1
|
Rafighi P, Nordberg Karlsson E, Zubaida Gulshan Ara K, Pankratova G, Bollella P, Peterbauer CK, Gorton L. A novel membraneless β-glucan/O 2 enzymatic fuel cell based on β-glucosidase (RmBgl3B)/pyranose dehydrogenase (AmPDH) co-immobilized onto buckypaper electrode. Bioelectrochemistry 2022; 148:108254. [PMID: 36122427 DOI: 10.1016/j.bioelechem.2022.108254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
A novel membraneless β-glucan/O2 enzymatic fuel cell was developed by combining a bioanode based on buckypaper modified with co-immobilized Agaricus meleagris pyranose dehydrogenase (AmPDH) and Rhodothermus marinus β-glucosidase (RmBgl3B) (RmBgl3B-AmPDH/buckypaper) with a biocathode based on solid graphite modified with Myrothecium verrucaria bilirubin oxidase (MvBOx/graphite). AmPDH was connected electrochemically with the buckypaper using an osmium redox polymer in a mediated reaction, whereas MvBOx was connected with graphite in a direct electron transfer reaction. The fuel for the bioanode was produced by enzymatic hydrolysis of β-glucan by the exoglucanase RmBgl3B into d-glucose, which in turn was enzymatically oxidised by AmPDH to generate a current response. This design allows to obtain an efficient enzymatic fuel cell, where the chemical energy converted into electrical energy is higher than the chemical energy stored in complex carbohydrate based fuel. The maximum power density of the assembled β-glucan/O2 biofuel cell reached 26.3 ± 4.6 μWcm-2 at 0.36 V in phosphate buffer containing 0.5 % (w/v) β-glucan at 40 °C with excellent stability retaining 68.6 % of its initial performance after 5 days. The result confirms that β-glucan can be employed as fuel in an enzymatic biofuel cell.
Collapse
Affiliation(s)
- Parvin Rafighi
- College of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan, Iran
| | | | | | - Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Clemens K Peterbauer
- Department of Food Sciences and Technology BOKU-University of Natural Resources and Life Sciences Muthgasse 18, A-1190 Wien, Austria
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
2
|
Cellobiose dehydrogenase in biofuel cells. Curr Opin Biotechnol 2022; 73:205-212. [PMID: 34482156 PMCID: PMC7613715 DOI: 10.1016/j.copbio.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Enzymatic biofuel cells utilize oxidoreductases as highly specific and highly active electrocatalysts to convert a fuel and an oxidant even in complex biological matrices like hydrolysates or physiological fluids into electric energy. The hemoflavoenzyme cellobiose dehydrogenase is investigated as a versatile bioelectrocatalyst for the anode reaction of biofuel cells, because it is robust, converts a range of different carbohydrates, and can transfer electrons to the anode by direct electron transfer or via redox mediators. The versatility of cellobiose dehydrogenase has led to the development of various electrode modifications to create biofuel cells and biosupercapacitors that are capable to power small electronic devices like biosensors and connect them wireless to a receiver.
Collapse
|
3
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Quintero-Jaime AF, Conzuelo F, Cazorla-Amorós D, Morallón E. Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes. Talanta 2021; 232:122386. [PMID: 34074388 DOI: 10.1016/j.talanta.2021.122386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Development of effective direct electron transfer is considered an interesting platform to obtain high performance bioelectrodes. Therefore, designing of scalable and cost-effective immobilization routes that promotes correct direct electrical contacting between the electrode material and the redox enzyme is still required. As we present here, electrochemical entrapment of pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on single-wall carbon nanotube (SWCNT)-modified electrodes was carried out in a single step during electrooxidation of para-aminophenyl phosphonic acid (4-APPA) to obtain active bioelectrodes. The adequate interaction between SWCNTs and the enzyme can be achieved by making use of phosphorus groups introduced during the electrochemical co-deposition of films, improving the electrocatalytic activity towards glucose oxidation. Two different procedures were investigated for electrode fabrication, namely the entrapment of reconstituted holoenzyme (PQQ-GDH) and the entrapment of apoenzyme (apo-GDH) followed by subsequent in situ reconstitution with the redox cofactor PQQ. In both cases, PQQ-GDH preserves its electrocatalytic activity towards glucose oxidation. Moreover, in comparison with a conventional drop-casting method, an important enhancement in sensitivity was obtained for glucose oxidation (981.7 ± 3.5 nA mM-1) using substantially lower amounts of enzyme and cofactor (PQQ). The single step electrochemical entrapment in presence of 4-APPA provides a simple method for the fabrication of enzymatic bioelectrodes.
Collapse
Affiliation(s)
- Andrés Felipe Quintero-Jaime
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsst. 150, D-44780, Bochum, Germany
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Emilia Morallón
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain.
| |
Collapse
|
5
|
Liu Y, Lu S, Yang H. One-step coating of Ni–Fe alloy outerwear on 1–3-dimensional nanomaterials by a novel technology. NEW J CHEM 2021. [DOI: 10.1039/d0nj05292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple one-step electrodeposition approach was developed to manufacture Ni–Fe alloy@1–3-dimensional core–shell nanomaterials using a novel technology.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Shiqing Lu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Haidong Yang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
6
|
Wu R, Song H, Wang Y, Wang L, Zhu Z. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Affiliation(s)
- Matthew J. Kummer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
8
|
Peterbauer CK. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis. Bioelectrochemistry 2020; 132:107399. [DOI: 10.1016/j.bioelechem.2019.107399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
9
|
An efficient and versatile membraneless bioanode for biofuel cells based on Corynascus thermophilus cellobiose dehydrogenase. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Electrometabolic Pathways: Recent Developments in Bioelectrocatalytic Cascades. Top Curr Chem (Cham) 2018; 376:43. [DOI: 10.1007/s41061-018-0221-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022]
|
11
|
Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens Bioelectron 2018; 124-125:40-52. [PMID: 30343155 DOI: 10.1016/j.bios.2018.09.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Wearable enzymatic biofuel cells would be the most prospective fuel cells for wearable devices because of their low cost, compactness and flexibility. As the high specificity and catalytic properties of enzymes, enzymatic biofuel cells (EBFCs) catalyze the fuel associated with the redox reaction and get electrical energy. Available biofuels such as glucose, lactate and pyruvate can be harvested from biofluids of sweat, tears and blood, which afford cells a favorable use in implantable and wearable devices. However, the development of wearable enzymatic biofuel cells requires significant improvements on the power density and enzymes lifetime. In this paper, some new advances in improving the performance of wearable enzymatic biofuel cells are reviewed based on the bioanode and biocathode by classifying single-enzyme and multi-enzyme catalysis system. Thereinto, the bioanode usually contains oxidases and dehydrogenases as catalyst, and the biocathode utilizes the catalysis of multi-copper oxidases (MCOs) in the single system. For further enhancing the power density, efforts to develop multi-enzyme catalysis strategies are discussed in bioanode and biocathode respectively. Moreover, some potential technologies in recent years, such as carbon nanodots, CNT sponges and mixed operational/storage electrode are summarized owing to notable efficiency and the capability of enhancing electron transfer on the electrode. Finally, major challenges and future prospects are discussed for the high power output, stable and practical wearable enzymatic biofuel cells.
Collapse
|
12
|
Kurbanoglu S, Zafar MN, Tasca F, Aslam I, Spadiut O, Leech D, Haltrich D, Gorton L. Amperometric Flow Injection Analysis of Glucose and Galactose Based on Engineered Pyranose 2-Oxidases and Osmium Polymers for Biosensor Applications. ELECTROANAL 2018. [DOI: 10.1002/elan.201800096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sevinc Kurbanoglu
- Department of Analytical Chemistry; Ankara University, Tandogan; Ankara Turkey
- Department of Biochemistry and Structural Biology; Lund University; Lund Sweden
| | | | - Federico Tasca
- Department of Materials Chemistry; University of Santiago of Chile; Santiago Chile
| | - Iqra Aslam
- Department of Biochemistry; Govt. College University Faisalabad; Pakistan
| | - Oliver Spadiut
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna A-1190 Austria
| | - Dónal Leech
- School of Chemistry & Ryan Institute; National University of Ireland Galway; University Road Galway Ireland
| | - Dietmar Haltrich
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna A-1190 Austria
| | - Lo Gorton
- Department of Biochemistry and Structural Biology; Lund University; Lund Sweden
| |
Collapse
|
13
|
Herkendell K, Tel-Vered R, Stemmer A. Switchable aerobic/anaerobic multi-substrate biofuel cell operating on anodic and cathodic enzymatic cascade assemblies. NANOSCALE 2017; 9:14118-14126. [PMID: 28902212 DOI: 10.1039/c7nr06233h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymatic fuel cells may become more accessible for applications powering portable electronic devices by broadening the range of potentially usable fuels and oxidizers. In this work we demonstrate the operation of an integrated, yet versatile multi-substrate biofuel cell utilizing either glucose, fructose, sucrose or combinations of thereof as biofuels, and molecular oxygen originating from solution phase and/or an internal chemical source, as the oxidizer. In order to achieve this goal we designed an enzymatic cascade-functionalized anode consisting of invertase (INV), mutarotase (MUT), glucose oxidase (GOX), and fructose dehydrogenase (FDH), deposited on top of a mesoporous carbon nanoparticle matrix, in which electron relay molecules had been entrapped. The anode was then conjugated to a compatible enzymatic cathode that employs a cascade of catalase (CAT) and bilirubin oxidase (BOD), allowing the cell to operate in an aerobic environment and/or to utilize, under anaerobic conditions for instance, hydrogen peroxide as a source for the oxygen oxidizer. While operated in the presence of the sugar mixture and hydrogen peroxide, the power output of the dually cascaded biofuel cell reaches a peak power density of 0.25 mW cm-2 and demonstrates an open circuit potential of 0.65 V. To our knowledge this is the first reported biofuel cell that discharges with both anodic and cathodic enzymatic cascade architectures and the first biofuel cell that is repeatedly switched between aerobic and anaerobic conditions without any significant decrease in the discharge performance.
Collapse
Affiliation(s)
- Katharina Herkendell
- ETH Zürich, Nanotechnology Group, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
14
|
Xiao X, Conghaile PÓ, Leech D, Ludwig R, Magner E. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator. Biosens Bioelectron 2017; 90:96-102. [DOI: 10.1016/j.bios.2016.11.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/21/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
|
15
|
Ortiz R, Rahman M, Zangrilli B, Sygmund C, Micheelsen PO, Silow M, Toscano MD, Ludwig R, Gorton L. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity. ChemElectroChem 2017. [DOI: 10.1002/celc.201600781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Roberto Ortiz
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; P. O. Box 124 SE-22100 Lund Sweden
- Department of Chemistry; Kemitorvet, DTU 2800 Kgs. Lyngby Denmark
| | - Mahbubur Rahman
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; P. O. Box 124 SE-22100 Lund Sweden
| | - Beatrice Zangrilli
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; P. O. Box 124 SE-22100 Lund Sweden
| | - Christoph Sygmund
- Department of Food Science and Technology; BOKU-University of Natural Resources and Life Sciences; Muthgasse 18 A-1190 Vienna Austria
| | | | - Maria Silow
- Novozymes A/S; Krogshøgvej 36, DTU 2880 Bagsvœrd Denmark
| | | | - Roland Ludwig
- Department of Food Science and Technology; BOKU-University of Natural Resources and Life Sciences; Muthgasse 18 A-1190 Vienna Austria
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; P. O. Box 124 SE-22100 Lund Sweden
| |
Collapse
|
16
|
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76:91-102. [DOI: 10.1016/j.bios.2015.06.029] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
|
17
|
Bozorgzadeh S, Hamidi H, Ortiz R, Ludwig R, Gorton L. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes. Phys Chem Chem Phys 2015; 17:24157-65. [PMID: 26323551 DOI: 10.1039/c5cp03812j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.
Collapse
Affiliation(s)
- Somayyeh Bozorgzadeh
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Minteer SD. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:621-624. [PMID: 26334845 DOI: 10.1016/j.bbabio.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Shelley D Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Sakuta R, Takeda K, Ishida T, Igarashi K, Samejima M, Nakamura N, Ohno H. Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Tertiş M, Hosu O, Fritea L, Farcau C, Cernat A, Săndulescu R, Cristea C. A Novel Label-Free Immunosensor Based on Activated Graphene Oxide for Acetaminophen Detection. ELECTROANAL 2015. [DOI: 10.1002/elan.201400583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Yakovleva ME, Gonaus C, Schropp K, ÓConghaile P, Leech D, Peterbauer CK, Gorton L. Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells. Phys Chem Chem Phys 2015; 17:9074-81. [DOI: 10.1039/c5cp00430f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this article we describe production and characterisation of mutant pyranose dehydrogenase – an excellent enzyme for fabrication of enzyme-based biosensors and bioanodes.
Collapse
Affiliation(s)
- Maria E. Yakovleva
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
| | - Christoph Gonaus
- Department of Food Sciences and Technology
- BOKU-University of Natural Resources and Applied Life Sciences
- A-1190 Wien
- Austria
| | - Katharina Schropp
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
- Department of Food Sciences and Technology
| | - Peter ÓConghaile
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Dónal Leech
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Clemens K. Peterbauer
- Department of Food Sciences and Technology
- BOKU-University of Natural Resources and Applied Life Sciences
- A-1190 Wien
- Austria
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
22
|
Badalyan A, Dierich M, Stiba K, Schwuchow V, Leimkühler S, Wollenberger U. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA. BIOSENSORS-BASEL 2014; 4:403-21. [PMID: 25587431 PMCID: PMC4287710 DOI: 10.3390/bios4040403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022]
Abstract
Biosensors for the detection of benzaldehyde and γ-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulla Wollenberger
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-331-977-5122; Fax: +49-331-977-5128
| |
Collapse
|
23
|
Hickey DP, McCammant MS, Giroud F, Sigman MS, Minteer SD. Hybrid Enzymatic and Organic Electrocatalytic Cascade for the Complete Oxidation of Glycerol. J Am Chem Soc 2014; 136:15917-20. [DOI: 10.1021/ja5098379] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David P. Hickey
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. McCammant
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Fabien Giroud
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Falk M, Alcalde M, Bartlett PN, De Lacey AL, Gorton L, Gutierrez-Sanchez C, Haddad R, Kilburn J, Leech D, Ludwig R, Magner E, Mate DM, Conghaile PÓ, Ortiz R, Pita M, Pöller S, Ruzgas T, Salaj-Kosla U, Schuhmann W, Sebelius F, Shao M, Stoica L, Sygmund C, Tilly J, Toscano MD, Vivekananthan J, Wright E, Shleev S. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission. PLoS One 2014; 9:e109104. [PMID: 25310190 PMCID: PMC4195609 DOI: 10.1371/journal.pone.0109104] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/08/2014] [Indexed: 12/04/2022] Open
Abstract
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.
Collapse
Affiliation(s)
- Magnus Falk
- Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Miguel Alcalde
- Institute of Catalysis and Petrochemistry, Madrid, Spain
| | - Philip N. Bartlett
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Lo Gorton
- Analytical Chemistry/Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | - Raoudha Haddad
- Analytische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Jeremy Kilburn
- School of Biological and Chemical Sciences, University of London, London, United Kingdom
| | - Dónal Leech
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Roland Ludwig
- Food Science & Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Edmond Magner
- Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | - Diana M. Mate
- Institute of Catalysis and Petrochemistry, Madrid, Spain
| | - Peter Ó. Conghaile
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Roberto Ortiz
- Analytical Chemistry/Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Marcos Pita
- Institute of Catalysis and Petrochemistry, Madrid, Spain
| | - Sascha Pöller
- Analytische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Tautgirdas Ruzgas
- Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Urszula Salaj-Kosla
- Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | | - Minling Shao
- Analytische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Leonard Stoica
- Analytische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Cristoph Sygmund
- Food Science & Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | - Emma Wright
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Sergey Shleev
- Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
25
|
Cruys-Bagger N, Badino SF, Tokin R, Gontsarik M, Fathalinejad S, Jensen K, Toscano MD, Sørensen TH, Borch K, Tatsumi H, Väljamäe P, Westh P. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme Microb Technol 2014; 58-59:68-74. [DOI: 10.1016/j.enzmictec.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
26
|
Killyéni A, Yakovleva ME, MacAodha D, Conghaile PÓ, Gonaus C, Ortiz R, Leech D, Popescu IC, Peterbauer CK, Gorton L. Effect of deglycosylation on the mediated electrocatalytic activity of recombinantly expressed Agaricus meleagris pyranose dehydrogenase wired by osmium redox polymer. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.08.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Hickey DP, Giroud F, Schmidtke DW, Glatzhofer DT, Minteer SD. Enzyme Cascade for Catalyzing Sucrose Oxidation in a Biofuel Cell. ACS Catal 2013. [DOI: 10.1021/cs4003832] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David P. Hickey
- Department
of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Fabien Giroud
- Departments of Chemistry and Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - David W. Schmidtke
- University
of Oklahoma Bioengineering Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- School
of Chemical, Biological, Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Daniel T. Glatzhofer
- Department
of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Yakovleva ME, Killyéni A, Seubert O, O Conghaile P, Macaodha D, Leech D, Gonaus C, Popescu IC, Peterbauer CK, Kjellström S, Gorton L. Further insights into the catalytical properties of deglycosylated pyranose dehydrogenase from Agaricus meleagris recombinantly expressed in Pichia pastoris. Anal Chem 2013; 85:9852-8. [PMID: 24016351 PMCID: PMC3798088 DOI: 10.1021/ac4023988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study focuses on fragmented deglycosylated pyranose dehydrogenase (fdgPDH) from Agaricus meleagris recombinantly expressed in Pichia pastoris . Fragmented deglycosylated PDH is formed from the deglycosylated enzyme (dgPDH) when it spontaneously loses a C-terminal fragment when stored in a buffer solution at 4 °C. The remaining larger fragment has a molecular weight of ∼46 kDa and exhibits higher volumetric activity for glucose oxidation compared with the deglycosylated and glycosylated (gPDH) forms of PDH. Flow injection amperometry and cyclic voltammetry were used to assess and compare the catalytic activity of the three investigated forms of PDH, "wired" to graphite electrodes with two different osmium redox polymers: [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) [Os(dmbpy)PVI] and [Os(4,4'-dimethoxy-2,2'-bipyridine)2(poly-(vinylimidazole))10Cl](+) [Os(dmobpy)PVI]. When "wired" with Os(dmbpy)PVI, the graphite electrodes modified with fdgPDH showed a pronounced increase in the current density with Jmax 13- and 6-fold higher than that observed for gPDH- and dgPDH-modified electrodes, making the fragmented enzyme extraordinarily attractive for further biotechnological applications. An easier access of the substrate to the active site and improved communication between the enzyme and mediator matrix are suggested as the two main reasons for the excellent performance of the fdgPDH when compared with that of gPDH and dgPDH. Three of the four glycosites in PDH: N(75), N(175), and N(252) were assigned using mass spectrometry in conjunction with endoglycosidase treatment and tryptic digestion. Determination of the asparagine residues carrying carbohydrate moieties in PDH can serve as a solid background for production of recombinant enzyme lacking glycosylation.
Collapse
Affiliation(s)
- Maria E Yakovleva
- Department of Biochemistry and Structural Biology, Lund University , PO Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Optimization of a Membraneless Glucose/Oxygen Enzymatic Fuel Cell Based on a Bioanode with High Coulombic Efficiency and Current Density. Chemphyschem 2013; 14:2260-9. [DOI: 10.1002/cphc.201300046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/07/2022]
|
30
|
Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L. Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem 2013; 405:3637-58. [PMID: 23329127 PMCID: PMC3608873 DOI: 10.1007/s00216-012-6627-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The flavocytochrome cellobiose dehydrogenase (CDH) is a versatile biorecognition element capable of detecting carbohydrates as well as quinones and catecholamines. In addition, it can be used as an anode biocatalyst for enzymatic biofuel cells to power miniaturised sensor-transmitter systems. Various electrode materials and designs have been tested in the past decade to utilize and enhance the direct electron transfer (DET) from the enzyme to the electrode. Additionally, mediated electron transfer (MET) approaches via soluble redox mediators and redox polymers have been pursued. Biosensors for cellobiose, lactose and glucose determination are based on CDH from different fungal producers, which show differences with respect to substrate specificity, pH optima, DET efficiency and surface binding affinity. Biosensors for the detection of quinones and catecholamines can use carbohydrates for analyte regeneration and signal amplification. This review discusses different approaches to enhance the sensitivity and selectivity of CDH-based biosensors, which focus on (1) more efficient DET on chemically modified or nanostructured electrodes, (2) the synthesis of custom-made redox polymers for higher MET currents and (3) the engineering of enzymes and reaction pathways. Combination of these strategies will enable the design of sensitive and selective CDH-based biosensors with reduced electrode size for the detection of analytes in continuous on-site and point-of-care applications.
Collapse
Affiliation(s)
- Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Roberto Ortiz
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| | - Christopher Schulz
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| | - Wolfgang Harreither
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| |
Collapse
|
31
|
Falk M, Narváez Villarrubia CW, Babanova S, Atanassov P, Shleev S. Biofuel cells for biomedical applications: colonizing the animal kingdom. Chemphyschem 2013; 14:2045-58. [PMID: 23460490 DOI: 10.1002/cphc.201300044] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/11/2022]
Abstract
Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more.
Collapse
Affiliation(s)
- Magnus Falk
- Department of Biomedical Sciences, Malmö University, 205 06 Malmö, Sweden
| | | | | | | | | |
Collapse
|
32
|
Ortiz R, Matsumura H, Tasca F, Zahma K, Samejima M, Igarashi K, Ludwig R, Gorton L. Effect of deglycosylation of cellobiose dehydrogenases on the enhancement of direct electron transfer with electrodes. Anal Chem 2012; 84:10315-23. [PMID: 23106311 DOI: 10.1021/ac3022899] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a monomeric extracellular flavocytochrome composed of a catalytic dehydrogenase domain (DH(CDH)) containing flavin adenine dinucleotide (FAD), a cytochrome domain (CYT(CDH)) containing heme b, and a linker region connecting the two domains. In this work, the effect of deglycosylation on the electrochemical properties of CDH from Phanerochaete chrysosporium (PcCDH) and Ceriporiopsis subvermispora (CsCDH) is presented. All the glycosylated and deglycosylated enzymes show direct electron transfer (DET) between the CYT(CDH) and the electrode. Graphite electrodes modified with deglycosylated PcCDH (dPcCDH) and CsCDH (dCsCDH) have a 40-65% higher I(max) value in the presence of substrate than electrodes modified with their glycosylated counterparts. CsCDH trapped under a permselective membrane showed similar changes on gold electrodes protected by a thiol-based self-assembled monolayer (SAM), in contrast to PcCDH for which deglycosylation did not exhibit any different electrocatalytical response on SAM-modified gold electrodes. Glycosylated PcCDH was found to have a 30% bigger hydrodynamic radius than dPcCDH using dynamic light scattering. The basic bioelectrochemistry as well as the bioelectrocatalytic properties are presented.
Collapse
Affiliation(s)
- Roberto Ortiz
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yakovleva ME, Killyéni A, Ortiz R, Schulz C, MacAodha D, Conghaile PÓ, Leech D, Popescu IC, Gonaus C, Peterbauer CK, Gorton L. Recombinant pyranose dehydrogenase—A versatile enzyme possessing both mediated and direct electron transfer. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|