, Yang X, Wang Q, Wang K. Engineering and Application of a Myoglobin Binding Split Aptamer. Anal Chem 2020; 92:14576-14581. [PMID: 33052657 DOI: 10.1021/acs.analchem.0c02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Given that a split aptamer provides a chance for the development of a sandwich assay for targets with only one aptamer, it has received extensive attention in biosensing. However, due to the lack of binding mechanisms and reliable methods, there were still a few split aptamers that bind to proteins. In this work, cardiac biomarker myoglobin (Myo) was selected as a model, a new strategy of engineering split aptamers was explored with atomic force spectroscopy (AFM), and split aptamers against target protein could be achieved by choosing the optimal binding probability between split aptamers and target. Then, the obtained split aptamers were designed for Myo detection based on dynamic light scattering (DLS). The results demonstrated that the obtained split aptamers could be used to detect targets in human serum. The strategy of engineering split aptamers has the advantages of being intuitive and reliable and could be a general strategy for obtaining split aptamers.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Jalalvand AR, Zangeneh MM, Jalili F, Soleimani S, Díaz-Cruz JM. An elegant technology for ultrasensitive impedimetric and voltammetric determination of cholestanol based on a novel molecularly imprinted electrochemical sensor. Chem Phys Lipids 2020; 229:104895. [PMID: 32165169 DOI: 10.1016/j.chemphyslip.2020.104895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
In this work, a novel molecularly imprinted electrochemical sensor (MIES) has been fabricated based on electropolymerization of a molecularly imprinted polymer (MIP) onto a glassy carbon electrode (GCE) modified with gold-palladium alloy nanoparticles (AuPd NPs)/polydopamine film (PDA)/multiwalled carbon nanotubes-chitosan-ionic liquid (MWCNTs-CS-IL) for voltammetric and impedimetric determination of cholestanol (CHO). Modifications applied to the bare GCE formed an excellent biocompatible composite film which was able to selectively detect CHO molecules. Modifications applied to the bare GCE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (SEM). Under optimal experimental conditions, the sensor was able to detect CHO in the range of 0.1-60 pM and 1-50 pM by EIS and DPV, respectively. Moreover, the sensor showed high sensitivity, selectivity, repeatability, reproducibility, low interference and good stability towards CHO determination. Our records confirmed that the sensor was successfully able to the analysis real samples for determination of CHO.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Jalili
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Soleimani
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jose Manuel Díaz-Cruz
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franques 1-11, E-8028 Barcelona, Spain
| |
Collapse
|
8
|
Moreira FT, Sales MGF. Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Optical fiber amplifier for quantitative and sensitive point-of-care testing of myoglobin and miRNA-141. Biosens Bioelectron 2019; 129:87-92. [DOI: 10.1016/j.bios.2018.12.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
|
10
|
Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of Size and Shape of Silica Supports on the Sol⁻Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E777. [PMID: 29751648 PMCID: PMC5978154 DOI: 10.3390/ma11050777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Abstract
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g−1. The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
Collapse
Affiliation(s)
- Keke Zhi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes. PLoS One 2018; 13:e0196656. [PMID: 29715330 PMCID: PMC5929556 DOI: 10.1371/journal.pone.0196656] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/17/2018] [Indexed: 12/03/2022] Open
Abstract
This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15–3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15–3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes.
Collapse
|
12
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
13
|
Piloto AM, Ribeiro DSM, Rodrigues SSM, Santos C, Santos JLM, Sales MGF. Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci Rep 2018; 8:4944. [PMID: 29563532 PMCID: PMC5862838 DOI: 10.1038/s41598-018-23271-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
A highly sensitive fluorescence detection probe was developed by tailoring plastic antibodies on the external surface of aqueous soluble quantum dots (QDs). The target was Myoglobin (Myo), a cardiac biomarker that quenched the intrinsic fluorescent emission of cadmium telluride (CdTe) QDs capped with mercaptopropionic acid (CdTe-MPA-QDs). The QDs were incubated with the target protein and further modified with a molecularly-imprinted polymer (MIP) produced by radical polymerization of acrylamide and bisacrylamide. The main physical features of the materials were assessed by electron microscopy, dynamic light scattering (DLS), UV/Vis spectrophotometry and spectrofluorimetry. The plastic antibodies enabled Myo rebinding into the QDs with subsequent fluorescence quenching. This QD-probe could detect Myo concentrations from 0.304 to 571 pg/ml (50.6 fM to 95 pM), with a limit of detection of 0.045 pg/ml (7.6 fM). The proposed method was applied to the determination of Myo concentrations in synthetic human serum. The results obtained demonstrated the ability of the modified-QDs to determine Myo below the cut-off values of myocardial infarction. Overall, the nanostructured MIP-QDs reported herein displayed quick responses, good stability and sensitivity, and high selectivity for Myo, offering the potential to be explored as new emerging sensors for protein detection in human samples.
Collapse
Affiliation(s)
- Ana Margarida Piloto
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal
| | - David S M Ribeiro
- LAQV/REQUIMTE, Faculty of Pharmacy of Porto University, Porto, Portugal
| | | | - Catarina Santos
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João L M Santos
- LAQV/REQUIMTE, Faculty of Pharmacy of Porto University, Porto, Portugal
| | - M Goreti F Sales
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Sacramento AS, Moreira FT, Guerreiro JL, Tavares AP, Sales MGF. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
16
|
Frasco MF, Truta LAANA, Sales MGF, Moreira FTC. Imprinting Technology in Electrochemical Biomimetic Sensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E523. [PMID: 28272314 PMCID: PMC5375809 DOI: 10.3390/s17030523] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.
Collapse
Affiliation(s)
- Manuela F Frasco
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Liliana A A N A Truta
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| |
Collapse
|
17
|
Dadkhah S, Ziaei E, Mehdinia A, Baradaran Kayyal T, Jabbari A. A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1824-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
A Review on Bio-macromolecular Imprinted Sensors and Their Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60898-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Wang K, Guan X, Chai S, Zou Q, Zhang X, Zhang J. A novel, molecularly imprinted polymer sensor made using an oligomeric methyl silsesquioxane–TiO2 composite sol on a glassy carbon electrode for the detection of procainamide hydrochloride. Biosens Bioelectron 2015; 64:94-101. [DOI: 10.1016/j.bios.2014.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/12/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
20
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
21
|
Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF. Detection of cardiac biomarker proteins using a disposable based on a molecularly imprinted polymer grafted onto graphite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1409-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1376-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Molecularly Imprinted Supermacroporous Cryogels for Myoglobin Recognition. Appl Biochem Biotechnol 2014; 173:1250-62. [DOI: 10.1007/s12010-014-0844-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/02/2014] [Indexed: 11/27/2022]
|
25
|
Chen H, Kong J, Yuan D, Fu G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens Bioelectron 2014; 53:5-11. [DOI: 10.1016/j.bios.2013.09.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
|
26
|
Gao R, Mu X, Hao Y, Zhang L, Zhang J, Tang Y. Combination of surface imprinting and immobilized template techniques for preparation of core-shell molecularly imprinted polymers based on directly amino-modified Fe 3O 4 nanoparticles for specific recognition of bovine hemoglobin. J Mater Chem B 2014; 2:1733-1741. [PMID: 32261403 DOI: 10.1039/c3tb21684e] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, the core-shell bovine hemoglobin (BHb)-imprinted superparamagnetic nanoparticles (Fe3O4@BHb-MIPs) were synthesized by combining for the first time a surface imprinting technique and a two-step immobilized template strategy. Initially, amino-functionalized Fe3O4 nanoparticles (Fe3O4@NH2) were synthesized directly through a facile one-pot hydrothermal method. Next, BHb was immobilized on the surface of Fe3O4@NH2 through non-covalent interactions. Then, siloxane co-polymerization on the Fe3O4@NH2-protein complex surface resulted in a polymeric network molded around BHb which then became further immobilized. Finally, a thin polymer layer with specific recognition cavities for BHb was formed on the surface of Fe3O4@NH2 after the removal of the template protein. The morphology and structure property of the prepared magnetic nanoparticles were characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), and vibrating sample magnetometer (VSM). To obtain the best selectivity and binding performance, the polymerization and adsorption conditions were investigated in detail. Under the optimized conditions, the Fe3O4@BHb-MIPs exhibited fast adsorption kinetics, large binding capacity, significant selectivity, and favorable reproducibility. The resultant Fe3O4@BHb-MIPs could not only specifically extract BHb from a mixed standard protein mixture, but also selectively enriched BHb from a real bovine blood sample. In addition, the synthetic process was quite simple and the stability and regeneration of the Fe3O4@BHb-MIPs were also satisfactory.
Collapse
Affiliation(s)
- Ruixia Gao
- Institute of Analytical Science, Faculty of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China. tyh57@ mail.xjtu.edu.cn
| | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Chen L, Yang F, Li J. Uniform core–shell molecularly imprinted polymers: a correlation study between shell thickness and binding capacity. RSC Adv 2014. [DOI: 10.1039/c4ra03282a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A model of core–shell MIPs was constructed to evaluate the correlation between shell thickness and binding capacity.
Collapse
Affiliation(s)
- Zhong Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
- University of Chinese Academy of Sciences
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| | - Fangfang Yang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| |
Collapse
|
28
|
Cheng W, Liu Z, Wang Y. Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples. Talanta 2013; 116:396-402. [DOI: 10.1016/j.talanta.2013.05.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
29
|
|
30
|
Tong Y, Li H, Guan H, Zhao J, Majeed S, Anjum S, Liang F, Xu G. Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode. Biosens Bioelectron 2013; 47:553-8. [DOI: 10.1016/j.bios.2013.03.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
|
31
|
|
32
|
Moreira FT, Sharma S, Dutra RA, Noronha JP, Cass AE, Sales MGF. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosens Bioelectron 2013; 45:237-44. [DOI: 10.1016/j.bios.2013.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
|
33
|
Kim M, Jiang Y, Kim D. Zn2+-imprinted porous polymer beads: Synthesis, structure, and selective adsorption behavior for template ion. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Chen H, Yuan D, Li Y, Dong M, Chai Z, Kong J, Fu G. Silica nanoparticle supported molecularly imprinted polymer layers with varied degrees of crosslinking for lysozyme recognition. Anal Chim Acta 2013; 779:82-9. [DOI: 10.1016/j.aca.2013.03.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
|
35
|
Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 2013; 42:5944-62. [DOI: 10.1039/c3cs60077g] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Tavares APM, Moreira FTC, Sales MGF. Haemoglobin smart plastic antibody material tailored with charged binding sites on silica nanoparticles: its application as an ionophore in potentiometric transduction. RSC Adv 2013. [DOI: 10.1039/c3ra44766a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Li Y, Li Y, Huang L, Bin Q, Lin Z, Yang H, Cai Z, Chen G. Molecularly imprinted fluorescent and colorimetric sensor based on TiO2@Cu(OH)2 nanoparticle autocatalysis for protein recognition. J Mater Chem B 2013; 1:1256-1262. [DOI: 10.1039/c2tb00398h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Electrochemical impedance spectroscopy characterization of mercaptopropionic acid capped ZnS nanocrystal based bioelectrode for the detection of the cardiac biomarker—myoglobin. Bioelectrochemistry 2012; 88:118-26. [DOI: 10.1016/j.bioelechem.2012.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 11/19/2022]
|
39
|
Arvand M, Fallahi P. Man-Tailored Biomimetic Sensor of Molecularly Imprinted Materials for the Potentiometric Measurement of Rivastigmine in Tablets and Biological Fluids and Employing the Taguchi Optimization Methodology to Optimize the MIP-Based Membranes. ELECTROANAL 2012. [DOI: 10.1002/elan.201200247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Almeida S, Truta LA, Queirós RB, Montenegro M, Cunha AL, Sales M. Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole. Biosens Bioelectron 2012; 35:319-326. [DOI: 10.1016/j.bios.2012.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 11/30/2022]
|
41
|
Surface Imprinting Approach on Screen Printed Electrodes Coated with Carboxylated PVC for Myoglobin detection with Electrochemical Transduction. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.09.284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Almeida SAA, Arasa E, Puyol M, Martinez-Cisneros CS, Alonso-Chamarro J, Montenegro MCBSM, Sales MGF. Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim. Biosens Bioelectron 2011; 30:197-203. [PMID: 21993140 DOI: 10.1016/j.bios.2011.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol-gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about -58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes -54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.
Collapse
Affiliation(s)
- S A A Almeida
- BioMark/ISEP, Instituto Superior de Engenharia do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|