1
|
Yu S, Li L, Kong Q, Zhang W, Chen H, Zhang X, Kong J. Reversible addition-fragmentation chain transfer enhanced aggregation signal-on fluorescence detection of alkaline phosphatase. Anal Bioanal Chem 2025; 417:119-130. [PMID: 39511014 DOI: 10.1007/s00216-024-05630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
The instability of the signal intensity of fluorescent biosensors and the false signals have been significant factors affecting the performance of biosensors. Herein, a novel signaling system is devised through the application of reversible addition-fragmentation chain transfer (RAFT) polymerization with monomers containing the tetraphenylethylene (TPE) groups. TPE exhibits an aggregation-induced emission (AIE) phenomenon in certain solvents, mainly due to the blockage of the rotation of its four benzene rings, which also exist in the aggregated state. With this property, a series of molecules are modified based on click chemistry for RAFT polymerization using Fe3O4 magnetic beads as the carriers, and stable aggregated luminescent TPE polymers are formed on the surface of magnetic beads to realize the transformation of fluorescence signal from "0" to "1". In addition, the fluorescence signal demonstrates a positive correlation with alkaline phosphatase (ALP) activity, which can be quantified by measuring the fluorescence intensity. The biosensor exhibits high sensitivity and good linearity in the range of 0.1-5 U/L, with a LOD of 0.079 U/L. Furthermore, the designed strategy demonstrated satisfactory performance in the quantitative determination of ALP activity in serum samples, indicating that the signaling system developed by combining RAFT polymerization and AIE molecules has an important application in the field of fluorescent biosensors.
Collapse
Affiliation(s)
- Shuaibing Yu
- College of the Environment & Ecology, Jiangsu Open University, Nanjing, 210017, PR China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Qiyun Kong
- Hwa Chong Institution, 661 Bukit Timah Road, Singapore, 269734, Singapore
| | - Wenqi Zhang
- College of the Environment & Ecology, Jiangsu Open University, Nanjing, 210017, PR China
| | - Huan Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
2
|
Hussain S, Adeloju SB. Layered Architectural Fabrication of a Novel Sulfite Nanobiosensor by Encapsulation of Sulfite Oxidase on a Polypyrrole-Multiwalled Carbon Nanotubes Composite Decorated with Platinum Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305333. [PMID: 37857587 DOI: 10.1002/smll.202305333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Indexed: 10/21/2023]
Abstract
The fabrication of a highly selective and ultrasensitive sulfite nanobiosensor based on a layered architectural fabrication aided by the encapsulation of sulfite oxidase (SOx) in Nafion (Naf) matrix on a multiwalled carbon nanotubes-polypyrrole (MWCNTs-PPy) composite decorated with platinum nanoparticles (PtNPs) is described. The MWCNTs are deposited in the inner layer on a Pt electrode during electropolymerization of pyrrole (Py), followed by decoration with a PtNPs layer and subsequent encapsulation of SOx with Naf in the third layer capped with a fourth thin PtNPs layer. Images obtained by field emission scanning electron microscopy (FESEM) reveal that high-density PtNPs are deposited onto the 3D nanostructured inner MWCNTs-PPy layer and the electrochemical behavior is investigated. A large surface area provided by the incorporation of MWCNTs in the composite and decoration with PtNPs enables increased SOx loading, SOx retention, and substantial improvement in sensing performance. The resulting layered PtNPs/SOx-Naf/PtNPs/MWCNTs-PPy nanobiosensor exhibits a fast response time (within 3 s), a linear calibration range of 20 nmm - 6 m with an excellent sensitivity of 71 µA mm-1 cm-2 and a detection limit of 5.4 nm. The nanobiosensor was effective in discriminating against common interferants and was successfully applied to sulfite determination in real samples.
Collapse
Affiliation(s)
- Shahid Hussain
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Samuel B Adeloju
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
- Faculty of Science & Health, Charles Sturt University, Albury, NSW, 2640, Australia
| |
Collapse
|
3
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
4
|
Wei BY, Zhao CY, Xiao MM, Zheng Y, Li F, Miao JY, Zhao BX, Lin ZM. An efficient dual-function fluorescent probe for sulfites and sulfides and its imaging application in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123541. [PMID: 37864977 DOI: 10.1016/j.saa.2023.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
As gas signaling molecules in organisms, SO2 derivatives and H2S play crucial regulating roles in a series of physiological processes. Therefore, developing an assay that can accurately monitor the concentration of SO2 derivatives and H2S in cells is extremely important for the research and treatment of related illnesses. A bifunctional probe SN-F based on FRET mechanism for SO2 derivatives and H2S was designed. SN-F had a short response time to SO2 (2 min), excellent anti-interference capability and selectivity in the non-organic solvent system (pH = 7.4), which was suitable for the determination of SO2 derivatives in cells. SN-F had a wide linear range for H2S. Moreover, SN-F was applied in cell imaging successfully with high targeting ability to endoplasmic reticulum (ER) and could monitor endogenous and exogenous H2S in cells.
Collapse
Affiliation(s)
- Bing-Yu Wei
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Cong-Yao Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Meng-Min Xiao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yi Zheng
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Feng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun-Ying Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
5
|
Zhang M, Yang Y, Guo W. Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe 3O 4@SiO 2 nanoparticles. Food Chem 2024; 430:137004. [PMID: 37542964 DOI: 10.1016/j.foodchem.2023.137004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
In this work, a simple electrochemical sensing platform based on acid-treated Fe3O4@SiO2 nanoparticles was successfully prepared for nitrite and sulfite detection. Fe3O4@SiO2 nanoparticles were synthesized through the sol-gel and hydrothermal methods. Fe3O4@SiO2 presented positive charges after acid treatment, which could enhance the electrostatic attraction between Fe3O4@SiO2 and nitrite and sulfite. The Fe3O4@SiO2(acid-treated) modified magnetic glassy carbon electrode (MGCE) was applied to detect nitrite and sulfite using differential pulse voltammetry and cyclic voltammetry. Under optimized conditions, the developed electrochemical sensor presented good analytical properties for nitrite and sulfite detection with detection limits of 3.33 μmol/L and 31.57 μmol/L, respectively. The good recoveries varied from 85.18% to 111.02%, with a relative standard deviation of 0.23-4.80%. Furthermore, the Fe3O4@SiO2(acid-treated) modified MGCE showed better selectivity, reproducibility, and repeatability in nitrite and sulfite detection. Therefore, this proposed electrochemical sensor provides a new method for developing a nitrite and sulfite detection sensor.
Collapse
Affiliation(s)
- Maosai Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Hussain S, Adeloju SB. Biofunctionalisation of Polypyrrole Nanowires Array with Sulfite Oxidase Coupled with the Integration of Platinum Nanoparticles for Ultrasensitive Amperometric Detection of Sulfite. BIOSENSORS 2023; 13:621. [PMID: 37366986 DOI: 10.3390/bios13060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Sulfite determination in foods and alcoholic beverages is a common requirement by food and drug administration organisations in most countries. In this study, the enzyme, sulfite oxidase (SOx), is used to biofunctionalise a platinum-nanoparticle-modified polypyrrole nanowire array (PPyNWA) for the ultrasensitive amperometric detection of sulfite. A dual-step anodisation method was used to prepare the anodic aluminum oxide membrane used as a template for the initial fabrication of the PPyNWA. PtNPs were subsequently deposited on the PPyNWA by potential cycling in a platinum solution. The resulting PPyNWA-PtNP electrode was then biofuntionalised by adsorption of SOx onto the surface. The confirmation of the adsorption of SOx and the presence of PtNPs in the PPyNWA-PtNPs-SOx biosensor was verified by scanning electron microscopy and electron dispersive X-ray spectroscopy. Cyclic voltammetry and amperometric measurements were used to investigate the properties of the nanobiosensor and to optimise its use for sulfite detection. Ultrasensitive detection of sulfite with the PPyNWA-PtNPs-SOx nanobiosensor was accomplished by use of 0.3 M pyrrole, 10 U mL-1 of SOx, adsorption time of 8 h, a polymerisation period of 900 s, and an applied current density of 0.7 mA cm-2. The response time of the nanobiosensor was 2 s, and its excellent analytical performance was substantiated with a sensitivity of 57.33 μA cm-2 mM-1, a limit of detection of 12.35 nM, and a linear response range from 0.12 to 1200 μM. Application of the nanobiosensor to sulfite determination in beer and wine samples was achieved with a recovery efficiency of 97-103%.
Collapse
Affiliation(s)
- Shahid Hussain
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Samuel B Adeloju
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- Faculty of Science & Health, Charles Sturt University, Albury, NSW 2640, Australia
| |
Collapse
|
7
|
Zhang D, Wang S, Yang F, Li Z, Huang W. Visual inspection of acidic pH and bisulfite in white wine using a colorimetric and fluorescent probe. Food Chem 2023; 408:135200. [PMID: 36528990 DOI: 10.1016/j.foodchem.2022.135200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The acidic pH and total amount of SO2 are both important quality control indexes of wine, but conventional detection techniques depend heavily on specialized instrument and professional staff, thus are not available to general customers. In this paper, a hemicyanine-based colorimetric and fluorescent probe Hcy-Py was designed and synthesized. It responded to bisulfite selectively with a LOD of 0.68 μM and responded to proton with a pKa of 3.78. Upon the treatment of solutions with different pH values and concentrations of bisulfite, the probe-loaded paper strips displayed distinct color changes under both natural light and UV lamp. When a real white wine sample was subjected to the paper strip experiment, pH as well as bisulfite concentration could be determined by naked-eye quickly and conveniently, thus a visual detection of acidic pH and bisulfite in white wine without involving any sophisticated instrument or professional skill was successfully demonstrated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sifan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fangxi Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Yang M, Shi W, Liu S, Xu K. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32- electrochemical probing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Bhavadharini B, Kavimughil M, Malini B, Vallath A, Prajapati HK, Sunil CK. Recent Advances in Biosensors for Detection of Chemical Contaminants in Food — a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Viswanathan P, Lee D, Manivannan S, Yim T, Kim K. Monolayer assembly of gold nanodots on polyelectrolyte support: A multifunctional electrocatalyst for reduction of oxygen and oxidation of sulfite and nitrite. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Perumal Viswanathan
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| | - Dohun Lee
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| | - Shanmugam Manivannan
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Taeeun Yim
- Energy Conversion & Storage Laboratory (ECSLaB), Department of Chemistry Incheon National University Incheon Republic of Korea
| | - Kyuwon Kim
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| |
Collapse
|
11
|
Affiliation(s)
- Divya Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
12
|
Manjula N, Vinothkumar V, Chen SM. Synthesis and characterization of iron-cobalt oxide/polypyrrole nanocomposite: An electrochemical sensing platform of anti-prostate cancer drug flutamide in human urine and serum samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Luo X, Chen L, Yang J, Li S, Li M, Mo Q, Li Y, Li X. Electrochemically simultaneous detection of ascorbic acid, sulfite and oxalic acid on Pt-Pd nanoparticles/chitosan/nitrogen doped graphene modified glassy carbon electrode: A method for drug quality control. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Mikrochim Acta 2021; 188:202. [PMID: 34041580 DOI: 10.1007/s00604-021-04791-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) are the two most important foodborne pathogens which can easily cause disease infections. Here, the aptamer-facilitated gold/silver nanodimer SERS probes were built for the simultaneous detection of the two bacteria with the help of magnetic separation enrichment. First, two nanodimer SERS signal probes and two magnetic capture probes each connected with the specific aptamer were fabricated. The distance between gold and silver nanoparticles in the dimer can amplify the Raman signal (Cy3 and Rox) at the junction but modified in the aptamer sequence. Then, after the addition of S. typhimurium and S. aureus, the sandwich-like composite structures "SERS signal probes-target-magnetic capture probes" formed because of the high affinity between aptamer sequences and their target bacteria. Under the optimal experimental conditions, the linear correlations between Raman intensity and the logarithm of the concentration of bacteria were y = 876.95x-67.84 (R2 = 0.9865) for S. typhimurium and y = 1280.43x-1752.6 (R2 = 0.9883) for S. aureus. The SERS detection showed the nanodimer probe had high selectivity. Besides, the recovery experiment in milk sample indicated good accuracy compared with the traditional plate counting method.
Collapse
|
15
|
Abd-Rabboh HSM, Amr AEGE, Kamel AH, Al-Omar MA, Sayed AYA. Integrated all-solid-state sulfite sensors modified with two different ion-to-electron transducers: rapid assessment of sulfite in beverages. RSC Adv 2021; 11:3783-3791. [PMID: 35424314 PMCID: PMC8694217 DOI: 10.1039/d0ra09903a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/13/2021] [Accepted: 01/10/2021] [Indexed: 11/21/2022] Open
Abstract
An integrated all-solid-state screen-printed ion-selective potentiometric sensor for rapid assessment of sulfite ion in beverages, based on analytical transduction, is described. The constructed potentiometric cell incorporates a polymeric membrane sulfite ion-selective electrode based on cobalt(ii) phthalocyanine (CoPC) as a recognition material and an Ag/AgCl reference electrode with a polyvinyl butyral reference membrane. Two different solid-contact transducers, namely multi-walled carbon nanotubes (MWCNTs) and polyaniline (PANI) were used for a comparative study. The presented sensors exhibited a rapid Nernst response across the concentration ranges from 2.0 × 10-6 to 2.3 × 10-3 M and from 5.0 × 10-6 to 2.3 × 10-3 M with detection limits equal to 1.1 × 10-6 M and 1.5 × 10-6 M for sensors based on MWCNTs and PANI, respectively. The proposed sensors manifested high selectivity and sensitivity, enhanced stability and low cost that provides a wide number of potential applications for food analysis. Good performance characteristics were obtained for the proposed method after applying the validation requirements. Method precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty are examined. These analytical capabilities support the rapid and direct determination of sulfite in different beverage samples. The analytical results were verified and compared with the standard iodometric method.
Collapse
Affiliation(s)
- Hisham S M Abd-Rabboh
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt +20-1000361328
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia +966-565-148-750
- Applied Organic Chemistry Department, National Research Center Dokki 12622 Giza Egypt
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt +20-1000361328
| | - Mohamed A Al-Omar
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Ahmed Y A Sayed
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia +966-565-148-750
| |
Collapse
|
16
|
Li H, Wang Z, Liu X, Cui F, Chen C, Zhang Z, Li J, Song L, Bai R. Functionalised poplar catkins aerogels: Synthesis, characterisation and application to adsorb Cu(II) and Pb(II) from wastewater. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Hassan SSM, H Kamel A, Amr AEGE, Abd-Rabboh HSM, Al-Omar MA, Elsayed EA. A New Validated Potentiometric Method for Sulfite Assay in Beverages Using Cobalt(II) Phthalocyanine as a Sensory Recognition Element. Molecules 2020; 25:E3076. [PMID: 32640703 PMCID: PMC7412148 DOI: 10.3390/molecules25133076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
A simple potentiometric sensor is described for accurate, precise, and rapid determination of sulfite additives in beverages. The sensor is based on the use of cobalt phthalocyanine as a recognition material, dispersed in a plasticized poly(vinyl chloride) matrix membrane. o-Nitrophenyl octyl ether (o-NPOE) as a membrane solvent and tri-dodecylmethyl- ammonium chloride (TDMAC) as ion discriminators are used as membrane additives. Under the optimized conditions, sulfite ion is accurately and precisely measured under batch and flow injection modes of analysis. The sensor exhibits fast and linear response for 1.0 × 10-2-1.0 × 10-6 M (800-0.08 µg/mL) and 1.0 × 10-1-5.0 × 10-5 M (8000-4 µg/mL) sulfite with Nernstian slopes of -27.4 ± 0.3 and -23.7 ± 0.6 mV/concentration decade under static and hydrodynamic modes of operation, respectively. Results in good agreement with the standard iodometric method are obtained.Validation of the assay method is examined in details including precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty and good performance characteristics of the method are obtained. The sensor response is stable over the pH range of 5 to 7 without any significant interference from most common anions. The advantages offered by the proposed sensor (i.e., wide range of assay, high accuracy and precision, low detection limit, reasonable selectivity, long term response stability, fast response, and long life span and absence of any sample pretreatment steps) suggest its use in the quality control/quality assurance routine tests in beverages industries, toxicological laboratories and by inspection authorities.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Giza, Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elsayed A Elsayed
- Zoology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
18
|
Szunerits S, Nait Saada T, Meziane D, Boukherroub R. Magneto-Optical Nanostructures for Viral Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1271. [PMID: 32610549 PMCID: PMC7408614 DOI: 10.3390/nano10071271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
The eradication of viral infections is an ongoing challenge in the medical field, as currently evidenced with the newly emerged Coronavirus disease 2019 (COVID-19) associated with severe respiratory distress. As treatments are often not available, early detection of an eventual infection and its level becomes of outmost importance. Nanomaterials and nanotechnological approaches are increasingly used in the field of viral sensing to address issues related to signal-to-noise ratio, limiting the sensitivity of the sensor. Superparamagnetic nanoparticles (MPs) present one of the most exciting prospects for magnetic bead-based viral aggregation assays and their integration into different biosensing strategies as they can be easily separated from a complex matrix containing the virus through the application of an external magnetic field. Despite the enormous potential of MPs as capture/pre-concentrating elements, they are not ideal with regard of being active elements in sensing applications as they are not the sensor element itself. Even though engineering of magneto-plasmonic nanostructures as promising hybrid materials directly applicable for sensing due to their plasmonic properties are often used in sensing, to our surprise, the literature of magneto-plasmonic nanostructures for viral sensing is limited to some examples. Considering the wide interest this topic is evoking at present, the different approaches will be discussed in more detail and put into wider perspectives for sensing of viral disease markers.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
| | - Tamazouzt Nait Saada
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou -15000, Algeria;
| | - Dalila Meziane
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou -15000, Algeria;
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
| |
Collapse
|
19
|
|
20
|
Loira I, Morata A, Escott C, Del Fresno JM, Tesfaye W, Palomero F, Suárez-Lepe JA. Applications of nanotechnology in the winemaking process. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03519-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Yang X, Feng P, Ma L, Kang T, Hu S, Hai A, Ke B, Liu J, Li M. Biological applications of a turn-on bioluminescent probe for monitoring sulfite oxidase deficiency in vivo. Eur J Med Chem 2020; 200:112476. [PMID: 32492597 DOI: 10.1016/j.ejmech.2020.112476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Sulfites are widely used as preservative and antioxidant additives in food and drug. A non-invasive method for in vivo imaging of sulfite represents a powerful tool for estimating its potential effects in living organisms. Herein, we report the design, development, and application of sulfite bioluminescent probes (SBPs) for the analyte-specific detection of sulfite through sulfite-mediated intramolecular cleavage. Among them, SBP-1 exhibited the excellent responsivity, high selectivity and sensitivity. By taking advantage of this probe, the first in vivo imaging of sulfate was successfully carried out, not only to trace exogenous sulfite level in living animal, but also to investigate endogenous sulfite in a sulfite oxidase deficiency model.
Collapse
Affiliation(s)
- Xi Yang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Ting Kang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shilong Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Ao Hai
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
22
|
do Nascimento Marreiro Teixeira ASS, Teixeira PRS, de Oliveira Farias EA, Ferraz e Sousa B, Moura Sérvulo KBDL, da Silva DA, Eiras C. Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04546-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Bahri M, Baraket A, Zine N, Ben Ali M, Bausells J, Errachid A. Capacitance electrochemical biosensor based on silicon nitride transducer for TNF-α cytokine detection in artificial human saliva: Heart failure (HF). Talanta 2020; 209:120501. [DOI: 10.1016/j.talanta.2019.120501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 02/03/2023]
|
24
|
Guisan JM, López-Gallego F, Bolivar JM, Rocha-Martín J, Fernandez-Lorente G. The Science of Enzyme Immobilization. Methods Mol Biol 2020; 2100:1-26. [PMID: 31939113 DOI: 10.1007/978-1-0716-0215-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protocols for simple immobilization of unstable enzymes are plenty, but the vast majority of them, unfortunately, have not reached their massive implementation for the preparation of improved heterogeneous biocatalyst. In this context, the science of enzyme immobilization demands new protocols capable of fabricating heterogeneous biocatalysts with better properties than the soluble enzymes. The preparation of very stable immobilized biocatalysts enables the following: (1) higher operational times of enzyme, increasing their total turnover numbers; (2) the use of enzymes under non-conventional media (temperatures, solvents, etc.) in order to increase the concentrations of substrates for intensification of processes or in order to shift reaction equilibria; (3) the design of solvent-free reaction systems; and (4) the prevention of microbial contaminations. These benefits gained with the immobilization are critical to scale up chemical processes like the synthesis of biodiesel, synthesis of food additives or soil decontamination, where the cost of the catalysts has an enormous impact on their economic feasibility. The science of enzyme immobilization requires a multidisciplinary focus that involves several areas of knowledge such as, material science, surface chemistry, protein chemistry, biophysics, molecular biology, biocatalysis, and chemical engineering. In this chapter, we will discuss the most relevant aspects to do "the science of enzyme immobilization." We will emphasize the immobilization techniques that promote multivalent attachments between the surface of the enzymes and the porous carriers. Finally, we will discuss the effect that the structural rigidification promotes at different protein regions on the functional properties of the immobilized enzymes.
Collapse
Affiliation(s)
- Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.
| | - Fernando López-Gallego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Javier Rocha-Martín
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Department of Biotechnology and Microbiology, CSIC-UAM, Campus UAM, Madrid, Spain
| |
Collapse
|
25
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
26
|
Anderson SD, Gwenin VV, Gwenin CD. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. NANOSCALE RESEARCH LETTERS 2019; 14:188. [PMID: 31147786 PMCID: PMC6542970 DOI: 10.1186/s11671-019-3019-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 05/12/2023]
Abstract
Medicine is constantly looking for new and improved treatments for diseases, which need to have a high efficacy and be cost-effective, creating a large demand on scientific research to discover such new treatments. One important aspect of any treatment is the ability to be able to target only the illness and not cause harm to another healthy part of the body. For this reason, metallic nanoparticles have been and are currently being extensively researched for their possible medical uses, including medical imaging, antibacterial and antiviral applications. Superparamagnetic metal nanoparticles possess properties that allow them to be directed around the body with a magnetic field or directed to a magnetic implant, which opens up the potential to conjugate various bio-cargos to the nanoparticles that could then be directed for treatment in the body. Here we report on some of the current bio-medical applications of various metal nanoparticles, including single metal nanoparticles, functionalized metal nanoparticles, and core-shell metal nanoparticles using a core of Fe3O4 as well as synthesis methods of these core-shell nanoparticles.
Collapse
Affiliation(s)
- Simon D Anderson
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Vanessa V Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Christopher D Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK.
| |
Collapse
|
27
|
Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2019; 143:4537-4554. [PMID: 30113611 DOI: 10.1039/c8an00497h] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The issue of foodborne related illnesses due to additives and contaminants poses a significant challenge to food processing industries. The efficient, economical and rapid analysis of food additives and contaminants is therefore necessary in order to minimize the risk of public health issues. Electrochemistry offers facile and robust analytical methods, which are desirable for food safety and quality assessment over conventional analytical techniques. The development of a wide array of nanomaterials has paved the way for their applicability in the design of high-performance electrochemical sensing devices for medical diagnostics and environment and food safety. The design of nanomaterial based electrochemical sensors has garnered enormous attention due to their high sensitivity and selectivity, real-time monitoring and ease of use. This review article focuses predominantly on the synthesis and applications of different nanomaterials for the electrochemical determination of some common additives and contaminants, including hydrazine (N2H4), malachite green (MG), bisphenol A (BPA), ascorbic acid (AA), caffeine, caffeic acid (CA), sulfite (SO32-) and nitrite (NO2-), which are widely found in food and beverages. Important aspects, such as the design, fabrication and characterization of graphene-based materials, gold nanoparticles, mono- and bimetallic nanoparticles and metal nanocomposites, sensitivity and selectivity for electrochemical sensor development are addressed. High-performance nanomaterial based electrochemical sensors have and will continue to have myriad prospects in the research and development of advanced analytical devices for the safety and quality control of food and beverages.
Collapse
Affiliation(s)
- Venkatesh S Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
28
|
An environmentally friendly analytical approach based on spot test and digital image to evaluate the conformity of bleaching products. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00717-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Smith M, McKeague M, DeRosa MC. Synthesis, transfer, and characterization of core-shell gold-coated magnetic nanoparticles. MethodsX 2019; 6:333-354. [PMID: 30859070 PMCID: PMC6396083 DOI: 10.1016/j.mex.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Magnetic separation has gained new popularity as a versatile partitioning method with the recent growth in nanotechnology and related biotechnology applications. In this study, iron oxide magnetic nanoparticles were synthesized via solvothermal methods and directly coated with gold to form core-shell gold-coated magnetic nanoparticles (Fe3O4-AuNPs). High-resolution transmission electron microscopy with Energy dispersive X-ray spectroscopy results suggests that temperature and reaction time play an important role in the formation of small, monodisperse Fe3O4-AuNPs. We also demonstrate that increased 4- dimethyl(amino)pyridine (DMAP) concentrations and vigorous stirring were required to successfully transfer Fe3O4-AuNPs into aqueous solution. The structure and morphology of the synthesized and transferred Fe3O4-AuNPs was further confirmed by UV–vis absorption spectroscopy and solubility experiments. Direct coating of Fe3O4 with Au: Slowly heating by (10 °C/ min) until 180–190 °C without exceeding this reaction temperature and increasing the reaction time to 3 h from 1.5 h High yield transfer of Fe3O4-AuNPs was achieved using 4- dimethyl(amino)pyridine (DMAP) as phase transfer catalyst
Collapse
Affiliation(s)
- McKenzie Smith
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Maria C DeRosa
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
30
|
Recent progress in Michael addition-based fluorescent probes for sulfur dioxide and its derivatives. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Norouzi B, Parsa Z. Determination of Sulfite in Real Sample by an Electrochemical Sensor Based on Ni/Poly(4-Aminobenzoic Acid)/Sodium Dodecylsulfate/Carbon Paste Electrode. RUSS J ELECTROCHEM+ 2018. [DOI: 10.1134/s1023193518080049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Manikandan VS, Liu Z, Chen A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Xu B, Zhou H, Mei Q, Tang W, Sun Y, Gao M, Zhang C, Deng S, Zhang Y. Real-Time Visualization of Cysteine Metabolism in Living Cells with Ratiometric Fluorescence Probes. Anal Chem 2018; 90:2686-2691. [DOI: 10.1021/acs.analchem.7b04493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingying Xu
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Haibo Zhou
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wei Tang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yilun Sun
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengping Gao
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Cuilan Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shengsong Deng
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yong Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
34
|
Winiarski JP, de Barros MR, Magosso HA, Jost CL. Electrochemical reduction of sulfite based on gold nanoparticles/silsesquioxane-modified electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.171] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Guarda A, Maciel JV, Wiethan BA, Schneider A, do Nascimento PC, Dias D. Simultaneous Determination of Ethanethiol, Inorganic Sulfide, and Sulfite in Wines by Cathodic Stripping Voltammetry. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0640-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
A sensitive and selective on-line amperometric sulfite biosensor using sulfite oxidase immobilized on a magnetite-gold-folate nanocomposite modified carbon-paste electrode. Talanta 2016; 156-157:154-162. [DOI: 10.1016/j.talanta.2016.04.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/06/2023]
|
37
|
Tepeli Y, Anik U. Preparation, Characterization and Electrochemical Application of Graphene-metallic Nanocomposites. ELECTROANAL 2016. [DOI: 10.1002/elan.201600369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yudum Tepeli
- Mugla Sitki Kocman University; Faculty of Science; Chemistry Department; 48000 Kotekli-Mugla TURKEY
| | - Ulku Anik
- Mugla Sitki Kocman University; Faculty of Science; Chemistry Department; 48000 Kotekli-Mugla TURKEY
| |
Collapse
|
38
|
Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun (Camb) 2016; 52:7528-40. [PMID: 27182032 DOI: 10.1039/c6cc03225g] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gold coated magnetic nanoparticles (Au@MNPs) have become increasingly interesting to nanomaterial scientists due to their multifunctional properties and their potential in both analytical chemistry and nanomedicine. The past decade has seen significant progress in the synthesis and surface modification of Au@MNPs. This progress is based on advances in the preparation and characterization of iron/iron oxide nanocrystals with the required surface functional groups. In this critical review, we summarize recent developments in the methods of preparing Au@MNPs, surface functionalization and their application in analytical sensing and biomedicine. We highlight some of the remaining major challenges, as well as the lessons learnt when working with Au@MNPs.
Collapse
Affiliation(s)
- Saimon Moraes Silva
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
39
|
Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1748-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-39306-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
|
42
|
Moraes Silva S, Tavallaie R, Tanzirul Alam M, Chuah K, Gooding JJ. A Comparison of Differently Synthesized Gold-coated Magnetic Nanoparticles as ‘Dispersible Electrodes’. ELECTROANAL 2015. [DOI: 10.1002/elan.201500530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saimon Moraes Silva
- School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - Roya Tavallaie
- School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - Muhammad Tanzirul Alam
- School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - Kyloon Chuah
- School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - J. Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
43
|
Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 2015; 74:872-7. [PMID: 26241735 DOI: 10.1016/j.bios.2015.07.033] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/01/2015] [Accepted: 07/15/2015] [Indexed: 12/23/2022]
Abstract
Salmonella typhimurium and Staphylococcus aureus are most common causes of food-associated disease. A Raman based biosensor was developed for S. typhimurium and S. aureus detection simultaneously. The biosensor was based on nanoparticles enhanced Raman intensity and the specific recognition of aptamer. The Raman signal probe and the capture probe are built. Gold nanoparticles (GNPs) modified with Raman molecules (Mercaptobenzoic acid and 5,5'-Dithiobis(2-nitrobenzoic acid)) and aptamer are used as the signal probe for S. typhimurium and S. aureus, respectively. Fe3O4 magnetic gold nanoparticles (MGNPs) immobilized with both aptamer of S. typhimurium and S. aureus are used as the capture probe. When S. typhimurium and S. aureus are added in the reaction system, the capture probe will capture the target bacteria through the specific binding effect of aptamer. And then the signal probe will be connected to the bacteria also by the effect of aptamer to form the sandwich like detection structure. The Raman intensified spectrum was measured to quantify S. typhimurium and S. aureus. Under optimal conditions, the SERS intensity of MBA at 1582 cm(-1) are used to measure S. typhimurium (y=186.4762+704.8571x, R(2)=0.9921) and the SERS intensity of DNTB at 1333 cm(-1) are used to measure S. aureus (y=135.2381+211.4286x, R(2)=0.9946) in the range of 10(2)-10(7) cfu mL(-1). The LOD is 35 cfu mL(-1) for S. aureus and 15 cfu mL(-1) for S. typhimurium. This method is simple and rapid, results in high sensitivity and specificity, and can be used to detect actual samples.
Collapse
Affiliation(s)
- Hui Zhang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Baocai Xu
- State Key Lab Meat Processing & Quality Control, Yurun Group, Nanjing 210041, Jiangsu, China
| |
Collapse
|
44
|
Samphao A, Kunpatee K, Prayoonpokarach S, Wittayakun J, Švorc Ľ, Stankovic DM, Zagar K, Ceh M, Kalcher K. An Ethanol Biosensor Based on Simple Immobilization of Alcohol Dehydrogenase on Fe3O4@Au Nanoparticles. ELECTROANAL 2015. [DOI: 10.1002/elan.201500315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
|
46
|
Chen S, Song Y, Li Y, Liu Y, Su X, Ma Q. A facile photoluminescence modulated nanosensor based on nitrogen-doped graphene quantum dots for sulfite detection. NEW J CHEM 2015. [DOI: 10.1039/c5nj01353d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfite is detected based on the N-GQDs for the first time and the proposed nanosensor is simple and highly selective.
Collapse
Affiliation(s)
- Shufan Chen
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yu Song
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yang Li
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yunling Liu
- State Key laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xingguang Su
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Qiang Ma
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
47
|
Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating. J Chromatogr A 2015; 1375:8-16. [DOI: 10.1016/j.chroma.2014.11.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/09/2014] [Accepted: 11/22/2014] [Indexed: 11/20/2022]
|
48
|
Warriner K, Reddy SM, Namvar A, Neethirajan S. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Silva EM, Takeuchi RM, Santos AL. Carbon nanotubes for voltammetric determination of sulphite in some beverages. Food Chem 2014; 173:763-9. [PMID: 25466087 DOI: 10.1016/j.foodchem.2014.10.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/25/2022]
Abstract
In this work, a square-wave voltammetric method based on sulphite electrochemical reduction was developed for quantification of this preservative in commercial beverages. A carbon-paste electrode chemically modified with multiwalled carbon nanotubes was used as the working electrode. Under the optimised experimental conditions, a linear response to sulphite concentrations from 1.6 to 32 mg SO2 L(-1) (25-500 μmol L(-1) of sulphite), with a limit of detection of 1.0 mg SO2 L(-1) (16 μmol L(-1) of sulphite), was obtained. This method does not suffer interference from other common beverage additives such as ascorbic acid, fructose, and sucrose, and it enables fast and reliable sulphite determination in beverages, with minimal sample pretreatment. Despite its selectivity, the method is not applicable to red grape juice or red wine samples, because some of their components produce a cathodic peak at almost the same potential as that of sulphite reduction.
Collapse
Affiliation(s)
- Erika M Silva
- Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Rua 20, 1600 Bairro Tupã, Ituiutaba, Minas Gerais CEP 38304402, Brazil.
| | - Regina M Takeuchi
- Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Rua 20, 1600 Bairro Tupã, Ituiutaba, Minas Gerais CEP 38304402, Brazil.
| | - André L Santos
- Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Rua 20, 1600 Bairro Tupã, Ituiutaba, Minas Gerais CEP 38304402, Brazil.
| |
Collapse
|
50
|
Fernandes DM, Costa M, Pereira C, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C. Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J Colloid Interface Sci 2014; 432:207-13. [DOI: 10.1016/j.jcis.2014.06.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/15/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|