1
|
Guo L, Zhao Y, Huang Q, Huang J, Tao Y, Chen J, Li HY, Liu H. Electrochemical protein biosensors for disease marker detection: progress and opportunities. MICROSYSTEMS & NANOENGINEERING 2024; 10:65. [PMID: 38784375 PMCID: PMC11111687 DOI: 10.1038/s41378-024-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.
Collapse
Affiliation(s)
- Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601 China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou, 325000 China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
2
|
Yuan L, Li M, Li J, Zhu TF, Dong M, Liu L. Aggregation-induced signal amplification strategy based on peptide self-assembly for ultrasensitive electrochemical detection of melanoma biomarker. Anal Chim Acta 2024; 1289:342214. [PMID: 38245208 DOI: 10.1016/j.aca.2024.342214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
The detection of melanoma circulating biomarker in liquid biopsies is current under evaluation for being potentially utilized for earlier cancer diagnosis and its metastasis. Herein, we developed a non-invasive electrochemical approach for ultrasensitive detection of the S100B, serving as a potential promising blood circulating biomarker of melanoma, based on an aggregation-induced signal amplification (AISA) strategy via in-situ peptide self-assembly. The fundamental principle of this assay is that the designed amphiphilic peptides (C16-Pep-Fc), fulfilling multiple functions, feature both a recognition region for specific binding to S100B and an aggregation (self-assembly) region for the formation of peptide nanomicelles under mild conditions. The C16 tails were encapsulated within the hydrophobic core of the aggregates, while the relatively hydrophilic recognition fragment Pep and Fc tag were exposed on the outer surface for subsequent recognition of S100B and signal output. AISA provided remarkable accumulation of electroactive Fc moieties that enabled ultrasensitive S100B detection of as low as 0.02 nM, which was 10-fold lower than un-amplified approach and better than previously reported assays. As a proof-of-concept study, further experiments also highlighted the good reproducibility and stability of AISA and demonstrated its usability when applied to simulated serum samples. Hence, this work not only presented a valuable assay tool for ultrasensitive detecting protein biomarker, but also advocated for the utilization of aggregation-induced signal amplification in electrochemical biosensing system, given its considerable potential for future practical applications.
Collapse
Affiliation(s)
- Liang Yuan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mengfei Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiaying Li
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China
| | - Tao-Feng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
4
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
A novel electrochemical immunosensor for ultrasensitive detection of tumor necrosis factor α based on polystyrene - PAMAM dendritic polymer blend nanofibers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19:253. [PMID: 34425823 PMCID: PMC8381530 DOI: 10.1186/s12951-021-00999-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023] Open
Abstract
Peptide molecule has high bioactivity, good biocompatibility, and excellent biodegradability. In addition, it has adjustable amino acid structure and sequence, which can be flexible designed and tailored to form supramolecular nano-assemblies with specific biomimicking, recognition, and targeting properties via molecular self-assembly. These unique properties of peptide nano-assemblies made it possible for utilizing them for biomedical and tissue engineering applications. In this review, we summarize recent progress on the motif design, self-assembly synthesis, and functional tailoring of peptide nano-assemblies for both cancer diagnosis and therapy. For this aim, firstly we demonstrate the methodologies on the synthesis of various functional pure and hybrid peptide nano-assemblies, by which the structural and functional tailoring of peptide nano-assemblies are introduced and discussed in detail. Secondly, we present the applications of peptide nano-assemblies for cancer diagnosis applications, including optical and magnetic imaging as well as biosensing of cancer cells. Thirdly, the design of peptide nano-assemblies for enzyme-mediated killing, chemo-therapy, photothermal therapy, and multi-therapy of cancer cells are introduced. Finally, the challenges and perspectives in this promising topic are discussed. This work will be useful for readers to understand the methodologies on peptide design and functional tailoring for highly effective, specific, and targeted diagnosis and therapy of cancers, and at the same time it will promote the development of cancer diagnosis and therapy by linking those knowledges in biological science, nanotechnology, biomedicine, tissue engineering, and analytical science.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
8
|
Novel voltammetric tumor necrosis factor-alpha (TNF-α) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/Cu-MOFs. Anal Bioanal Chem 2021; 413:2481-2492. [PMID: 33544162 DOI: 10.1007/s00216-021-03203-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
TNF-α, as a pro-inflammatory cytokine, regulates some physiological and pathological courses. TNF-α level increases in some important diseases such as cancer, arthritis, and diabetes. In addition, it displays an important function in Alzheimer's and cardiovascular diseases. Herein, a novel, sensitive, and selective voltammetric TNF-α immunosensor was prepared by using gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes (AuNPs/S-MWCNTs) as sensor platform and bimetallic Ni/Cu-MOFs as sensor amplification. Firstly, the sensor platform was developed on glassy carbon electrode (GCE) surface by using mixture of thiol-functionalized MWCNTs (S-MWCNTs) and AuNPs. Then, capture TNF-α antibodies were conjugated to sensor platform by amino-gold affinity. After capture TNF-α antibodies' immobilization, a new-type voltammetric TNF-α immunosensor was developed by immune reaction between AuNPs/S-MWCNTs immobilized with primer TNF-α antibodies and bimetallic Ni/Cu-MOFs conjugated with seconder TNF-α antibodies. The prepared TNF-α immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), thermogravimetric analysis, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A linearity range of 0.01-1.0 pg mL-1 and a low detection limit of 2.00 fg mL-1 were also obtained for analytical applications.
Collapse
|
9
|
Kumar S, Tripathy S, Singh OK, Singh SG. Cerium oxide nanofiber based electroanalytical sensor for TNF-α detection: Improved interfacial stability with Nafion. Bioelectrochemistry 2020; 138:107725. [PMID: 33360954 DOI: 10.1016/j.bioelechem.2020.107725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
The present work is aimed at improving the adhesion of nanomaterials at the interface of solid state working electrodes. Towards this, herein, an efficient method has been proposed that requires the electrode interface to be decorated with an optimally thin layer of Nafion. This selectively permeable layer ensures the stability of the sensor interface, without hampering the transport of biomolecules and electrons. As a case study, here, electrospun Cerium oxide nanofiber (CeNF) modified Glassy carbon electrodes (GCE) have been used as the sensing interface, and stability and performance of the GCE/CeNF/Nafion interface is evaluated using analytical electrochemistry. The CeNF is synthesized via electrospinning and is characterized using X-ray diffraction spectroscopy, Thermal gravimetry, Fourier transform infrared spectroscopy, and Field emission scanning electron microscopy. Further, detection of sepsis specific biomarker TNF-α from spiked buffer samples is demonstrated, as a case study, towards evaluating the effect of Nafion on the interfacial sensitivity. The achieved LOD of GCE/CeNF and GCE/CeNF/Nafion for TNF-α detection were 2.8 fg/mL and 1.2 fg/mL, respectively. A comparative analysis between the Electrochemical impedance spectroscopic (EIS) results of the GCE/CeNF and the GCE/CeNF/Nafion interfaces confirms the improvement in stability, without affecting the sensitivity and the limiting detection.
Collapse
Affiliation(s)
- Sanni Kumar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Suryasnata Tripathy
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Om Krishan Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
10
|
Zhang Z, Zhang Y, Yu H, Rong S, Gao H, Meng L, Dai J, Pan H, Chang D. Spherical carrier amplification strategy for electrochemical immunosensor based on polystyrene-gold nanorods @L-cysteine/MoS2 for determination of tacrolimus. Talanta 2020; 220:121321. [DOI: 10.1016/j.talanta.2020.121321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
11
|
Hu ML, Abbasi-Azad M, Habibi B, Rouhani F, Moghanni-Bavil-Olyaei H, Liu KG, Morsali A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. Chempluschem 2020; 85:2397-2418. [PMID: 33140916 DOI: 10.1002/cplu.202000584] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Ferrocene and its derivatives, especially ferrocene-based coordination polymers (Fc-CPs), offer the benefits of high thermal stability, two stable redox states, fast electron transfer, and excellent charge/discharge efficiency, thus holding great promise for electrochemical applications. Herein, we describe the synthesis and electrochemical applications of Fc-CPs and reveal how the incorporation of ferrocene units into coordination polymers containing other metals results in unprecedented properties. Moreover, we discuss the usage of Fc-CPs in supercapacitors, batteries, and sensors as well as further applications of these polymers, for example in electrocatalysts, water purification systems, adsorption/storage systems.
Collapse
Affiliation(s)
- Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Mahsa Abbasi-Azad
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Behnam Habibi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Hamed Moghanni-Bavil-Olyaei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization, and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin, Chuan, 750021, P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| |
Collapse
|
12
|
Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: A review. Talanta 2020; 211:120758. [PMID: 32070602 DOI: 10.1016/j.talanta.2020.120758] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
In this review, we focus on recent developments in nonlabeled@label-free and labeled@sandwich assay concepts of tumor necrosis factor-alpha (TNF-α) using numerous electrochemical approaches. The fundamental role of such nanostructured materials for the improvement of the analytical response and thus the analytical figures of merit of various TNF-α sensing operations were revealed. Also, this examination focused on recent developments in immuno-electrochemical cytokine TNF-α sensors based on nanostructured materials from 2006 to 2019.
Collapse
|
13
|
Zhao Y, Hu Y, Hou J, Jia Z, Zhong D, Zhou S, Huo D, Yang M, Hou C. Electrochemical biointerface based on electrodeposition AuNPs on 3D graphene aerogel: Direct electron transfer of Cytochrome c and hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. BIOSENSORS-BASEL 2019; 9:bios9010038. [PMID: 30836674 PMCID: PMC6468465 DOI: 10.3390/bios9010038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023]
Abstract
An important class of biosensors is immunosensors, affinity biosensors that are based on the specific interaction between antibodies and antigens. They are classified in four classes based on the type of employed transducer: electrochemical, optical, microgravimetric, and thermometric and depending on the type of recognition elements, antibodies, aptamers, microRNAs and recently peptides are integrating parts. Those analytical devices are able to detect peptides, antibodies and proteins in various sample matrices, without many steps of sample pretreatment. Their high sensitivity, low cost and the easy integration in point of care devices assuring portability are attracting features that justify the increasing interest in their development. The use of nanomaterials, simultaneous multianalyte detection and integration on platforms to form point-of-care devices are promising tools that can be used in clinical analysis for early diagnosis and therapy monitoring in several pathologies. Taking into account the growing incidence of autoimmune disease and the importance of early diagnosis, electrochemical biosensors could represent a viable alternative to currently used diagnosis methods. Some relevant examples of electrochemical assays for autoimmune disease diagnosis developed in the last several years based on antigens, antibodies and peptides as receptors were gathered and will be discussed further.
Collapse
|
15
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
16
|
Yagati AK, Lee MH, Min J. Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum. Bioelectrochemistry 2018; 122:93-102. [DOI: 10.1016/j.bioelechem.2018.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
|
17
|
Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018; 159:406-424. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Hitit University, Faculty of Arts and Sciences, Department of Chemistry, Corum, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey.
| |
Collapse
|
18
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
19
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
|
21
|
Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2419-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens Bioelectron 2017; 92:542-548. [DOI: 10.1016/j.bios.2016.10.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023]
|
23
|
Si Z, Xie B, Chen Z, Tang C, Li T, Yang M. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2338-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Arya SK, Kongsuphol P, Park MK. On-chip electrochemical immunoassay platform for specific protein biomarker estimation in undiluted serum using off-surface membrane matrix. Biosens Bioelectron 2017; 91:721-727. [DOI: 10.1016/j.bios.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
|
25
|
Recent Advances in Electrochemical Immunosensors. SENSORS 2017; 17:s17040794. [PMID: 28387718 PMCID: PMC5422067 DOI: 10.3390/s17040794] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Immunosensors have experienced a very significant growth in recent years, driven by the need for fast, sensitive, portable and easy-to-use devices to detect biomarkers for clinical diagnosis or to monitor organic pollutants in natural or industrial environments. Advances in the field of signal amplification using enzymatic reactions, nanomaterials such as carbon nanotubes, graphene and graphene derivatives, metallic nanoparticles (gold, silver, various oxides or metal complexes), or magnetic beads show how it is possible to improve collection, binding or transduction performances and reach the requirements for realistic clinical diagnostic or environmental control. This review presents these most recent advances; it focuses first on classical electrode substrates, then moves to carbon-based nanostructured ones including carbon nanotubes, graphene and other carbon materials, metal or metal-oxide nanoparticles, magnetic nanoparticles, dendrimers and, to finish, explore the use of ionic liquids. Analytical performances are systematically covered and compared, depending on the detection principle, but also from a chronological perspective, from 2012 to 2016 and early 2017.
Collapse
|
26
|
Xue P, He T, Wu H, Xie H, Shen R, Yue F, Wang J, Zhang Y. Encapsulation of nanocrystals with responsive gels for spatial optical identification. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1298763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Peng Xue
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, P.R. China
| | - Ting He
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, P.R. China
| | - Huiqiong Wu
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, P.R. China
| | - Hongtao Xie
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, P.R. China
| | - Rujuan Shen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, P.R. China
| | - Fan Yue
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, P.R. China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, P.R. China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, P.R. China
| |
Collapse
|
27
|
Arya SK, Estrela P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017; 116:125-131. [DOI: 10.1016/j.ymeth.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022] Open
|
28
|
Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal Chim Acta 2017; 959:66-73. [PMID: 28159106 DOI: 10.1016/j.aca.2016.12.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022]
Abstract
Dual screen-printed carbon electrodes modified with 4-carboxyphenyl-functionalized double-walled carbon nanotubes (HOOC-Phe-DWCNTs/SPCEs) have been used as scaffolds for the preparation of electrochemical immunosensors for the simultaneous determination of the cytokines Interleukin-1β (IL-1β) and factor necrosis tumor α (TNF-α). IL-1β. Capture antibodies were immobilized onto HOOC-Phe-DWCNTs/SPCEs in an oriented form making using the commercial polymeric coating Mix&Go™. Sandwich type immunoassays with amperometric signal amplification through the use of poly-HRP-streptavidin conjugates and H2O2 as HRP substrate and hydroquinone as redox mediator were implemented. Upon optimization of the experimental variables affecting the immunosensor performance, the dual immunosensor allows ranges of linearity extending between 0.5 and 100 pg/mL and from 1 to 200 pg/mL for IL-1β and TNF-α, respectively, these ranges being adequate for the determination of the cytokines in clinical samples. The achieved limits of detection were 0.38 pg/mL (IL-1β) and 0.85 pg/mL (TNF-α). In addition, the dual immunosensor exhibits excellent reproducibility of the measurements, storage stability of the anti-IL-Phe-DWCNTs/SPCE and anti-TNF-Phe-DWCNTs/SPCE conjugates, and selectivity as well as negligible cross-talking. The dual immunosensor was applied to the simultaneous determination of IL-1β and TNF-α in human serum spiked at clinically relevant concentration levels and in real saliva samples.
Collapse
Affiliation(s)
- E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - C Salvo
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - F Langa
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
29
|
Jiang C, Alam MT, Silva SM, Taufik S, Fan S, Gooding JJ. Unique Sensing Interface That Allows the Development of an Electrochemical Immunosensor for the Detection of Tumor Necrosis Factor α in Whole Blood. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00532] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cheng Jiang
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Muhammad Tanzirul Alam
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Saimon Moraes Silva
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Safura Taufik
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sanjun Fan
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, Australian
Centre for NanoMedicine and ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Xue P, Wei Y, Wu H, Wang X, He T, Shen R, Yue F, Wang J, Zhang Y. Supramolecular xerogel linked with cobalt(II) ions: A facile method toward O2 storage and catalyzation of cyclohexene oxidation. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
32
|
Laocharoensuk R. Development of Electrochemical Immunosensors towards Point-of-care Cancer Diagnostics: Clinically Relevant Studies. ELECTROANAL 2016. [DOI: 10.1002/elan.201600248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rawiwan Laocharoensuk
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathum Thani 12120 Thailand
| |
Collapse
|
33
|
Cheng H, Xu L, Zhang H, Yu A, Lai G. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst 2016; 141:4381-7. [PMID: 27186605 DOI: 10.1039/c6an00651e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A nanoporous gold nanosphere (pAu NS) was synthesized to load high-content glucose oxidase (GOx) and ferrocene (Fc) for the successful preparation of a new gold nanoprobe. After the specific recognition of the tumor biomarker of carcinoembryonic antigen (CEA) at a gold electrode based aptasensor, this GOx and Fc dually functionalized pAu NS nanoprobe was further used for sandwich immunoreaction and signal tracing. Based on the Fc-mediated GOx-catalytic reaction, the gold nanoprobes quantitatively captured onto the electrode surface produced a sensitive electrochemical signal corresponding to the protein recognition events, which led to the development of a new biosensing method for CEA measurement. Both the high loading of GOx and Fc on the pAu NS nanocarrier and the enzymatically catalytic reaction of the nanoprobe greatly amplify the electrochemical signal; meanwhile, the immobilization of the Fc mediator on this enzyme nanoprobe and the highly specific aptamer recognition drastically decrease the background current, resulting in the achievement of ultrahigh sensitivity of the method. Under optimum conditions, this method shows an excellent analytical performance including a wide linear relationship of five-order of magnitude and a low detection limit down to 0.45 pg mL(-1). Thus this pAu NS based gold nanoprobe and the proposed immunoassay method provide great potential for practical applications.
Collapse
Affiliation(s)
- Hui Cheng
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | | | | | | | | |
Collapse
|
34
|
Zou Q, Liu K, Abbas M, Yan X. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1031-43. [PMID: 26273821 DOI: 10.1002/adma.201502454] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/18/2015] [Indexed: 05/21/2023]
Abstract
Elegant self-assembling complexes by the combination of proteins/peptides with functional chromophores are decisively responsible for highly efficient light-harvesting and energy transfer in natural photosynthetic systems. Mimicking natural light-harvesting complexes through synthetic peptides is attractive due to their advantanges of programmable primary structure, tunable self-assembly architecture and easy availability in comparison to naturally occuring proteins. Here, an overview of recent progresses in the area of biomimetic light-harvesting nanoarchitectonics based on peptide-modulated self-assembly of chromophores is provided. Adjusting the organization of chromophores, either by creating peptide-chromophore conjugates or by the non-covalent assembly of peptides and chromophores are highlighted. The light-harvesting properties, especially the energy transfer of the biomimetic complexes are critically discussed. The applications of such complexes in the mineralization of inorganic nanoparticles, generation of molecular hydrogen and oxygen, and photosynthesis of bioactive molecules are also included.
Collapse
Affiliation(s)
- Qianli Zou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Kai Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Manzar Abbas
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
35
|
Baydemir G, Bettazzi F, Palchetti I, Voccia D. Strategies for the development of an electrochemical bioassay for TNF-alpha detection by using a non-immunoglobulin bioreceptor. Talanta 2016; 151:141-147. [PMID: 26946021 DOI: 10.1016/j.talanta.2016.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
TNF-α is an inflammatory cytokine produced by the immune system. Serum TNF-α level is elevated in some pathological states such as septic shock, graft rejection, HIV infection, neurodegenerative diseases, rheumatoid arthritis and cancer. Detecting trace amount of TNF-α is, also, very important for the understanding of tumor biological processes. Detection of this key biomarker is commonly achieved by use of ELISA or cytofluorimetric based methods. In this study the traditional optical detection was replaced by differential pulse voltammetry (DPV) and an affinity molecule, produced by evolutionary approaches, has been tested as capture bioreceptor. This molecule, namely a combinatorial non-immunoglobulin protein (Affibody®) interacts with TNF-α selectively and was here tested in a sandwich assay format. Moreover magnetic beads were used as support for bioreceptor immobilization and screen printed carbon electrodes were used as transducers. TNF-α calibration curve was performed, obtaining the detection limit of 38pg/mL, the quantification range of 76-5000pg/mL and RSD%=7. Preliminary results of serum samples analysis were also reported.
Collapse
Affiliation(s)
- Gozde Baydemir
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy; Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | - Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy.
| | - Diego Voccia
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
36
|
Zhang Y, Pang X, Wu D, Ma H, Yan Z, Zhang J, Du B, Wei Q. A robust electrochemiluminescence immunoassay for carcinoembryonic antigen detection based on a microtiter plate as a bridge and Au@Pd nanorods as a peroxidase mimic. Analyst 2016; 141:337-45. [DOI: 10.1039/c5an02053k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The common drawbacks of most traditional electrochemiluminescence (ECL) immunoassays are the strict storage conditions for the ECL electrode and the steric hindrance caused by bovine serum albumin and antigen.
Collapse
Affiliation(s)
- Yong Zhang
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
- School of Chemistry and Chemical Engineering
| | - Xuehui Pang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| | - Dan Wu
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Zhaoqing Yan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| | - Jiatao Zhang
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Bin Du
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Qin Wei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| |
Collapse
|
37
|
Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A. Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 2015; 71:353-358. [DOI: 10.1016/j.bios.2015.04.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/27/2015] [Accepted: 04/20/2015] [Indexed: 11/23/2022]
|
39
|
Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron 2015; 74:30-6. [PMID: 26094037 DOI: 10.1016/j.bios.2015.05.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 01/30/2023]
Abstract
Bimetallic Ag@Pt core-shell nanoparticles supported on reduced graphene oxide nanosheets (Ag@Pt-GRs) was synthesized and used as novel desirable sensor platform and electrocatalyst for catechol as probe in aptasensor. Gold screen-printed electrodes modified with Ag@Pt-GRs and applied to advance enzyme-free and label-free electrochemical aptasensor for detection of protein biomarker tumor necrosis factor-alpha (TNF-α). The morphology of the Ag@Pt-GRs could be characterized by transmission electron microscopy, X-ray diffraction and UV-vis spectra. The results showed that these nanocomposite exhibited attractive electrocatalytic activity and also yielded large surface area, which improve the amount of immobilized TNF-α aptamer. Due to the excellent electrocatalytic activity of Ag@Pt-GRs towards the oxidation of catechol, determination of TNF-α antigen was based on its obstruction to the electrocatalytic oxidation of catechol by Ag@Pt-GRs after binding to the surface of electrode through interaction with the aptamer. The calibration curve was obtained by differential pulse voltammetry and square wave voltammetry. Under optimum conditions, the results demonstrated that this electrochemical aptasensor possessed a dynamic range from 0.0 pg/mL to 60 pg/mL with a low detection limit of 2.07 pg/mL for TNF-α. The analytical usefulness of the aptasensor was finally demonstrated analyzing serum samples. The simple fabrication method, high sensitivity, specificity, good reproducibility and stability as well as acceptable accuracy for TNF-α detection in human serum samples are the main advantages of this aptasensor, which might have broad applications in protein diagnostics and bioassay.
Collapse
Affiliation(s)
| | - Laleh Hosseinzadeh
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
| | - Zahra Taleat
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
| |
Collapse
|
40
|
Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1471-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Jin G, Wang C, Yang L, Li X, Guo L, Qiu B, Lin Z, Chen G. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Biosens Bioelectron 2014; 63:166-171. [PMID: 25086328 DOI: 10.1016/j.bios.2014.07.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Abstract
An ultrasensitive electrochemiluminescence (ECL) aptamer sensor for protein (thrombin as an example) detection based on hyperbranched rolling circle amplification (HRCA) had been developed. A complementary single-strand DNA (CDNA) of the thrombin aptamer had been modified on the gold electrode firstly, and then hybridized with thrombin aptamer to make the aptamer immobilized on the electrode surface, in the presence of thrombin, aptamer-thrombin bioaffinity complexes formed and made thrombin aptamer leave the electrode surface. Thus, the linear padlock probe hybridized with the free CDNA on the electrode surface and circularized by Escherichia coli DNA ligase. Subsequently, the linear padlock probe was served as a template for the initiation of HRCA reaction, and a lot of dsDNA modified on the electrode surface. Then Ru(phen)₃²⁺ (acted as the ECL indicator) intercalates specifically into double-stranded DNA (dsDNA) grooves to generate ECL signal. The ECL intensity of the system has a linear relationship with thrombin concentration in the range of 3.0-300 aM with a detection limit of 1.2 aM (S/N=3). The proposed method combines the high sensitivity of ECL, exponential amplification of HRCA for signal enhancement and high selectivity of aptamer.
Collapse
Affiliation(s)
- Guixiao Jin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chunmei Wang
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Linlin Yang
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaojuan Li
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Longhua Guo
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Guonan Chen
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
42
|
Eletxigerra U, Martinez-Perdiguero J, Merino S, Villalonga R, Pingarrón JM, Campuzano S. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. Anal Chim Acta 2014; 838:37-44. [PMID: 25064241 DOI: 10.1016/j.aca.2014.05.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022]
Abstract
An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at -0.20V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H2O2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0pg mL(-1) (36fM) and 5.8pg mL(-1) (105fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.
Collapse
Affiliation(s)
- U Eletxigerra
- Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain; CIC microGUNE, Arrasate-Mondragón, Spain
| | | | - S Merino
- Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain; CIC microGUNE, Arrasate-Mondragón, Spain
| | - R Villalonga
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
43
|
Sun R, Wang L, Yu H, Abdin ZU, Chen Y, Huang J, Tong R. Molecular Recognition and Sensing Based on Ferrocene Derivatives and Ferrocene-Based Polymers. Organometallics 2014. [DOI: 10.1021/om5000453] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ruoli Sun
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Wang
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Haojie Yu
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zain-ul- Abdin
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yongsheng Chen
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jin Huang
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Rongbai Tong
- State
Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
44
|
Two kinds of electrochemical immunoassays for the tumor necrosis factor α in human serum using screen-printed graphite electrodes modified with poly(anthranilic acid). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1186-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Li S, Wang L, Hao Y, Zhang L, Zhou B, Deng L, Liu YN. An ultrasensitive colorimetric aptasensor for ATP based on peptide/Au nanocomposites and hemin–G-quadruplex DNAzyme. RSC Adv 2014. [DOI: 10.1039/c4ra02823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A self-assembled peptide nanosphere was firstly applied to construct biosensors. A new signal amplification strategy was proposed for colorimetric aptasensor based on PNS/AuNPs composite. The colorimetric aptasensor displayed an ultra-high sensitivity for ATP detection with a LOD of 1.35 pM.
Collapse
Affiliation(s)
- Shipeng Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Lili Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
- Hunan Institute of Food Quality Supervision Inspection and Research
- Changsha, PR China
| | - Liu Deng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| |
Collapse
|
46
|
Xiao L, Chai Y, Yuan R, Wang H, Bai L. Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Analyst 2014; 139:1030-6. [DOI: 10.1039/c3an02134c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel pseudo triple-enzyme cascade catalysis amplification strategy was employed to fabricate a highly sensitive electrochemiluminescence (ECL) aptasensor for thrombin (TB) detection.
Collapse
Affiliation(s)
- Lijuan Xiao
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, People's Republic of China
| | - Yaqin Chai
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, People's Republic of China
| | - Haijun Wang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, People's Republic of China
| | - Lijuan Bai
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, People's Republic of China
| |
Collapse
|
47
|
Zhou M, Yang M, Zhou F. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens Bioelectron 2013; 55:39-43. [PMID: 24361420 DOI: 10.1016/j.bios.2013.11.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/17/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Paper based colorimetric biosensing platform utilizing cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS) as probe was developed for the detection of a broad range of targets including H2O2, glucose and protein biomarker. APTMS was extensively used for the modification of filter papers to develop paper based analytical devices. We discovered when APTMS was cross-linked with glutaraldehyde (GA), the resulting complex (APTMS-GA) displays brick-red color, and a visual color change was observed when the complex reacted with H2O2. By integrating the APTMS-GA complex with filter paper, the modified paper enables quantitative detection of H2O2 through the monitoring of the color intensity change of the paper via software Image J. Then, with the immobilization of glucose oxidase (GOx) onto the modified paper, glucose can be detected through the detection of enzymatically generated H2O2. For protein biomarker prostate specific antigen (PSA) assay, we immobilized capture, not captured anti-PSA antibody (Ab1) onto the paper surface and using GOx modified gold nanorod (GNR) as detection anti-PSA antibody (Ab2) label. The detection of PSA was also achieved via the liberated H2O2 when the GOx label reacted with glucose. The results demonstrated the possibility of this paper based sensor for the detection of different analytes with wide linear range. The low cost and simplicity of this paper based sensor could be developed for "point-of-care" analysis and find wide application in different areas.
Collapse
Affiliation(s)
- Miao Zhou
- Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Minghui Yang
- Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Feimeng Zhou
- Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| |
Collapse
|
48
|
Sun Z, Li Z, He Y, Shen R, Deng L, Yang M, Liang Y, Zhang Y. Ferrocenoyl Phenylalanine: A New Strategy Toward Supramolecular Hydrogels with Multistimuli Responsive Properties. J Am Chem Soc 2013; 135:13379-86. [DOI: 10.1021/ja403345p] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Yonghui He
- Key
Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan University of Nationalities, Kunming 650500, China
| | | | | | | | | | | |
Collapse
|
49
|
A signal amplification strategy using the cascade catalysis of gold nanoclusters and glucose dehydrogenase for ultrasensitive detection of thrombin. Biosens Bioelectron 2013; 50:161-6. [PMID: 23850783 DOI: 10.1016/j.bios.2013.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 02/05/2023]
Abstract
This work reports a novel signal amplification strategy for ultrasensitive detection of thrombin by cascade catalysis of gold nanoclusters (AuNCs) and glucose dehydrogenase (GDH). Herein, the AuNCs prepared by using polyamidoamine dendrimer as template were constructed not only as nanocarriers for anchoring the large amounts of secondary thrombin aptamers but also as nanocatalysts to catalyze the oxidation of NADH efficiently. Moreover, a large amount of GDH was loaded through the immobilization technology of DNA hybridization and a large amount of toluidine blue (Tb) was intercalated into the DNA grooves via electrostatic interaction. Significantly, the electrochemical signal was greatly enhanced based on cascade catalysis: firstly, GDH catalyzed the oxidation of glucose to gluconolactone with the concomitant generation of NADH in the presence of NAD(+). Then, AuNCs as nanocatalysts could effectively catalyze NADH to produce NAD(+) with the help of Tb as redox probe. Under the optimal conditions, the proposed aptasensor exhibits a linear range of 1.0×10(-14)-5×10(-9) M with a low detection limit of 3.3×10(-15) M for thrombin detection and shows high sensitivity and good specificity.
Collapse
|
50
|
Li L, Lu H, Deng L. A sensitive NADH and ethanol biosensor based on graphene-Au nanorods nanocomposites. Talanta 2013; 113:1-6. [PMID: 23708615 DOI: 10.1016/j.talanta.2013.03.074] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
In this paper, a simple strategy for the synthesis of graphene-Au nanorods hybrid nanosheets (GN-AuNRs) through electrostatic interaction has been demonstrated. Due to the synergistic effect between AuNRs and GN, the hybrid nanosheets exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation, with a low detection limit of 6 µM. The linear GN-AuNRs also served as a biocompatible and electroactive matrix for enzyme assembly to facilitate the electron transfer between the enzyme and the electrode. Using alcohol dehydrogenase (ADH) as a model system, a simple and effective sensing platform was developed for ethanol assay. The response displayed a good linear range from 5 to 377 µM with detection limit 1.5 μM. Furthermore, the interference effects of redox active substances, such as uric acid, ascorbic acid and glucose for the proposed biosensor were negligible.
Collapse
Affiliation(s)
- Li Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | | | | |
Collapse
|