1
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
3
|
Sa’adon SA, Jasni NH, Hamzah HH, Othman N. Electrochemical biosensors for the detection of protozoan parasite: a scoping review. Pathog Glob Health 2024; 118:459-470. [PMID: 39030702 PMCID: PMC11441015 DOI: 10.1080/20477724.2024.2381402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.
Collapse
Affiliation(s)
- Syahrul Amin Sa’adon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Nur Hana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
4
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
5
|
Joksović S, Kundačina I, Milošević I, Stanojev J, Radonić V, Bajac B. Single-Walled Carbon Nanotube-Modified Gold Leaf Immunosensor for Escherichia coli Detection. ACS OMEGA 2024; 9:22277-22284. [PMID: 38799361 PMCID: PMC11112687 DOI: 10.1021/acsomega.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
The requirement to prevent foodborne illnesses underscores the need for reliable detection tools, stimulating biosensor technology with practical solutions for in-field applications. This study introduces a low-cost immunosensor based on a single-walled carbon nanotube (SWCNT)-modified gold leaf electrode (GLE) for the sensitive detection of Escherichia coli. The immunosensor is realized with a layer-by-layer (LbL) assembly technique, creating an electrostatic bond between positively charged polyethylenimine (PEI) and negatively charged carboxyl-functionalized SWCNTs on the GLE. The structural and functional characterization of the PEI-SWCNT film was performed with Raman spectroscopy, high-resolution scanning electron microscopy (HRSEM), and electrical measurements. The PEI-SWCNT film was used as a substrate for antibody immobilization, and the electrochemical sensing potential was validated using electrochemical impedance spectroscopy (EIS). The results showed a wide dynamic range of E. coli detection, 101-108 cfu/mL, with a limit of detection (LOD) of 1.6 cfu/mL in buffer and 15 cfu/mL in the aqueous solution used for cleansing fresh lettuce leaves, affirming its efficiency as a practical and affordable tool in enhancing food safety.
Collapse
Affiliation(s)
- Sara Joksović
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Kundačina
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Milošević
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Jovana Stanojev
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Vasa Radonić
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Gulati P, Singh AK, Yadav AK, Pasbola K, Pandey P, Sharma R, Thakar A, Solanki PR. Nano-modified screen-printed electrode-based electrochemical immunosensors for oral cancer biomarker detection in undiluted human serum and saliva samples. NANOSCALE ADVANCES 2024; 6:705-721. [PMID: 38235076 PMCID: PMC10791120 DOI: 10.1039/d3na00682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
This proposed work reports the development of in-house made conductive ink-based screen-printed electrodes (SPEs) for label-free detection of oral cancer biomarkers. Carbon ink synthesis includes graphite powder, gum arabic, and water. The selectivity test of the fabricated SPE involves immobilizing antibodies specific to biomarkers and challenges with redox-active interference, other serum molecules, and non-target biomarkers. Three different biomarkers, cytokeratin-19 fragment (CYFRA 21-1), interleukin 8 (IL-8), and tumor protein p53 (TP-53), act as target entities for the detection of oral cancer in patients' samples (serum, N = 28, and saliva, N = 16) at an early stage. The standard technique enzyme-linked immunosorbent assay (ELISA) was employed to estimate the concentration of the biomarkers in serum and saliva samples. SPEs contain amine (-NH2) functional groups involved in covalent bonding with the carboxyl (-COOH) groups of antibody molecules. These immunosensors exhibited remarkably lower detection limits of 829.5 pg mL-1, 0.543 pg mL-1, and 1.165 pg mL-1, and excellent sensitivity of 0.935 μA mL pg-1 cm-1, 0.039 μA mL pg-1 cm-1, and 0.008 μA mL pg-1 cm-1 for CYFRA 21-1, IL-8, and TP-53 biomarkers, respectively. This sensing platform does not require any functionalization for biomolecule immobilization. Thus, it is a cost-effective, disposable, flexible, miniaturized, and sensitive strip to detect oral cancer biomarkers.
Collapse
Affiliation(s)
- Payal Gulati
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Avinash Kumar Singh
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Amit K Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Alok Thakar
- All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
7
|
Lu N, Chen J, Rao Z, Guo B, Xu Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. BIOSENSORS 2023; 13:850. [PMID: 37754084 PMCID: PMC10526323 DOI: 10.3390/bios13090850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely used in the field of antibiotic detection because of their high specificity. Advanced artificial intelligence/machine learning algorithms have allowed for remarkable achievements in image analysis and face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper reviews the biosensors that have been widely used in the simultaneous detection of multiple antibiotics based on different detection mechanisms and biorecognition elements in recent years, and compares and analyzes their characteristics and specific applications. In particular, this review summarizes some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this review gives a short review of biosensors for the detection of multiple antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
8
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, Ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | | | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Vetrivel C, Sivarasan G, Durairaj K, Ragavendran C, Kamaraj C, Karthika S, Lo HM. MoS 2-ZnO Nanocomposite Mediated Immunosensor for Non-Invasive Electrochemical Detection of IL8 Oral Tumor Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13081464. [PMID: 37189565 DOI: 10.3390/diagnostics13081464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In order to support biomolecule attachment, an effective electrochemical transducer matrix for biosensing devices needs to have many specialized properties, including quick electron transfer, stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even though these techniques provide precise and trustworthy results, they cannot replace clinical applications because of factors such as detection time, sample amount, sensitivity, equipment expense, and the need for highly skilled individuals. For the very sensitive and targeted electrochemical detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modified glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to 4500 pg mL-1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the electrochemical biosensors to detect the ACh in real sample analysis.
Collapse
Affiliation(s)
- Cittrarasu Vetrivel
- Carbon Capture Lab, Department of Chemical Engineering, SSN College of Engineering Kalavakkam, Chennai 603110, Tamil Nadu, India
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Sankar Karthika
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Namakkal 637501, Tamil Nadu, India
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| |
Collapse
|
10
|
Current Update on Biomarkers for Detection of Cancer: Comprehensive Analysis. Vaccines (Basel) 2022; 10:vaccines10122138. [PMID: 36560548 PMCID: PMC9787556 DOI: 10.3390/vaccines10122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early and effective diagnosis of cancer is decisive for its proper management. In this context biomarker-based cancer diagnosis is budding as one of the promising ways for early detection, disease progression monitoring, and effective cancer therapy. Integration of Biosensing devices with different metallic/nonmetallic nanoparticles offers amplification and multiplexing capabilities for simultaneous detection of cancer biomarkers (CB's). This study provides a comprehensive analysis of the most recent designs and fabrication methodologies designed for developing electrochemical biosensors (EB) for early detection of cancers. The role of biomarkers in cancer therapeutics is also discussed.
Collapse
|
11
|
Abdelrahman A, Erchiqui F, Nedil M, Mohamed S. Enhancing Fluidic Polymeric Solutions' Physical Properties with Nano Metals and Graphene Additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Yan L, Xu S, Xi F. Disposal Immunosensor for Sensitive Electrochemical Detection of Prostate-Specific Antigen Based on Amino-Rich Nanochannels Array-Modified Patterned Indium Tin Oxide Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3810. [PMID: 36364585 PMCID: PMC9658386 DOI: 10.3390/nano12213810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
Sensitive detection of prostate-specific antigens (PSA) in serum is essential for the prevention and early treatment of prostate cancer. Simple and disposable electrochemical immunosensors are highly desirable for screening and mobile detection of PSAs in high-risk populations. Here, an electrochemical immunosensor was constructed based on amino-rich nanochannels array-modified patterned, inexpensive, and disposable indium tin oxide (ITO) electrodes, which can be employed for the sensitive detection of PSA. Using an amino-group-containing precursor, a vertically ordered mesoporous silica nanochannel film (VMSF) containing amino groups (NH2-VMSF) was rapidly grown on ITO. When NH2-VMSF contained template surfactant micelle (SM), the outer surface of NH2-VMSF was directionally modified by aldehyde groups, which enabled further covalent immobilization of the recognitive antibody to prepare the immuno-recognitive interface. Owing to the charge-based selective permeability, NH2-VMSF can electrostatically adsorb negatively charged redox probes in solution (Fe(CN)63-/4-). The electrochemical detection of PSA is realized based on the mechanism that the antigen-antibody complex can reduce the diffusion of redox probes in solution to the underlying electrode, leading to the decrease in electrochemical signal. The constructed immunosensor can achieve sensitive detection of PSA in the range from 10 pg/mL to 1 μg/mL with a limit of detection (LOD) of 8.1 pg/mL. Sensitive detection of PSA in human serum was also achieved. The proposed disposable immunosensor based on cheap electrode and nanochannel array is expected to provide a new idea for developing a universal immunosensing platform for sensitive detection of tumor markers.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Su J, Chen S, Dou Y, Zhao Z, Jia X, Ding X, Song S. Smartphone-Based Electrochemical Biosensors for Directly Detecting Serum-Derived Exosomes and Monitoring Their Secretion. Anal Chem 2022; 94:3235-3244. [PMID: 35084842 DOI: 10.1021/acs.analchem.1c04910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are potential biomarkers, which play an important role in early diagnosis and prognosis prediction of cancer-related diseases. Nevertheless, direct quantification of exosomes in biological fluid, especially in point-of-care tests (POCTs), remains extremely challenging. Herein, we developed a sensitive and portable electrochemical biosensor in combination with smartphones for quantitative analysis of exosomes. The improved double-antibody sandwich method-based poly-enzyme signal amplification was adopted to detect exosomes. We could detect as low as 7.23 ng of CD63-positive exosomes in 5 μL of serum within 2 h. Importantly, we demonstrated that the biosensor worked well with microliter-level serum and cell culture supernatant. The biosensor holds great potential for the detection of CD-63-expressing exosomes in early diagnosis of prostate disease because CD63-positive exosomes were less detected from the prostate patient serum. Also, the biosensor was used to monitor the secretion of exosomes with the drug therapy, showing a close relationship between the secretion of exosomes and the concentration of cisplatin. The biosensing platform provides a novel way toward POCT for the diagnosis and prognosis prediction of prostate disease and other diseases via biomarker expression levels of exosomes.
Collapse
Affiliation(s)
- Jing Su
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shixing Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanzhi Dou
- University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhihan Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolong Jia
- Department of Urology, Ningbo First Hospital Ningbo, Hospital of Zhejiang University, 17 Ningbo, Ningbo 315010, Zhejiang Province, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiping Song
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
16
|
Feng J, Chu C, Ma Z. Electrochemical Signal Substance for Multiplexed Immunosensing Interface Construction: A Mini Review. Molecules 2022; 27:267. [PMID: 35011499 PMCID: PMC8746521 DOI: 10.3390/molecules27010267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Appropriate labeling method of signal substance is necessary for the construction of multiplexed electrochemical immunosensing interface to enhance the specificity for the diagnosis of cancer. So far, various electrochemical substances, including organic molecules, metal ions, metal nanoparticles, Prussian blue, and other methods for an electrochemical signal generation have been successfully applied in multiplexed biosensor designing. However, few works have been reported on the summary of electrochemical signal substance applied in constructing multiplexed immunosensing interface. Herein, according to the classification of labeled electrochemical signal substance, this review has summarized the recent state-of-art development for the designing of electrochemical immunosensing interface for simultaneous detection of multiple tumor markers. After that, the conclusion and prospects for future applications of electrochemical signal substances in multiplexed immunosensors are also discussed. The current review can provide a comprehensive summary of signal substance selection for workers researched in electrochemical sensors, and further, make contributions for the designing of multiplexed electrochemical immunosensing interface with well signal.
Collapse
Affiliation(s)
| | | | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China; (J.F.); (C.C.)
| |
Collapse
|
17
|
Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. BIOSENSORS 2021; 11:bios11120486. [PMID: 34940243 PMCID: PMC8699144 DOI: 10.3390/bios11120486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
This review focuses on recent advances in the application of carbon nanotubes (CNTs) for the development of sensors and biosensors. The paper discusses various configurations of these devices, including their integration in analytical devices. Carbon nanotube-based sensors have been developed for a broad range of applications including electrochemical sensors for food safety, optical sensors for heavy metal detection, and field-effect devices for virus detection. However, as yet there are only a few examples of carbon nanotube-based sensors that have reached the marketplace. Challenges still hamper the real-world application of carbon nanotube-based sensors, primarily, the integration of carbon nanotube sensing elements into analytical devices and fabrication on an industrial scale.
Collapse
Affiliation(s)
- David C. Ferrier
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
| | - Kevin C. Honeychurch
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
- Centre for Research in Biosciences, Frenchay Campus, Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
18
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
19
|
Meng W, Li M, Zhang Y. Adriamycin coated silica microspheres as labels for cancer biomarker alpha-fetoprotein detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2665-2670. [PMID: 34046653 DOI: 10.1039/d1ay00655j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adriamycin (ADM)-coated silica microspheres as a label for the sensitive detection of a cancer biomarker alpha-fetoprotein (AFP) was reported. Silica microspheres (SiO2 MSs) were employed as the carrier for the immobilization of gold nanoparticles (Au NPs), secondary antibody (Ab2) and ADM (denote: ADM@Au NPs@SiO2 MS/Ab2) as labels. In the presence of AFP, the labels were captured on the surface of the Au NP-reduced graphene oxide (rGO) (Au NP-rGO) nanocomposites to form a sandwich structure vs. the specific recognition of antibody-antigen. In a pH 7.4 phosphate buffer solution, a well-defined peak of ADM at about -0.70 V (vs. SCE) was recorded via differential pulse voltammetry, the peak intensity of which was related to the concentration of AFP. Under optimal experimental conditions, the immunoassay exhibited a wide linear range (0.5 pg mL-1 to 75 ng mL-1) and low limit of detection (0.17 pg mL-1). Further, the immunoassay was evaluated for serum samples, which gave satisfactory results.
Collapse
Affiliation(s)
- Wenwen Meng
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
20
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
21
|
Murugesan R, Raman S. Recent trends in carbon nanotubes based prostate cancer therapy: A biomedical hybrid for diagnosis and treatment. Curr Drug Deliv 2021; 19:229-237. [PMID: 33655834 DOI: 10.2174/1567201818666210224101456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022]
Abstract
At present treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and, the incapability of drugs to annoy the cellular barriers. Carbon nanotubes (CNTs) generally have excellent physio-chemical properties, which include high-level penetration into the cell membrane, high surface area and high capacity of drug loading by in circulating modification with bio-molecules, project them as an appropriate candidate to diagnose and deliver drugs to prostate cancer (PCa). Additionally, the chemically modified CNTs which have excellent 'Biosensing' properties therefore makes it easy for detecting PCa without fluorescent agent and thus targets the particular site of PCa and also, Drug delivery can accomplish a high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focussed on the diagnosis and treatment of PCa. Here, we detailly reviewed the current progress of the CNTs based diagnosis and targeted drug delivery system for managing and curing PCa.
Collapse
Affiliation(s)
- Raja Murugesan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty. India
| | - Sureshkumar Raman
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty. India
| |
Collapse
|
22
|
Banerjee A, Maity S, Mastrangelo CH. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1253. [PMID: 33578726 PMCID: PMC7916491 DOI: 10.3390/s21041253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/03/2023]
Abstract
Biosensors are essential tools which have been traditionally used to monitor environmental pollution and detect the presence of toxic elements and biohazardous bacteria or virus in organic matter and biomolecules for clinical diagnostics. In the last couple of decades, the scientific community has witnessed their widespread application in the fields of military, health care, industrial process control, environmental monitoring, food-quality control, and microbiology. Biosensor technology has greatly evolved from in vitro studies based on the biosensing ability of organic beings to the highly sophisticated world of nanofabrication-enabled miniaturized biosensors. The incorporation of nanotechnology in the vast field of biosensing has led to the development of novel sensors and sensing mechanisms, as well as an increase in the sensitivity and performance of the existing biosensors. Additionally, the nanoscale dimension further assists the development of sensors for rapid and simple detection in vivo as well as the ability to probe single biomolecules and obtain critical information for their detection and analysis. However, the major drawbacks of this include, but are not limited to, potential toxicities associated with the unavoidable release of nanoparticles into the environment, miniaturization-induced unreliability, lack of automation, and difficulty of integrating the nanostructured-based biosensors, as well as unreliable transduction signals from these devices. Although the field of biosensors is vast, we intend to explore various nanotechnology-enabled biosensors as part of this review article and provide a brief description of their fundamental working principles and potential applications. The article aims to provide the reader a holistic overview of different nanostructures which have been used for biosensing purposes along with some specific applications in the field of cancer detection and the Internet of things (IoT), as well as a brief overview of machine-learning-based biosensing.
Collapse
Affiliation(s)
- Aishwaryadev Banerjee
- Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Swagata Maity
- Department of Condensed Matter Physics and Materials Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India;
| | - Carlos H. Mastrangelo
- Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Su J, Liu W, Chen S, Deng W, Dou Y, Zhao Z, Li J, Li Z, Yin H, Ding X, Song S. A Carbon-Based DNA Framework Nano-Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio. ACS Sens 2020; 5:3979-3987. [PMID: 33225707 DOI: 10.1021/acssensors.0c01745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biosensing interface based on screen-printed carbon electrodes (SPCE) has been widely used for electrochemical biosensors in the field of medical diagnostics, food safety, and environmental monitoring. Nevertheless, SPCE always has a rough surface, which is easy to result in the disorder of nucleic acid capture probes, the nonspecific adsorption of signaling probes, the steric hindrance of target binding, and decrease in the signal-to-noise ratio and sensitivity of biosensors. So far, it still remains extremely challenging to develop high-efficiency carbon-based biosensing interfaces, especially for DNA probe-based assembly and functionalization. In this paper, we first used a specific DNA framework, DNA tetrahedron to solve the defects of the carbon interface, improving the biosensing ability of SPCE. With covalent coupling, the DNA tetrahedron could be immobilized on the carbon surface. Biosensing probe sequences extending from the DNA tetrahedron can be changed for different target molecules. We demonstrated that the improved SPCE could be applied for the detection of a variety of bioactive molecules. Typically, we designed gap hybridization, aptamer "sandwich" and aptamer competition reduction strategy for the detection of miRNA-141, thrombin, and ATP, respectively. High signal-to-noise ratio, sensitivity, and specificity were obtained for all of these kinds. Especially, the DNA tetrahedron-modified SPCE can work well with serum samples. The carbon-based DNA framework nano-bio interface would expand the use of SPCE and make electrochemical biosensors more available and valuable in clinical diagnosis.
Collapse
Affiliation(s)
- Jing Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenhan Liu
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixing Chen
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Wangping Deng
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Yanzhi Dou
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihan Zhao
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Jianyong Li
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yin
- Department of Spine, TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiping Song
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
25
|
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020; 165:3020-3039. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Since the specific proteins (carbohydrate antigens, ligands and interleukins) get raised up in body tissue or fluids in cancer cases, early detection of them will provide an effective treatment and survival rate. Sensitive and accurate determination of multiple cancer proteins can be engaged in chorus by simultaneous/multiplex detection in the biomedical fields. Bioassaying technology is one of the non-invasive, high-sensitive, and economical methods. Currently, extensive application of nanomaterial (biocompatible polymers, metallic and metal oxide) in bioassays resulted in ultra-high sensitive and selective diagnosis. This review article focuses on types of multiplex bioassays for delicate and specific determination of cancer proteins for diagnostic aims. It also covers two modes of multiplex bioassays as multi labeled bioassays and spatially-separated test zones (multi-electrode mode). In this review, the nanotechnological, structural, and technical perspectives in the multiplex analysis of cancer proteins were discussed. Finally, the use of different types of nanomaterials, polysaccharides, biopolymers and their advantages in signal amplification are discussed.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
26
|
Highly sensitive immunosensor based on polydopamine-nanofilm modified 3D gold nanoelectrode for α-fetoprotein detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Shen Y, Modha S, Tsutsui H, Mulchandani A. An origami electrical biosensor for multiplexed analyte detection in body fluids. Biosens Bioelectron 2020; 171:112721. [PMID: 33091685 DOI: 10.1016/j.bios.2020.112721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
We developed an affordable, highly sensitive, and specific paper-based microfluidic platform for fast multiplexed detections of important biomarkers in various body fluids, including urine, saliva, serum, and whole blood. The sensor array consisted of five individual sensing channels with various functionalities that only required a micro liter-sized sample, which was equally split into aliquots by the built-in paper microfluidics. We achieved the individual functionalizations of various bioreceptors by employing the use of wax barriers and 'paper bridges' in an easy and low-cost manner. Pyrene carboxylic acid-modified single-walled carbon nanotubes (PCA/SWNTs) were deposited by quantitative inkjet printing with an optimal 3-dimensional semiconductor density on a paper substrate. Multiple antibodies were immobilized onto the SWNTs surface for highly sensitive and specific field-effect transistor (FET)/chemiresistor (CR) biosensors. We explored the optimal sensing conditions for the paper-based CR biosensor to achieve high sensitivities and specificities towards the target biomarker proteins (human serum albumin (HSA) and human immunoglobulin G (HIgG)) and achieved an ultralow detectable concentration of HSA and HIgG at 1.5 pM. Besides, origami folding was employed to simplify the fabrication process further. The sensing platform described in this work was cost-effective, semi-automated, and user-friendly. It demonstrated the capability of having multiple sensing functions in one paper-based microfluidic sensing platform. It envisioned the potential of a point-of-care device with full-analysis for practical diagnostics in an ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users) fashion for a quick test of targets of interest.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
28
|
Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Assari P, Rafati AA, Feizollahi A, Joghani RA. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111066. [PMID: 32600691 DOI: 10.1016/j.msec.2020.111066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
The aim of this research is to introduce a novel label free electrochemical immunosensor based on glassy carbon electrode (GCE) modified with carboxylated carbon nanotubes (COOH-MWCNTs)/polyaniline (PANI)/gold nanoparticles (AuNPs) for the detection of prostate specific antigen (PSA). The AuNPs were utilized as a connector for PSA antibody immobilization through NH2 groups on antibody. Investigations on modified electrode surface were performed by FT-IR spectrum, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) to evaluate the synthesized nanocomposite and modified electrode surface. As a sensitive analytical method for the detection of PSA, differential pulse voltammetry (DPV) was employed in different ranges of antigen concentration, 1.66 ag·mL-1 to 1.3 ng·mL-1. In addition, the detection limit was obtained 0.5 pg·mL-1, from the linear relationship between antigen concentration log and peak current. Also, the proposed immunosensor was carried out for the determination of PSA in human serum samples, indicating recoveries ranging from 92 to 104%. Finally, it should be noted that the reproducibility and specificity, along with the stability of the present immunosensor were examined, and satisfactory findings were obtained, thus proving it as a promising PSA immunosensor.
Collapse
Affiliation(s)
- Parnaz Assari
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Azizallah Feizollahi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Roghayeh Asadpour Joghani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
30
|
Liu X, Yue T, Qi K, Qiu Y, Guo X. Porous graphene based electrochemical immunosensor using Cu 3(BTC) 2 metal-organic framework as nonenzymatic label. Talanta 2020; 217:121042. [PMID: 32498912 DOI: 10.1016/j.talanta.2020.121042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
An electrochemical immunosensor for highly sensitive detection of cancer biomarkers has been developed based on the combination of a sensing platform of polydopamine modified porous graphene and a nonenzymatic label of metal-organic framework (MOF) conjugated secondary antibody. This approach achieves a wide range of linear response from 0.1 to 10 ng/mL, low detection limit of 0.025 ng/mL (at a signal to noise ratio of 3), good reproducibility and selectivity for the detection of prostate specific antigen (PSA) as a model analyte. The high performance of the immunosensor is attributed to the high surface area from porous graphene and the strong adhesion of polydopamine, allowing a high load of the primary antibody of PSA, as well as the highly electrocatalytic activity of the Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylic acid) MOF toward H2O2 to provide greatly amplified sensitivity. In this respect, the MOF-based nonenzymatic label shows promising application for the point-of-care detection of different cancer biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaobang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Ting Yue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Kai Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Yubing Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
31
|
Omurtag Ozgen PS, Atasoy S, Zengin Kurt B, Durmus Z, Yigit G, Dag A. Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. J Mater Chem B 2020; 8:3123-3137. [PMID: 32211704 DOI: 10.1039/c9tb02711d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted great attention in biomedical applications such as cancer imaging and therapy. CNMs, which are currently used in a wide range of applications, suffer from drawbacks of toxicity and low biocompatibility. Either noncovalent or covalent functionalization of CNMs with hydrophilic and biocompatible polymers which help to block hydrophobic interactivity between CNMs and cells can greatly increase their biocompatibility by eliminating their probable toxicity towards living organisms. In this report, we present a comparison of both noncovalent and covalent functionalization approaches in order to introduce a biocompatible glycoblock copolymer onto multi-walled carbon nanotubes (CNTs) in order to enhance their potential in therapies. An anticancer drug (doxorubicin, Dox) was conjugated with two different end functionalized poly(1-O-methacryloyl-β-d-fructopyranose-b-(2-methacryloxyethoxy))benzaldehyde glycoblock copolymers, which were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, by either noncovalent or covalent tethering. CNTs were coated separately with the synthesized drug-conjugated glycoblock copolymers and folic acid (FA) to obtain an efficient drug delivery platform for dual-targeting of glucose transporter protein (GLUT5) and folic acid receptors (FR) in breast cancer. A library of synthesized monomers, polymers and prepared glycoblock copolymer coated CNTs (hybrid-CNTs) using both approaches were comprehensively characterized by various techniques. Transmission electron microscopy measurements showed the homogeneous, smooth morphology of the prepared Dox-conjugated glycoblock copolymer coating of CNTs and confocal laser scanning microscopy images displayed successful cellular internalization of hybrid-CNTs in the MCF-7 and MDA-MB-231 human breast cancer cell lines. This research demonstrates the potential of hybrid-CNTs as a biocompatible drug delivery system as well as in vitro use of Dox-conjugated vehicles for dual receptor mediated breast cancer therapy.
Collapse
Affiliation(s)
- Pinar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
32
|
Zhang J, Lu N, Peng H, Li J, Yan R, Shi X, Ma P, Lv M, Wang L, Tang Z, Zhang M. Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. NANOSCALE 2020; 12:5186-5195. [PMID: 32073092 DOI: 10.1039/c9nr10779g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular hydrogels with stimuli-responsive behaviors under aqueous environments are attractive for their potential applications in controlled drug delivery, clinical diagnostics, and tissue engineering. However, there still remain challenges in developing multicomponent hydrogels as a new generation of "smart" soft materials with multiple intelligent functions toward complex biochemical stimuli. In this work, a three dimensional (3D)-nanostructured supramolecular hydrogel was fabricated using a simple and facile strategy via the self-assembly of graphene oxide (GO) nanosheets, poly(vinyl alcohol) (PVA) chains, and G-quartet/hemin (G4/H) motifs. The as-prepared GO/PVA/G4/H hydrogel exhibited a honeycomb-like 3D GO network architecture as well as excellent mechanical properties. Importantly, the hydrogel demonstrated pH-inducing reversible and cyclic phase transitions between solution and hydrogel states, which could be used as "ink" for injectable 3D printing of different shaped patterns. Also, binary AND and OR logic gates were successfully built by encapsulating enzymes into the hydrogels, which responded to a variety of biochemicals. In addition, the hydrogels showed excellent peroxidase-like activity, achieving the ultrasensitive detection of H2O2 at a concentration as low as 100 nM by their deposition on an electrochemical electrode. The design of multicomponent hydrogels opens up an avenue to fabricate novel "smart" soft matter for biological and medical applications.
Collapse
Affiliation(s)
- Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hongzhen Peng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ruohong Yan
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xuerong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Pan Ma
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Lv
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China and National Clinical Research Center of Oral Diseases, Shanghai 200011, China and Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
33
|
Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens Bioelectron 2019; 150:111881. [PMID: 31780408 DOI: 10.1016/j.bios.2019.111881] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
In enzyme-based immunoassys, the use of natural enzyme has been remarkably restricted by the inconvenience in preparation and storage, especially for point-of-care testing. Nanozymes, which can mimic the functions of natural enzymes, have been regarded as promising alternatives due to their robust stability and convenience in fabrication. Here we fabricated one-dimensional Fe3O4@C core-shell nanostructures via a solvent-thermal method. Thus prepared nanocomposites showed excellent peroxidase-like activity, capable of catalyzing chromogenic substrates into colored products in the presence of H2O2. We then developed a nanozyme-linked aptamer sorbent assay (NLASA) in a sandwich format, in which the as-prepared Fe3O4@C nanowires were employed as catalytic labels for colorimetric detection by naked eyes. In the detection of platelet-derived growth factor BB (PDGF-BB), this assay reliably exhibited detection limits as low as 10 fM, with a working range from 10 fM to 100 nM. By incorporating G-quadruplex-hemin DNAzyme with Fe3O4@C nanowires, the detection limit could be further lowered to 50 aM. The detection limit of PDGF-BB in 50% human serum was 100 fM. This ultrasensitive, cost-effective and easy-to-operate sensing platform offers new opportunities for protein detection in clinical diagnosis.
Collapse
|
34
|
Li M, Liu J, Zhao H, Song L, Mao X, Ge Z, Li Q, Li F, Zuo X. DNA Framework-Programmed Micronano Hierarchy Sensor Interface for Metabolite Analysis in Whole Blood. ACS APPLIED BIO MATERIALS 2019; 3:53-58. [PMID: 35019426 DOI: 10.1021/acsabm.9b00841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiangbo Liu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haipei Zhao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhilei Ge
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
35
|
Su S, Sun Q, Wan L, Gu X, Zhu D, Zhou Y, Chao J, Wang L. Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosens Bioelectron 2019; 140:111353. [DOI: 10.1016/j.bios.2019.111353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
36
|
Abstract
It is well-known that electrochemical immunosensors have many advantages, including but not limited to high sensitivity, simplicity in application, low-cost production, automated control and potential miniaturization. Due to specific antigen–antibody recognition, electrochemical immunosensors also have provided exceptional possibilities for real-time trace detection of analytical biotargets, which consists of small molecules (such as natural toxins and haptens), macromolecules, cells, bacteria, pathogens or viruses. Recently, the advances in the development of electrochemical immunosensors can be classified into the following directions: the first is using electrochemical detection techniques (voltammetric, amperometric, impedance spectroscopic, potentiometric, piezoelectric, conductometric and alternating current voltammetric) to achieve high sensitivity regarding the electrochemical change of electrochemical signal transduction; the second direction is developing sensor configurations (microfluidic and paper-based platforms, microelectrodes and electrode arrays) for simultaneous multiplex high-throughput analyses; and the last is designing nanostructured materials serving as sensing interfaces to improve sensor sensitivity and selectivity. This chapter introduces the working principle and summarizes the state-of-the-art of electrochemical immunosensors during the past few years with practically relevant details for: (a) metal nanoparticle- and quantum dot-labeled immunosensors; (b) enzyme-labeled immunosensors; and (c) magnetoimmunosensors. The importance of various types of nanomaterials is also thoroughly reviewed to obtain an insight into understanding the theoretical basis and practical orientation for the next generation of diagnostic devices.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST) 1 Dai Co Viet Road Hanoi 100000 Vietnam
| | - Tran Dai Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| |
Collapse
|
37
|
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. BIOSENSORS 2019; 9:E86. [PMID: 31324020 PMCID: PMC6784381 DOI: 10.3390/bios9030086] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
An immunosensor is a kind of affinity biosensor based on interactions between an antigen and specific antigen immobilized on a transducer surface. Immunosensors possess high selectivity and sensitivity due to the specific binding between antibody and corresponding antigen, making them a suitable platform for several applications especially in the medical and bioanalysis fields. Electrochemical immunosensors rely on the measurements of an electrical signal recorded by an electrochemical transducer and can be classed as amperometric, potentiometric, conductometric, or impedimetric depending on the signal type. Among the immunosensors, electrochemical immunosensors have been more perfected due to their simplicity and, especially their ability to be portable, and for in situ or automated detection. This review addresses the potential of immunosensors destined for application in clinical analysis, especially cancer biomarker diagnosis. The emphasis is on the approaches used to fabricate electrochemical immunosensors. A general overview of recent applications of the developed electrochemical immunosensors in the clinical approach is described.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
38
|
Chen X, Dong T, Wei X, Yang Z, Matos Pires NM, Ren J, Jiang Z. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva. Biosens Bioelectron 2019; 142:111453. [PMID: 31295711 DOI: 10.1016/j.bios.2019.111453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death nowadays, and its underdiagnosis is still a great challenge. More effective diagnosis method is in urgent need since the traditional spirometry has many limitations in the practical application. The electrochemical (EC) detection methods have their unique advantages of high accuracy, short response time and easy integration of the system. In this review, recent works on the EC methods for COPD biomarkers including interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP) are summarized. Five types of EC methods are highlighted in this study, as enzyme-labelled immunosensors, nanoparticle-labelled immunosensors, capacitive or impedimetric immunosensors, magnetoimmunosensors, and field effect transistor (FET) immunosensors. To date, EC immunosensors have been exhibiting high analytical performance with a detection limit that can achieve several pg/mL or even lower. The simplicity of EC immunosensors makes them a perfect solution for a future point-of-care device to use in settings for COPD diagnosis and follow-up. Nevertheless, more efforts need to be paid on the simultaneous detection of multiple biomarkers, a demand for the clinical diagnosis, and processes of assay simplification towards achieving one-step detection.
Collapse
Affiliation(s)
- Xuan Chen
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Juan Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
39
|
Recent advances in immunodiagnostics based on biosensor technologies-from central laboratory to the point of care. Anal Bioanal Chem 2019; 411:7607-7621. [PMID: 31152226 DOI: 10.1007/s00216-019-01915-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Immunological methods are widely applied in medical diagnostics for the detection and quantification of a plethora of analytes. Associated analytical challenges usually require these assays to be performed in a central laboratory. During the last several years, however, the clinical demand for rapid immunodiagnostics to be performed in the immediate proximity of the patient has been constantly increasing. Biosensors constitute one of the key technologies enabling the necessary, yet challenging transition of immunodiagnostic tests from the central laboratory to the point of care. This review is intended to provide insights into the current state of this transition process with a focus on the role of biosensor-based systems. To begin with, an overview on standard immunodiagnostic tests presently employed in the central laboratory and at the point of care is given. The review then moves on to demonstrate how biosensor technologies are reshaping this landscape. Single analyte as well as multiplexed immunosensors applicable to point of care scenarios are presented. A section on the areas of clinical application then creates the bridge to day-to-day diagnostic practice. Finally, the depicted developments are critically weighed and future perspectives discussed in order to give the reader a firm idea on the forthcoming trends to be expected in this diagnostic field.
Collapse
|
40
|
Wang X, Su J, Zeng D, Liu G, Liu L, Xu Y, Wang C, Liu X, Wang L, Mi X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019; 201:119-125. [PMID: 31122401 DOI: 10.1016/j.talanta.2019.03.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/14/2019] [Accepted: 03/30/2019] [Indexed: 01/18/2023]
Abstract
Glycated hemoglobin (HbA1c) represents the average glucose level over the past three months and has been considered as the most important biomarker for the diagnosis of Type Ⅱ diabetes (T2D). Herein, a label-free and quantitative electrochemical biosensor based on 4-mercaptophenylboronic acid (4-MPBA) modified gold nano-flowers (Au NFs) substrate was developed for the determination of HbA1c. Under optimal conditions, the linear dynamic ranges of HbA1c (5 μg/mL - 1000 μg/mL) and HbA1c% (2%-20%) by cyclic voltammetry were achieved. The electrochemical biosensor showed great detection specificity towards HbA1c and relatively stability after storage at 4 °C. This method could also be applied in human serum system which holds great potential to be applied to monitor real blood samples of diabetes patients. In human serum system, the recovery rate could reach 103.8% and 99.0%. It could achieve fast detection, the total analysis time was less than 65 min, and the detection time was less than 10 s. Moreover, in terms of fabrication process, operation procedure, detection time and cost, this technique was superior to the current HbA1c detection methods suggesting great promise for the practical clinical use in the future.
Collapse
Affiliation(s)
- Xiao Wang
- , School of Life Sciences, Shanghai University, Shanghai, 200444, China; , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jing Su
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Dongdong Zeng
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Gang Liu
- , Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, China
| | - Lizhuang Liu
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yi Xu
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chenguang Wang
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xinxin Liu
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lu Wang
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xianqiang Mi
- , Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; , State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
41
|
Aydın M, Aydın EB, Sezgintürk MK. A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. Biosens Bioelectron 2018; 117:720-728. [DOI: 10.1016/j.bios.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
|
42
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
43
|
Gulati P, Kaur P, Rajam MV, Srivastava T, Mishra P, Islam SS. Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection. Anal Biochem 2018; 557:111-119. [PMID: 30048629 DOI: 10.1016/j.ab.2018.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/02/2018] [Accepted: 07/22/2018] [Indexed: 01/09/2023]
Abstract
A label-free electrochemical immunosensor is fabricated using high quality single-walled carbon nanotube for early detection of leukemia cells. It is based on P-glycoprotein (P-gp) expression level detection; by effective surface immune-complex formation with the monoclonal anti-P-glycoprotein antibodies bound to an epoxy modified nanotube surface. The expression level of P-gp on the leukemia cell surface detected by cyclic voltammetry is in good agreement with immunofluorescence microscopy studies. The proposed biosensor could be used for the detection of P-gp expressing cells within a linear range of 1.5 × 103 cells/mL - 1.5 × 107 cells/mL where lowest detection limit is found to be 19 cells/mL. A calibration plot of peak current v/s the logarithm of concentration of leukemia K562 cells is found linear with a regression coefficient of 0.935. This strategy promises high sensitivity, low-cost, fast, and repeatable recognition of cancer cells. The immunosensor was stable for three weeks and showed good precision with the relative standard deviation (RSD) of 3.57% and 2.12% assayed at the cell concentrations of 1.5 × 103 and 1.5 × 105 cells mL-1 respectively. The proposed single-wall carbon nanotube based immunosensor showed better analytical performance in comparison to similar leukemia electrochemical sensors reported.
Collapse
Affiliation(s)
- Payal Gulati
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Prabhjot Kaur
- Department of Genetics, Delhi University, New Delhi, India
| | - M V Rajam
- Department of Genetics, Delhi University, New Delhi, India
| | | | - Prabhash Mishra
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - S S Islam
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India.
| |
Collapse
|
44
|
Farías ME, Alejandra Luna M, Niebylski AM, Mariano Correa N, Molina PG. Characterization of a label system formed by large unilamellar vesicles for its potential use in the design of electrochemical biosensors. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Aydın EB, Sezgintürk MK. An impedimetric immunosensor for highly sensitive detection of IL-8 in human serum and saliva samples: A new surface modification method by 6-phosphonohexanoic acid for biosensing applications. Anal Biochem 2018; 554:44-52. [PMID: 29902421 DOI: 10.1016/j.ab.2018.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
Abstract
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
46
|
A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 2018; 102:652-660. [DOI: 10.1016/j.bios.2017.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
47
|
Zhang X, Zhuang H. A carbon nanotube-enhanced real-time immuno-PCR for ultrasensitive detection of AHTN in water. Anal Biochem 2017; 544:22-28. [PMID: 29258827 DOI: 10.1016/j.ab.2017.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Polycyclic musks (PCMs) in the aquatic environment have become an emerging environmental issue because of their potential risk. The most commonly used method for analysis of PCMs is gas chromatography-mass spectrometer (GC-MS) with different sample extractions, which are somewhat expensive to operate, laborious and complex. In this paper, a carbon nanotube-enhanced real time immuno-PCR was developed for ultrasensitive detection of AHTN in water for the first time. The SWCNTs were used to immobilize numerous amino-DNA and polyclonal antibody to form polyclonal antibody-CNTs-DNA conjugates, which were used as a signal-amplifier in the proposed immunoassay system. This proposed carbon nanotube enhanced real time immuno-PCR assay was used to determine AHTN in water samples ranging from 5 pg/L-0.1 ng/L; using sample size as low as 10 μL. This proposed carbon nanotube enhanced real time immuno-PCR is the most ultrasensitive one for determination of AHTN in water without pre-concentration or extractions; and it provide a potential way for ultra-trace AHTN detection in the aquatic environment.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, People's Republic of China
| | - Huisheng Zhuang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, People's Republic of China.
| |
Collapse
|
48
|
Zhang X, Zhuang H. A Biotin-streptavidin-enhanced Carbon Nanotube Amplification Strategy for an Ultrasensitive Immunodetection of Polybrominated Diphenyl Ethers. ANAL SCI 2017; 33:1441-1446. [PMID: 29225237 DOI: 10.2116/analsci.33.1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The extensive use of polybrominated diphenyl ethers (PBDEs) has resulted in its increasingly widespread presence. Especially the lower halogenated PBDEs accumulate to a greater degree than the higher halogenated PBDEs in house dust, sewage sludge, pets, or even humans. In the present work, we developed an ultrasensitive biotin-streptavidin-enhanced carbon nanotube amplification strategy for the immunodetection of PBDEs, in which single-walled carbon nanotubes were used to immobilize numerous streptavidin. Meanwhile, we used biotin conjugated horseradish peroxidase (B-HRP) and biotin conjugated Goat anti-rabbit (B-IgG) to link the HRP and IgG to CNTs by using a biotin-streptavidin system. The sensitivity of the streptavidin-biotin-IgG-CNTs-HRP bioconjugate was compared with a commercial HRP-labelled IgG by using indirect competitive ELISA. The limit of this proposed ELISA detection (IC10) was 0.0059 ng/mL, showing a 20-time lower detection limit over the commercial one (IC10 = 0.1193 ng/mL). Finally, we applied the assay to the detection of PBDEs in dust samples. The results were consistent with those using GC-ECD, which confirmed that the proposed amplification strategy was accurate and receptive. This proposed biotin-streptavidin-enhanced carbon nanotube amplification strategy would be useful for ultrasensitive immunodetection in environmental studies.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Environment Science and Technology, Shanghai Jiao Tong University
| | - Huisheng Zhuang
- School of Environment Science and Technology, Shanghai Jiao Tong University
| |
Collapse
|
49
|
Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Indexed: 12/31/2022]
Abstract
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential.
Collapse
Affiliation(s)
- Nagappa L. Teradal
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
50
|
Guo J, Ma X. Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosens Bioelectron 2017; 94:415-419. [DOI: 10.1016/j.bios.2017.03.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
|