1
|
da Silva W, Guedes EAB, Faustino LC, Goulart MOF, Gerôncio ETS. Tailored electrochemical biosensor with poly-diallydimethylammonium chloride-functionalised multiwalled carbon nanotubes/gold nanoparticles/manganese dioxide, and haemoglobin for sensitive hydrogen peroxide detection. Talanta 2024; 276:126290. [PMID: 38805755 DOI: 10.1016/j.talanta.2024.126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
A very sensitive electrochemical biosensor, with haemoglobin (Hb) as its basis, has been created to quantify hydrogen peroxide (H2O2), an essential marker in environmental monitoring, food safety, and medical diagnosis. The sensor uses a simple, eco-friendly preparation method. Hb was immobilised on manganese dioxide nanostructure/gold nanoparticles/poly-diallydimethylammonium chloride-functionalised multiwalled carbon nanotubes (PDDA-MWCNT/AuNP/MnO2), characterised using various techniques: amperometry, voltammetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Nafion was used as a binder membrane to preserve the biological and electrochemical properties of the protein on the modified electrode. In comparison to earlier research, the novel biosensor had a lower detection limit (1.83 μM) and a limit of quantification (6.11 μM) (S/N = 3) for H2O2. It also exhibited notable reproducibility, long-term stability, and repeatability. It was effectively used to measure the amount of H2O2 in cow milk and orange juice, yielding recoveries in the order of 98.90-99.53 % with RSDs less than 5.0 %, which makes it a promising biosensor for food control.
Collapse
Affiliation(s)
- Wanderson da Silva
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil; Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| | - Erik A B Guedes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil.
| | - Lucas C Faustino
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| | - Marília O F Goulart
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil.
| | - Everson Thiago S Gerôncio
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| |
Collapse
|
2
|
Khosropour H, Keramat M, Laiwattanapaisal W. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim. Biosens Bioelectron 2024; 243:115754. [PMID: 37857063 DOI: 10.1016/j.bios.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Carbendazim is often used in agriculture to prevent crop diseases, even though it has been associated with health concerns. To ensure the safety of food products and comply with environmental regulations, an ultrasensitive method for carbendazim determination must be developed. In this study, a new electrochemical molecularly imprinted polymer-aptasensor based on hemin-Al-metal organic framework@gold nanoparticles (H-Al-MOF@AuNPs) was developed for sensitive and selective carbendazim detection. Hemin linked to the surface of the Al-metal organic framework also possesses outstanding peroxidase-like qualities that can electrocatalyse the reduction of H2O2. Thus, H-Al-MOF functions as an in-situ probe. Additionally, AuNPs offer many binding sites to load carbendazim aptamers and create an imprinted polymer-aptasensing interface. Dopamine is the chemical functional monomer in the electropolymerised film, while carbendazim is the template molecule. Thus, compared to the molecularly imprinted polymer or aptasensor alone, the molecularly imprinted polymer-aptasensor showed greater selectivity due to the synergistic action of the polymer and carbendazim aptamer towards carbendazim. A decrease in peak current was observed by differential pulse voltammetry (DPV) and chronoamperometry (CA) as the concentration of carbendazim increased. This possibly resulted from carbendazim connecting to the carbendazim aptamer and simultaneously blocking the imprinted polymer cavities on the surface of the modified electrode, which reduced the transfer of electrons. Signals were observed for hemin DPV and H2O2 catalytic reduction CA. DPV and CA showed that the linear ranges for carbendazim were 0.3 fmol L-1-10 pmol L-1 and 0.7 fmol L-1-10 pmol L-1, respectively, with limits of detection of 80 and 300 amol L-1. Satisfactory recoveries were obtained with tap water, apple juice, and tomato juice samples, demonstrating that the proposed sensor has potential for food and environmental analysis.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mansoureh Keramat
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Bhardwaj SK, Knaus T, Garcia A, Yan N, Mutti FG. Bacterial Peroxidase on Electrochemically Reduced Graphene Oxide for Highly Sensitive H 2 O 2 Detection. Chembiochem 2022; 23:e202200346. [PMID: 35723909 PMCID: PMC9543142 DOI: 10.1002/cbic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/09/2022]
Abstract
Peroxidase enzymes enable the construction of electrochemical sensors for highly sensitive and selective quantitative detection of various molecules, pathogens and diseases. Herein, we describe the immobilization of a peroxidase from Bacillus s. (BsDyP) on electrochemically reduced graphene oxide (ERGO) deposited on indium tin oxide (ITO) and polyethylene terephthalate (PET) layers. XRD, SEM, AFM, FT-IR and Raman characterization of the sensor confirmed its structural integrity and a higher enzyme surface occupancy. The BsDyP-ERGO/ITO/PET electrode performed better than other horseradish peroxidase-based electrodes, as evinced by an improved electrochemical response in the nanomolar range (linearity 0.05-280 μM of H2 O2 , LOD 32 nM). The bioelectrode was mechanically robust, active in the 3.5-6 pH range and exhibited no loss of activity upon storage for 8 weeks at 4 °C.
Collapse
Affiliation(s)
- Sheetal K. Bhardwaj
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Amanda Garcia
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
5
|
Tong P, Asif M, Ajmal M, Aziz A, Sun Y. A Multicomponent Polymer-Metal-Enzyme System as Electrochemical Biosensor for H2O2 Detection. Front Chem 2022; 10:874965. [PMID: 35572115 PMCID: PMC9099068 DOI: 10.3389/fchem.2022.874965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Herein, an Au nanoparticles-polydopamine-poly acrylic acid-graphene (Au NPs-PDA-PAA-graphene) multicomponent nanohybrid is fabricated by surface functionalization of graphene alongside extensive in-situ growth of Au nanoparticles. The as-obtained nanocomposite possesses good hydrophilicity, excellent biocompatibility and high biomolecules loading capacity, which acts as an ideal platform for enzyme modification. Considering this fact, Horseradish peroxidase is expressively immobilized upon Au NPs-PDA-PAA-graphene surface, in order to lay the foundations of a biosensor that is majorly based on enzymatic activity. The biosensor exhibits higher sensitivity towards the determination of H2O2 with linearity ranging from 0.1 μm upto 20 mm, and the limit of detection going down to 0.02 μm. Encouraged by its acceptable electrocatalytic performance, this multicomponent system can also be easily employed for carrying out the real-time tracking of H2O2 coming out of Macrophage cells. Therefore, this work designs an extraordinarily updated platform for biosensing related applications, and also presents a reliable platform for the direct detection of H2O2in vivo and in vitro, which show great potential in bioelectroanalytical chemistry, cellular biology, and pathophysiology.
Collapse
Affiliation(s)
- Pengfei Tong
- Henan Institute of Microsurgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ajmal
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
- *Correspondence: Yimin Sun,
| |
Collapse
|
6
|
Bravo I, Prata M, Torrinha Á, Delerue-Matos C, Lorenzo E, Morais S. Laccase bioconjugate and multi-walled carbon nanotubes-based biosensor for bisphenol A analysis. Bioelectrochemistry 2022; 144:108033. [PMID: 34922175 DOI: 10.1016/j.bioelechem.2021.108033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor compound that has been detected in aquatic ecosystems. In this work, the development of an electrochemical biosensor for BPA determination based on laccase from Trametes versicolor is reported. A bioconjugate was optimized to maximize the biosensor electrocatalytic activity and stability, which for the first time involved the synergistic effect of this specific enzyme (6.8 UmL-1), chitosan (5 mgmL-1) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate in an optimum 5:5:2 (v/v/v) proportion. This bioconjugate was deposited onto a screen-printed carbon electrode previously modified with multi-walled carbon nanotubes (MWCNTs). Nanostructuration with MWCNTs enlarged the electrocatalytic activity and surface area, thus improving the biosensor performance. The BPA electrochemical reaction follows an EC mechanism at the optimum pH value of 5.0. Linearity up to 12 µM, a sensitivity of (6.59 ± 0.04) × 10-2 μAμM-1 and a detection limit of 8.4 ± 0.3 nM were obtained coupled with high reproducibility (relative standard deviations lower than 6%) and stability (87% of the initial response after one month). The developed biosensor was employed to the analysis of BPA in river water displaying appropriate accuracy (94.6-97.9%) and repeatability (3.1 to 6% relative standard deviations) proving its high potential applicability for in situ environmental analysis.
Collapse
Affiliation(s)
- Iria Bravo
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Mariana Prata
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
7
|
Moonla C, Chenkhuruthum S, Ouiram T, Preechaworapun A, Tapala W, Ngamchuea K, Tangkuaram T. A novel label‐free chronoamperometric immunosensor based on a biocomposite material for rapid detection of carcinoembryonic antigen. ELECTROANAL 2022. [DOI: 10.1002/elan.202100506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ciogli L, Zumpano R, Poloznikov AA, Hushpulian DM, Tishkov VI, Andreu R, Gorton L, Mazzei F, Favero G, Bollella P. Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on
p
‐Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes: Preventing Fenton‐like Inactivation at Negative Potential. ChemElectroChem 2021. [DOI: 10.1002/celc.202100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leonardo Ciogli
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Rosaceleste Zumpano
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Andrey A. Poloznikov
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Prospect 33, bld. 2 Moscow 119071 Russia
- Department of Chemical Enzymology School of Chemistry M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Rafael Andreu
- Department of Physical Chemistry University of Sevilla Profesor García González 1 41012 Sevilla Spain
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology Lund University P.O. Box 124 SE-221 00 Lund Sweden
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 United States
- Department of Chemistry University of Bari A. Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
9
|
Theyagarajan K, Elancheziyan M, Aayushi PS, Thenmozhi K. Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing. Int J Biol Macromol 2020; 163:358-365. [PMID: 32634514 DOI: 10.1016/j.ijbiomac.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Facile yet simple platforms for the immobilization of biomolecules have always been a substantial requirement for the fabrication of proficient biosensors. In this study, we report a naphthyl substituted acetate functionalized ionic liquid (NpAc-IL) for the covalent anchoring of horseradish peroxidase (HRP), using which the direct electrochemistry of HRP was successfully accomplished and a H2O2 biosensor was developed. The naphthyl substitution on the NpAc-IL was utilized for the π-π stacking with the MWCNT modified GCE and the terminal -OCH3 group of NpAc-IL was used for the covalent attachment with the free -NH2 group of HRP via amide bond formation. High conducting nature of the newly designed ionic liquid (NpAc-IL), facilitated an improved communication with the deeply buried redox centre of the HRP, while the covalent bonding provided enhanced stability to the fabricated biosensor by stably holding the water soluble HRP enzyme on the electrode surface. Furthermore, incorporation of MWCNT on the sensor setup synergistically enhanced the sensitivity of the developed biosensor. Under optimized conditions, the fabricated biosensor showed an enhanced electrocatalytic reduction of H2O2 in the range of 0.01 to 2.07 mM with a limit of detection and sensitivity of 2.7 μM and 55.98 μA mM-1 cm-2 respectively. Further, the proposed biosensor was utilized for the sensing of H2O2 spiked in real samples. Moreover, the newly fabricated biosensor demonstrated excellent stability with improved sensitivity and selectivity towards H2O2 reduction. The superior analytical characteristics are attributed to the facile fabrication strategy using this newly developed acetate functionalized ionic liquid platform.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mari Elancheziyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Prakash Sinha Aayushi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
10
|
Theyagarajan K, Yadav S, Satija J, Thenmozhi K, Senthilkumar S. Gold Nanoparticle-Redox Ionic Liquid based Nanoconjugated Matrix as a Novel Multifunctional Biosensing Interface. ACS Biomater Sci Eng 2020; 6:6076-6085. [PMID: 33449637 DOI: 10.1021/acsbiomaterials.0c00807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creation of interfaces with a prudent design for the immobilization of biomolecules is substantial in the construction of biosensors for real-time monitoring. Herein, an adept biosensing interface was developed using a nanoconjugated matrix and has been employed toward the electrochemical determination of hydrogen peroxide (H2O2). The anionic gold nanoparticle (AuNP) was electrostatically tethered to cationic redox ionic liquid (IL), to which the horseradish peroxidase (HRP) enzyme was covalently immobilized to form a nanobioconjugate. The anthracene-substituted, aldehyde-functionalized redox IL (CHO-AIL) was judiciously designed with the (i) imidazolium cation for electrostatic interaction with AuNPs, (ii) anthracene moiety to mediate the electron transfer, and (iii) free aldehydic group for covalent bonding with a free amine group of the enzyme. Thus, the water-soluble HRP is effectively bonded to the CHO-AIL on a glassy carbon electrode (GCE) via imine bond formation, which resulted in the formation of the HRP-CHO-AIL/GCE. Electrochemical investigations on the HRP-CHO-AIL/GCE reveal highly stable and distinct redox peaks for the anthracene/anthracenium couple at a formal potential (E°') of -0.47 V. Electrostatic tethering of anionic AuNPs to the HRP-CHO-AIL promotes the electron transfer process in the HRP-CHO-AIL/AuNPs/GCE, as observed by the reduction in the formal potential to -0.42 V along with the enhancement in peak currents. The HRP-CHO-AIL/AuNPs/GCE has been explored toward the electrocatalytic detection of H2O2, and the modified electrode demonstrated a linear response toward H2O2 in the concentration range of 0.02-2.77 mM with a detection limit of 3.7 μM. The developed biosensor ascertained predominant selectivity and sensitivity in addition to remarkable stability and reproducibility, corroborating the suitableness of the platform for the effectual biosensing of H2O2. The eminent performance realized with our biosensor setup is ascribed to the multifunctional efficacy of this newly designed nanobioconjugate.
Collapse
Affiliation(s)
- Kandaswamy Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Sangeeta Yadav
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.,Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
11
|
Murphy M, Manoj D, Saravanakumar D, Thenmozhi K, Senthilkumar S. Water insoluble, self-binding viologen functionalized ionic liquid for simultaneous electrochemical detection of nitrophenol isomers. Anal Chim Acta 2020; 1138:89-98. [DOI: 10.1016/j.aca.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
|
12
|
Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Barbosa C, Silveira CM, Silva D, Brissos V, Hildebrandt P, Martins LO, Todorovic S. Immobilized dye-decolorizing peroxidase (DyP) and directed evolution variants for hydrogen peroxide biosensing. Biosens Bioelectron 2020; 153:112055. [PMID: 32056659 DOI: 10.1016/j.bios.2020.112055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
Immobilized dye-decolorizing peroxidase from Pseudomonas putida MET94 (PpDyP) and three variants generated by directed evolution (DE) are studied aiming at the design of a biosensor for H2O2 detection. Structural properties of the enzymes in solution and immobilized state are addressed by resonance Raman (RR) and surface enhanced RR (SERR) spectroscopy, and the electrocatalytic properties are analyzed by electrochemistry. The wild-type (wt) and 29E4 variant (with E188K and H125Y mutations) represent excellent candidates for development of H2O2 biosensors, since they exhibit a good dynamic response range (1-200 μM H2O2), short response times (2 s) and a superior sensitivity (1.3-1.4 A⋅M-1⋅cm-2) for H2O2, as well as selectivity and long term stability. In contrast to the solution state, 6E10 (with E188K, A142V and H125Y mutations) and 25F6 (with E188K, A142V, H125Y and G129D mutations) variants display much lower activity and are inhibited by high concentrations of H2O2 upon adsorption on an electrode. In terms of sensitivity, the bioelectrodes employing wt PpDyP and 29E4 variant outperform HRP based counterparts reported in the literature by 1-4 orders of magnitude. We propose the development of wt or 29E4 PpDyP based biosensor as a valuable alternative to devices that rely on peroxidases.
Collapse
Affiliation(s)
- Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin, Inbstitut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
14
|
Abstract
Nano-electrochemical cytosensors have attracted intensive attention and achieved huge progress in the biomedical field owing to their stability, rapidity, accuracy, and low-cost properties.
Collapse
Affiliation(s)
- Jie Xu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Yanxiang Hu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Shengnan Wang
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Xing Ma
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Jinhong Guo
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| |
Collapse
|
15
|
Feizabadi M, Soleymanpour A, Faridnouri H, Ajloo D. Improving stability of biosensor based on covalent immobilization of horseradish peroxidase by γ-aminobutyric acid and application in detection of H2O2. Int J Biol Macromol 2019; 136:597-606. [DOI: 10.1016/j.ijbiomac.2019.06.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023]
|
16
|
Bai G, Xu X, Dai Q, Zheng Q, Yao Y, Liu S, Yao C. An electrochemical enzymatic nanoreactor based on dendritic mesoporous silica nanoparticles for living cell H 2O 2 detection. Analyst 2019; 144:481-487. [PMID: 30457582 DOI: 10.1039/c8an01712c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective and quantitative detection of cellular H2O2 is essential for understanding its roles in physiology and pathology. A new electrochemical H2O2 biosensor, fabricated by immobilizing horseradish peroxidase onto dendritic mesoporous silica nanoparticles (HRP/DMSNs), is employed for living cell H2O2 detection. Taking advantage of the large pore volume and highly accessible internal surface areas of DMSNs, HRP/DMSNs display higher enzymatic loading, better stability and bioactivity in comparison with HRP on nonporous silica nanoparticles (NSNs). Therefore, a HRP/DMSN modified GCE (HRP/DMSNs/GCE) shows attractive electrochemical performance for sensitive and selective detection of H2O2 in 0.1 M pH 7.0 PBS, with a low Kappm value of 11.48 μM and a low detection limit of 0.11 μM. In addition, HRP/DMSNs/GCE is successfully applied to detect H2O2 released from a PC12 cell triggered by ascorbic acid (AA). The detected H2O2 amount is close to the reported values. The developed biosensor has potential in the dynamic detection of the flux of H2O2 from living cells for further evaluation of oxidative stress in cells.
Collapse
Affiliation(s)
- Guangmin Bai
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zheng C, Jin X, Li Y, Mei J, Sun Y, Xiao M, Zhang H, Zhang Z, Zhang GJ. Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-time Monitoring of Hydrogen Peroxide. Sci Rep 2019; 9:759. [PMID: 30679538 PMCID: PMC6345991 DOI: 10.1038/s41598-018-36752-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023] Open
Abstract
A reliable and highly sensitive hydrogen peroxide (H2O2) field effect transistor (FET) sensor is reported, which was constructed by using molybdenum disulfide (MoS2)/reduced graphene oxide (RGO). In this work, we prepared MoS2 nanosheets by a simple liquid ultrasonication exfoliation method. After the RGO-based FET device was fabricated, MoS2 was assembled onto the RGO surface for constructing MoS2/RGO FET sensor. The as-prepared FET sensor showed an ultrahigh sensitivity and fast response toward H2O2 in a real-time monitoring manner with a limit of detection down to 1 pM. In addition, the constructed sensor also exhibited a high specificity toward H2O2 in complex biological matrix. More importantly, this novel biosensor was capable of monitoring of H2O2 released from HeLa cells in real-time. So far, this is the first report of MoS2/RGO based FET sensor for electrical detection of signal molecules directly from cancer cells. Hence it is promising as a new platform for the clinical diagnosis of H2O2-related diseases.
Collapse
Affiliation(s)
- Chao Zheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.,Department of Medical Laboratory, The Central Hospital of Wuhan,Tongji Medical College, Huazhong University of Science and Technology, Shengli Street Jiang'an District No.26, Wuhan, 430014, P. R. China
| | - Xin Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yutao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
| | - Junchi Mei
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, P. R. China
| | - Hong Zhang
- Teaching and Research Office of Forensic Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
| |
Collapse
|
18
|
Liu X, Chen W, Lian M, Chen X, Lu Y, Yang W. Enzyme immobilization on ZIF-67/MWCNT composite engenders high sensitivity electrochemical sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Hexagonal cobalt oxyhydroxide nanoflakes/reduced graphene oxide for hydrogen peroxide detection in biological samples. Anal Bioanal Chem 2018; 410:7523-7535. [DOI: 10.1007/s00216-018-1370-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
|
20
|
El-Maiss J, Cuccarese M, Maerten C, Lupattelli P, Chiummiento L, Funicello M, Schaaf P, Jierry L, Boulmedais F. Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18574-18584. [PMID: 29799715 DOI: 10.1021/acsami.8b04764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC+); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC+; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm2) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.
Collapse
Affiliation(s)
- Janwa El-Maiss
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
| | - Marco Cuccarese
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Clément Maerten
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
| | - Paolo Lupattelli
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Lucia Chiummiento
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Maria Funicello
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Ecole de Chimie, Polymères et Matériaux , Université de Strasbourg , 67087 Strasbourg , France
- University of Strasbourg Institute of Advanced Study , 67083 Strasbourg , France
- Biomatériaux et Bioingénierie , Institut National de la Santé et de la Recherche Médicale, UMR-S 1121 , 67087 Strasbourg , France
- Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA) , Université de Strasbourg , 67000 Strasbourg , France
- International Center for Frontier Research in Chemistry , 67083 Strasbourg , France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Ecole de Chimie, Polymères et Matériaux , Université de Strasbourg , 67087 Strasbourg , France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- University of Strasbourg Institute of Advanced Study , 67083 Strasbourg , France
| |
Collapse
|
21
|
Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017; 90:640-648. [DOI: 10.1021/acs.analchem.7b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Faezeh Ghorbanizamani
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
| | - Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
- Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, Bornova, Izmir, Turkey, 35100
| |
Collapse
|
22
|
Mersal GAM, Mostafa NY, Omar AEH. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing. MATERIALS RESEARCH EXPRESS 2017; 4:085031. [DOI: 10.1088/2053-1591/aa83de] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Liu H, Weng L, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2179-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X. MoS2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 2017; 5:1446-1453. [DOI: 10.1039/c6tb02886a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MoS2–Au hybrids were utilized to construct a sensitive H2O2 electrochemical biosensor for the determination of H2O2 released from living cells.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jingyuan Chen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qin Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Zhen Wei
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Fengping Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Rui Lu
- Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Veterinary Medicine
- Yangzhou University
- Yangzhou 225002
- China
| | - Sheng Xu
- Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Veterinary Medicine
- Yangzhou University
- Yangzhou 225002
- China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
25
|
Ionic liquid based polymeric liposomes: A stable and biocompatible soft platform for bioelectrochemistry. Bioelectrochemistry 2016; 111:41-8. [DOI: 10.1016/j.bioelechem.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
|
26
|
Li C, Liu X, Zhang Y, Chen Y, Du T, Jiang H, Wang X. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with CuI. Anal Chim Acta 2016; 933:66-74. [DOI: 10.1016/j.aca.2016.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022]
|
27
|
Han L, Tao H, Huang M, Zhang Y, Qiao S, Shi R. A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516020051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Liu X, Zhu J, Huo X, Yan R, Wong DKY. An intimately bonded titanate nanotube-polyaniline-gold nanoparticle ternary composite as a scaffold for electrochemical enzyme biosensors. Anal Chim Acta 2016; 911:59-68. [PMID: 26893086 DOI: 10.1016/j.aca.2016.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022]
Abstract
In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H2O2 by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H2O2, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM(-1) and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, PR China.
| | - Jie Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, PR China
| | - Xiaohe Huo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, PR China
| | - Rui Yan
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, PR China
| | - Danny K Y Wong
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
29
|
Sun Y, Zheng H, Wang C, Yang M, Zhou A, Duan H. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode. NANOSCALE 2016; 8:1523-1534. [PMID: 26681401 DOI: 10.1039/c5nr06912b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.
Collapse
Affiliation(s)
- Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China.
| | - Huaming Zheng
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China.
| | - Chenxu Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore.
| | - Mengmeng Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore.
| | - Aijun Zhou
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China.
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore.
| |
Collapse
|
30
|
Gong C, Chen J, Shen Y, Song Y, Song Y, Wang L. Microperoxidase-11/metal–organic framework/macroporous carbon for detecting hydrogen peroxide. RSC Adv 2016. [DOI: 10.1039/c6ra16145f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustrating of the fabrication and sensing principle of the newly develpoed H2O2 biosensor.
Collapse
Affiliation(s)
- Coucong Gong
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| | - Jingyi Chen
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| | - Yuan Shen
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| | - Yonggui Song
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Key Laboratory of Chemical Biology, Jiangxi Province
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
| |
Collapse
|
31
|
Dai M, Huang T, Chao L, Xie Q, Tan Y, Chen C, Meng W. Horseradish peroxidase-catalyzed polymerization of L-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid. Talanta 2015; 149:117-123. [PMID: 26717822 DOI: 10.1016/j.talanta.2015.11.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Horseradish peroxidase (HRP)-catalyzed polymerization of L-DOPA (vs. dopamine) in the presence of H2O2 (and uricase (UOx)) was exploited to immobilize mono-/bi-enzymes for hydroquinone-mediated amperometric biosensing of H2O2 and uric acid (UA). The relevant polymeric biocomposites (PBCs) were prepared in phosphate buffer solution containing HRP and L-DOPA (or plus UOx) after adding H2O2. The mono-/bi-enzyme amperometric biosensors were prepared simply by casting some of the PBCs on Au-plated Au (Au(plate)/Au) electrodes, followed by coating with an outer-layer chitosan (CS) film for each. UV-vis spectrophotometry, scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were used for film characterization and/or process monitoring. The HRP immobilized by enzyme catalysis well preserved its bioactivity, as confirmed by UV-vis spectrophotometry. Under optimized conditions, the monoenzyme CS/HRP-poly(L-DOPA) (PD)/Au(plate)/Au electrode potentiostated at -0.1V responded linearly to H2O2 concentration from 0.001 to 1.25mM with a sensitivity of 700μA mM(-1)cm(-2) and a limit of detection (LOD) of 0.1μM, and the bienzyme CS/UOx-HRP-PD/Au(plate)/Au electrode at -0.1V responded linearly to UA concentration from 0.001 to 0.4mM with a sensitivity of 349μA mM(-1)cm(-2) and a LOD of 0.1μM. The mono-/bi-enzyme biosensors based on biosynthesized PD performed better than many reported analogues and those based on similarly biosynthesized polydopamine.
Collapse
Affiliation(s)
- Mengzhen Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Long Chao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Wenhua Meng
- Hunan Normal University Hospital, Changsha 410081, PR China
| |
Collapse
|
32
|
Xu Q, Tang J, Shen Y, Jin L, Hu X. Hierarchical porous TiO2 fabricated from magnolia grandiflora petals templates for the immobilization and electrical wiring of proteins. Talanta 2015; 144:6-12. [DOI: 10.1016/j.talanta.2015.05.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
33
|
Wang L, Zhang Y, Cheng C, Liu X, Jiang H, Wang X. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18441-18449. [PMID: 26238430 DOI: 10.1021/acsami.5b04553] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Chuansheng Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xiaoli Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
34
|
Zhang D, Zhao H, Fan Z, Li M, Du P, Liu C, Li Y, Li H, Cao H. A Highly Sensitive and Selective Hydrogen Peroxide Biosensor Based on Gold Nanoparticles and Three-Dimensional Porous Carbonized Chicken Eggshell Membrane. PLoS One 2015; 10:e0130156. [PMID: 26069960 PMCID: PMC4466542 DOI: 10.1371/journal.pone.0130156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022] Open
Abstract
A sensitive and noble amperometric horseradish peroxidase (HRP) biosensor is fabricated via the deposition of gold nanoparticles (AuNPs) onto a three-dimensional (3D) porous carbonized chicken eggshell membrane (CESM). Due to the synergistic effects of the unique porous carbon architecture and well-distributed AuNPs, the enzyme-modified electrode shows an excellent electrochemical redox behavior. Compared with bare glass carbon electrode (GCE), the cathodic peak current of the enzymatic electrode increases 12.6 times at a formal potential of -100 mV (vs. SCE) and charge-transfer resistance decreases 62.8%. Additionally, the AuNPs-CESM electrode exhibits a good biocompatibility, which effectively retains its bioactivity with a surface coverage of HRP 6.39×10(-9) mol cm(-2) (752 times higher than the theoretical monolayer coverage of HRP). Furthermore, the HRP-AuNPs-CESM-GCE electrode, as a biosensor for H2O2 detection, has a good accuracy and high sensitivity with the linear range of 0.01-2.7 mM H2O2 and the detection limit of 3 μM H2O2 (S/N = 3).
Collapse
Affiliation(s)
- Di Zhang
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuangjun Fan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Mingjie Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Penghui Du
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenming Liu
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuping Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Li
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, Beijing, China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Zhao R, Liu X, Zhang J, Zhu J, Wong DK. ENHANCING DIRECT ELECTRON TRANSFER OF GLUCOSE OXIDASE USING A GOLD NANOPARTICLE |TITANATE NANOTUBE NANOCOMPOSITE ON A BIOSENSOR. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Gong Y, Chen X, Lu Y, Yang W. Self-assembled dipeptide–gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors. Biosens Bioelectron 2015; 66:392-8. [DOI: 10.1016/j.bios.2014.11.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023]
|
37
|
Review on Exhaled Hydrogen Peroxide as a Potential Biomarker for Diagnosis of Inflammatory Lung Disease s. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.4028/www.scientific.net/jbbbe.22.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exhaled breath (EB) contains thousands of volatile and nonvolatile biomolecules. EB analysis is non-invasive and convenient to patients than blood or urine tests. The exhaled biomolecules have long been studied and recognized to have some potential biomarkers for diagnosis of diseases, evaluation of metabolic disorders and monitoring drug efficiency. For instance, Biomarkers such as exhaled hydrogen peroxide (H2O2) and exhaled nitric oxide are associated with inflammatory lung diseases, ammonia is used as a biomarker for kidney diseases and exhaled acetone is related to glucose concentration in blood and so it is used for diabetes diagnosis. H2O2 concentration in EB increases with the severity of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and adult respiratory distress syndrome (ARDS). Different methods are used to measure H2O2 in exhaled breath condensate (EBC). In EBC the EB is collected in a condensate unit and then H2O2 concentration in the collected sample is detected using titrimetric, spectrophotometry, fluorescence, chemiluminescence and electrochemical sensors. Recently, some works have been done to measure the concentration of H2O2 in its vapor phase without a need for condensation units. The aim of this paper is to review and summarize the current methods being used to measure the concentration of H2O2 in EB to identify inflammatory lung diseases, and to discuss the advantages and disadvantages of these methods
Collapse
|
38
|
Feng X, Zhang Y, Song J, Chen N, Zhou J, Huang Z, Ma Y, Zhang L, Wang L. MnO
2
/Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. ELECTROANAL 2014. [DOI: 10.1002/elan.201400481] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaomiao Feng
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Yu Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Juan Song
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Ningna Chen
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Jinhua Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Zhendong Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Lei Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| |
Collapse
|
39
|
Zhang Y, Bai X, Wang X, Shiu KK, Zhu Y, Jiang H. Highly Sensitive Graphene–Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal Chem 2014; 86:9459-65. [DOI: 10.1021/ac5009699] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuanyuan Zhang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096, P. R. China
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiaoyun Bai
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xuemei Wang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096, P. R. China
| | - Kwok-Keung Shiu
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yanliang Zhu
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096, P. R. China
| | - Hui Jiang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
40
|
Guzik U, Hupert-Kocurek K, Wojcieszyńska D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 2014; 19:8995-9018. [PMID: 24979403 PMCID: PMC6271243 DOI: 10.3390/molecules19078995] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
The main objective of the immobilization of enzymes is to enhance the economics of biocatalytic processes. Immobilization allows one to re-use the enzyme for an extended period of time and enables easier separation of the catalyst from the product. Additionally, immobilization improves many properties of enzymes such as performance in organic solvents, pH tolerance, heat stability or the functional stability. Increasing the structural rigidity of the protein and stabilization of multimeric enzymes which prevents dissociation-related inactivation. In the last decade, several papers about immobilization methods have been published. In our work, we present a relation between the influence of immobilization on the improvement of the properties of selected oxidoreductases and their commercial value. We also present our view on the role that different immobilization methods play in the reduction of enzyme inhibition during biotechnological processes.
Collapse
Affiliation(s)
- Urszula Guzik
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
41
|
Yagati AK, Choi JW. Protein Based Electrochemical Biosensors for H2O2Detection Towards Clinical Diagnostics. ELECTROANAL 2014. [DOI: 10.1002/elan.201400037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
43
|
Li Q, Cheng K, Weng W, Du P, Han G. Titanium dioxide nanorod-based amperometric sensor for highly sensitive enzymatic detection of hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1077-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Liu X, Zhang J, Yan R, Zhang Q, Liu X. Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens Bioelectron 2013; 51:76-81. [PMID: 23939473 DOI: 10.1016/j.bios.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
A novel nanocomposite consisting of graphene nanoplatelets (GNPs) and titanate nanotubes (TNTs) have been synthesized successfully utilizing the hydrothermal method. The GNP-TNT composite was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and electrochemical impedance spectroscopy. The voltammetric characterization of GNP-TNT composite, pure GNPs and pure TNTs modified horseradish peroxidase (HRP) biosensors were conducted to select the most suitable electrode immobilization material for enzyme biosensors. The GNPs was firstly eliminated owing to its extremely high background charging current, distinct electrochemical interference from its surface functional groups and low signal to noise ratio. Next, the direct electron transfer of HRP on electrode and the catalytic current of HRP towards H2O2 was increased around 45% and 72% respectively on GNP-TNT composite modified electrodes compared with those on pure TNTs modified electrodes. GNP-TNT composite modified HRP biosensor also exhibited superiority over pure TNTs modified HRP biosensor in the analytical performance. The precision and stability study provided additional evidence for the feasibility of using GNP-TNT composite as electrode modification material.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, PR China.
| | | | | | | | | |
Collapse
|
45
|
Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing. Biosens Bioelectron 2013; 44:41-7. [DOI: 10.1016/j.bios.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 11/21/2022]
|
46
|
Liu X, Zhang J, Liu S, Zhang Q, Liu X, Wong DKY. Gold Nanoparticle Encapsulated-Tubular TIO2 Nanocluster As a Scaffold for Development of Thiolated Enzyme Biosensors. Anal Chem 2013; 85:4350-6. [DOI: 10.1021/ac303420a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoqiang Liu
- Institute of Environmental and
Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiamei Zhang
- Institute of Environmental and
Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Shanhu Liu
- Institute of Environmental and
Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qingyou Zhang
- Institute of Environmental and
Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiuhua Liu
- Institute of Environmental and
Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Danny K. Y. Wong
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
47
|
An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron 2013; 41:815-9. [DOI: 10.1016/j.bios.2012.10.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
|
48
|
Amperometric flow system for blood glucose determination using an immobilized enzyme magnetic reactor. Biosens Bioelectron 2013; 41:244-8. [DOI: 10.1016/j.bios.2012.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/21/2022]
|
49
|
|
50
|
Gurban AM, Rotariu L, Marinescu VE, Bala C. Determination of Xenoestrogenic Compounds Using a Nanostructured Biosensing Device. ELECTROANAL 2012. [DOI: 10.1002/elan.201200390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|