1
|
Sha Z, Ling T, Yang W, Xie H, Wang C, Sun S. Microfluidic synthesis and accurate immobilization of low-density QD-encoded magnetic microbeads for multiplex immunoassay. J Mater Chem B 2024. [PMID: 39373123 DOI: 10.1039/d4tb01585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Magnetic-fluorescent microbeads have been widely used in the multiplex detection of biological molecules. The traditional method relies on flow cytometry to decode and analyze the microbeads. Alternative strategies that employ immobilized microbeads on a plane and involve fluorescence imaging to analyze the microbeads have been proposed. Among these strategies, an integrated chip that controls magnetic field contribution using nickel powder pillars and captured microbeads has attracted great attention. Despite its unique advantages such as low manufacturing costs, reusability and high capture efficiency, existing research had been limited by the inability to precisely capture a single microbead, and the overlapping of microbeads has made multiplex immunoassays based on this strategy impossible. In this work, low-density microbeads were prepared in a microfluidic chip using IBOMA as the main monomer. The low density of the microbeads made the preparation of an aqueous suspension easier. An integration of nickel patterns, magnets and channels was carried out and demonstrated the capacity of capturing single microbeads precisely. Fluorescence coding further empowered this method with the ability of multiplex immunoassay, which was verified using three types of IgG, and a calibration curve for the detection of anti-human IgG was established using a sandwich immunoassay. These results show the promising potential of this strategy for biomedical detection.
Collapse
Affiliation(s)
- Zhou Sha
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tianyi Ling
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Wenqi Yang
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Haosu Xie
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chunnan Wang
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Shuqing Sun
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Song YL, He XL, Li Y, Wang M, Jiang M, Xu L, Yu X. Homogeneous detection of viral nucleic acid via selective recognition proximity ligation and signal amplification with T7 transcription and CRISPR/Cas12a system. Anal Chim Acta 2023; 1280:341881. [PMID: 37858564 DOI: 10.1016/j.aca.2023.341881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
The synthetic biology has employed the synthetic gene networks through engineering to construct various functions in biological systems. However, the use of gene circuits to create sensors for detecting low-abundance targets has been limited due to the lack of signal amplification strategies beyond direct output of detection signals. To address this issue, we introduce a novel method utilizing Selective Recognition Proximity Ligation and signal amplification with T7 Transcription and CRISPR/Cas12a system (SRPL-TraCs), which permits the incorporation of cell-free gene circuits with signal amplification and enables the construction of high-order cascade signal amplification strategy to detect biomarkers in homogeneous systems. Specifically, the SRPL-TraCs utilizes selective recognition proximity ligation with high-fidelity T4 DNA ligase and generates a unique crRNA via T7 transcription, along with target-activated Cas12a/crRNA system to achieve excellent specificity for HIV-1 DNA. With this straightforward synthetic biology-based method, the proposed SRPL-TraCs has the potential to detect numerous other interesting targets beyond the nucleic acids.
Collapse
Affiliation(s)
- Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang-Lan He
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
3
|
Hong SL, Wang X, Bao ZH, Zhang MF, Tang M, Zhang N, Liu H, Zhu ZY, Liu K, Chen ZL, Li W. Simultaneous detection of multiple influenza virus subtypes based on microbead-encoded microfluidic chip. Anal Chim Acta 2023; 1279:341773. [PMID: 37827673 DOI: 10.1016/j.aca.2023.341773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Influenza virus, existing many subtypes, causes a huge risk of people health and life. Different subtypes bring a huge challenge for detection and treatment, thus simultaneous detection of multiple influenza virus subtypes plays a key role in fight against this disease. In this work, three kinds of influenza virus subtypes are one-step detection based on microbead-encoded microfluidic chip. HIN1, H3N2 and H7N3 were simultaneously captured only by microbeads of different magnetism and sizes, and they were further treated by magnetic separation and enriched through the magnetism and size-dependent microfluidic structure. Different subtypes of influenza virus could be linearly encoded in different detection zones of microfluidic chip according to microbeads of magnetism and size differences. With the high-brightness quantum dots (QDs) as label, the enriched fluorescence detection signals were further read online from linearly encoded strips, obtaining high sensitivity with detection limit of HIN1, H3N2, H7N3 about 2.2 ng/mL, 3.4 ng/mL and 2.9 ng/mL. Moreover, a visual operation interface, microcontroller unit and two-way syringe pump were consisted of a miniaturized detection device, improving the detection process automation. And this assay showed strong specificity. This method improves a new way of multiple pathogens detection using microbead-encoded technologies in the microfluidic chip.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhong-Hua Bao
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zi-Yuan Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Kan Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhi-Liang Chen
- School of Pharmacy, Shaoyang University, Shaoyang, Hunan, 422000, People's Republic of China.
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| |
Collapse
|
4
|
Wen CY, Zhao LJ, Wang Y, Wang K, Li HW, Li X, Zi M, Zeng JB. Colorimetric and photothermal dual-mode lateral flow immunoassay based on Au-Fe 3O 4 multifunctional nanoparticles for detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:57. [PMID: 36652031 PMCID: PMC9847459 DOI: 10.1007/s00604-023-05645-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Ling-Jin Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Kun Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Hui-Wen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Min Zi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jing-Bin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
5
|
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Das P, Ganguly S, Margel S, Gedanken A. Tailor made magnetic nanolights: fabrication to cancer theranostics applications. NANOSCALE ADVANCES 2021; 3:6762-6796. [PMID: 36132370 PMCID: PMC9419279 DOI: 10.1039/d1na00447f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 05/14/2023]
Abstract
Nanoparticles having magnetic and fluorescent properties could be considered as a gift to materials scientists due to their unique magneto-optical qualities. Multiple component particles can overcome challenges related with a single component and unveil bifunctional/multifunctional features that can enlarge their applications in diagnostic imaging agents and therapeutic delivery vehicles. Bifunctional nanoparticles that have both luminescent and magnetic features are termed as magnetic nanolights. Herein, we present recent progress of magneto-fluorescent nanoparticles (quantum dots based magnetic nanoparticles, Janus particles, and heterocrystalline fluorescent magnetic materials), comprehensively describing fabrication strategies, types, and biomedical applications. In this review, our aim is not only to encompass the preparation strategies of these special types of magneto-fluorescent nanomaterials but also their extensive applications in bioimaging techniques, cancer therapy (targeted and hyperthermic), and sustained release of active agents (drugs, proteins, antibodies, hormones, enzymes, growth factors).
Collapse
Affiliation(s)
- Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
7
|
Reynoso-Hernández KB, Guevara-Pantoja PE, Caballero-Robledo GA. Capture efficiency of magnetic nanoparticles through the compaction effect of a microparticles column. Phys Rev E 2021; 104:024603. [PMID: 34525671 DOI: 10.1103/physreve.104.024603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/21/2021] [Indexed: 11/07/2022]
Abstract
When a magnetic nanoparticle solution flows through a porous medium formed by iron microparticles packed in a microfluidic channel, the nanoparticles get trapped within the column in the presence of a magnet. A complex interplay between magnetic and fluid forces within the magnetized porous medium governs the trapping of nanoparticles. However, how does the packing state of the microparticles affect the trapping of nanoparticles? Will more nanoparticles be trapped on a loose or a tight packing? In this work, we present experiments that show that the capture of nanoparticles is determined by the total volume occupied by the column, independent of its packing density. We present a simple analytical model based on the competition of drag and magnetic forces that shows that our system can be useful to develop and test more complete and accurate models. We also developed a technique to measure the columns' minute mass and its packing density, which consists of injecting polydimethylsiloxane into the acrylic microfluidic device. Our work can help with the optimization of environmental and biomedical applications based on high-gradient magnetic nanoparticle separation.
Collapse
|
8
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
9
|
Zhang Q, Li J, Su Y, Pan X, Gai H. Ball-lens assisted sensitivity improvement of fluorescence immunoassay in microchannels. RSC Adv 2021; 11:27541-27546. [PMID: 35480679 PMCID: PMC9037790 DOI: 10.1039/d1ra04360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
A contactless and ball-lens assisted sensitivity improvement method was present for the fluorescence or luminescence immunoassay in microchannel.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuting Su
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
10
|
Li Y, Hao N, Luo S, Liu Q, Sun L, Qian J, Cai J, Wang K. Simultaneous detection of TNOS and P35S in transgenic soybean based on magnetic bicolor fluorescent probes. Talanta 2020; 212:120764. [PMID: 32113537 DOI: 10.1016/j.talanta.2020.120764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/25/2022]
Abstract
A magnetic-separation-dual-targets fluorescent biosensor was fabricated to detect terminator nopaline synthase (TNOS) and promoter of cauliflower mosaic virus 35s (P35S) in transgenic soybean based on incorporation of bicolor CdTe quantum dots carried by silica nanospheres. In this protocol, the fixed probes for TNOS or P35S were magnetized firstly with Fe3O4@Au magnetic nanosphere by Au-S covalent bonding to achieve magnetized probes. Meanwhile, the capture probes for TNOS or P35S were functionalized with green or red fluorescent microspheres respectively to obtain fluorescently-labeled probes, which could emit relative strong green or red fluorescent signal. Two terminals of TNOS or P35S were recognized by magnetized probes and fluorescently-labeled probes respectively to form the sandwiched structures in the process of biosensor development subsequently, and it was separated by a magnet instantly. The fluorescence intensities of remnant supernatant were measured and analyzed accordingly to achieve simultaneous detection of TNOS and P35S. This biosensor exhibited a good dynamic range, low limit of detection and excellent selectivity in detecting transgenic soybean.
Collapse
Affiliation(s)
- Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shilong Luo
- Sinograin Zhenjiang Grains & Oils Quality Testing Center, Zhenjiang, 212006, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
11
|
Direct electrochemiluminescent immunosensing for an early indication of coronary heart disease using dual biomarkers. Anal Chim Acta 2020; 1110:82-89. [DOI: 10.1016/j.aca.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
|
12
|
Wang S, Ai Z, Zhang Z, Tang M, Zhang N, Liu F, Han G, Hong SL, Liu K. Simultaneous and automated detection of influenza A virus hemagglutinin H7 and H9 based on magnetism and size mediated microfluidic chip. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 308:127675. [PMID: 32288257 PMCID: PMC7125920 DOI: 10.1016/j.snb.2020.127675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 05/04/2023]
Abstract
Influenza viruses with multiple subtypes have highly virulent in humans, of which influenza hemagglutinin (HA) is the major viral surface antigen. Simultaneous and automated detection of multiple influenza HA are of great importance for early-stage diagnosis and operator protection. Herein, a magnetism and size mediated microfluidic platform was developed for point-of-care detection of multiple influenza HA. With multiplex microvalves and computer program control, the detection process showed high automation which had a great potential for avoiding the high-risk virus exposure to the operator. Taking advantage of magnetism and size mediated multiple physical fields, multiple influenza HA could be simultaneous separation and detection depended on different-size magnetic beads. Using high-luminance quantum dots as reporter, this assay achieved high sensitivity with a detection limit of 3.4 ng/mL for H7N9 HA and 4.5 ng/mL for H9N2 HA, and showed excellent specificity, anti-interference ability and good reproducibility. These results indicate that this method may propose new avenues for early detection of multiple influenza subtypes.
Collapse
Affiliation(s)
- Shuibing Wang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Zhao Ai
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Zefen Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Feng Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Gujing Han
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
| | - Shao-Li Hong
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, People's Republic of China
| | - Kan Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan 30200, People's Republic of China
- Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan 430200,People's Republic of China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, People's Republic of China
| |
Collapse
|
13
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
14
|
Maia FR, Reis RL, Oliveira JM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102139. [PMID: 31843662 DOI: 10.1016/j.nano.2019.102139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023]
Abstract
The clinical translation of new cancer theranostic has been delayed by inherent cancer's heterogeneity. Additionally, this delay has been enhanced by the lack of an appropriate in vitro model, capable to produce accurate data. Nanoparticles and microfluidic devices have been used to obtain new and more efficient strategies to tackle cancer challenges. On one hand, nanoparticles-based therapeutics can be modified to target specific cells, and/or molecules, and/or modified with drugs, releasing them over time. On the other hand, microfluidic devices allow the exhibition of physiologically complex systems, incorporation of controlled flow, and control of the chemical environment. Herein, we review the use of nanoparticles and microfluidic devices to address different cancer challenges, such as detection of CTCs and biomarkers, point-of-care devices for early diagnosis and improvement of therapies. The future perspectives of cancer challenges are also addressed herein.
Collapse
Affiliation(s)
- F Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
15
|
|
16
|
|
17
|
Engineering microfluidic chip for circulating tumor cells: From enrichment, release to single cell analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Chen H, Chen C, Bai S, Gao Y, Metcalfe G, Cheng W, Zhu Y. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. NANOSCALE 2018; 10:20196-20206. [PMID: 30256377 DOI: 10.1039/c8nr06367b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is critical to reliably and rapidly detect multiple disease biomarkers in tiny liquid samples with high sensitivity to meet the growing demand for point-of-care diagnostics. This paper reports a microfluidic platform integrating magnetic-based single bead trapping in conjunction with acoustic micromixing for simultaneous detection of multiple cancer biomarkers within minutes. Individual beads retained by permalloy (NiFe81/19) microarray were used to capture biomarkers and facilitate the fluorescence identification. A numerical study indicates that the magnetic force keeping a bead in the trap is proportional to the thickness of the permalloy array and the external magnetic field strength, while inversely proportional to the size of the trap. The acoustic microstreaming activated by a piezo transducer was applied to generate fast-switching flow patterns to minimize the diffusion length scales. The flow at various driving frequencies was experimentally tested to achieve the optimal mixing effect. The flow field of the microstreaming was subsequently described by a mathematical model to understand the flow further. Finally, the prostate-specific antigen (PSA) and carcinoembryonic antigen (CEA) were employed as model analytes to demonstrate the capability of the platform for rapid biomarker detection. With the aid of acoustic micromixing, the detection can be finished in 20 minutes. The respective limit of detection of PSA and CEA is 0.028 ng mL-1 (0.8 pM) and 3.1 ng mL-1 (17 pM), which is respectively 1/142 and 1/3 of the cutoff value of PSA and CEA. Our results indicate this platform has great potential for the rapid detection of multiple biomarkers in future point-of-care diagnostics.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2018; 142:858-882. [PMID: 28217778 DOI: 10.1039/c6an02445a] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.
Collapse
Affiliation(s)
- Ana I Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nuno M Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
20
|
A flow-proteometric platform for analyzing protein concentration (FAP): Proof of concept for quantification of PD-L1 protein in cells and tissues. Biosens Bioelectron 2018; 117:97-103. [DOI: 10.1016/j.bios.2018.05.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
|
21
|
Yang Z, Wang H, Guo P, Ding Y, Lei C, Luo Y. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1765. [PMID: 29857573 PMCID: PMC6022111 DOI: 10.3390/s18061765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.
Collapse
Affiliation(s)
- Zhen Yang
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
- Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.
| | - Huanhuan Wang
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
- Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.
| | - Pengfei Guo
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
- Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.
| | - Yuanyuan Ding
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
- Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.
| | - Chong Lei
- Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| | - Yongsong Luo
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
- Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
22
|
Rapid detection and subtyping of multiple influenza viruses on a microfluidic chip integrated with controllable micro-magnetic field. Biosens Bioelectron 2018; 100:348-354. [DOI: 10.1016/j.bios.2017.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 02/01/2023]
|
23
|
Nanda SS, Kim MJ, Kim K, Papaefthymiou GC, Selvan ST, Yi DK. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids Surf B Biointerfaces 2017; 159:644-654. [DOI: 10.1016/j.colsurfb.2017.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
|
24
|
Yu X, Xia Y, Tang Y, Zhang W, Yeh Y, Lu H, Zheng S. A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700425. [PMID: 28636164 PMCID: PMC7169616 DOI: 10.1002/smll.201700425] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/18/2017] [Indexed: 05/18/2023]
Abstract
Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 × 103 EID50 mL-1 (EID50 : 50% embryo infectious dose), which is ≈22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.
Collapse
Affiliation(s)
- Xu Yu
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yiqiu Xia
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yi Tang
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wen‐Long Zhang
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yin‐Ting Yeh
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Huaguang Lu
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Si‐Yang Zheng
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| |
Collapse
|
25
|
Moro L, Turemis M, Marini B, Ippodrino R, Giardi MT. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing. Biotechnol Adv 2017; 35:51-63. [DOI: 10.1016/j.biotechadv.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
|
26
|
Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. NANOSCALE 2016; 8:12406-29. [PMID: 26831217 DOI: 10.1039/c5nr08534a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The study of cancer is of great significance to human survival and development, due to the fact that cancer has become one of the greatest threats to human health. In recent years, the rapid progress of nanoscience and nanotechnology has brought new and bright opportunities to this field. In particular, the applications of quantum dots (QDs) and magnetic nanoparticles (MNPs) have greatly promoted early diagnosis and effective therapy of cancer. In this review, we focus on fluorescent/magnetic micro/nano-spheres based on QDs and/or MNPs (we may call them "nanoparticle-sphere (NP-sphere) composites") from their preparation to their bio-application in cancer research. Firstly, we outline and compare the main four kinds of methods for fabricating NP-sphere composites, including their design principles, operation processes, and characteristics (merits and limitations). The NP-sphere composites successfully inherit the unique fluorescence or magnetic properties of QDs or MNPs. Moreover, compared with the nanoparticles (NPs) alone, the NP-sphere composites show superior properties, which are also discussed in this review. Then, we summarize their recent applications in cancer research from three aspects, that is: separation and enrichment of target tumor cells or biomarkers; cancer diagnosis mainly through medical imaging or tumor biomarker detection; and cancer therapy via targeted drug delivery systems. Finally, we provide some perspectives on the future challenges and development trends of the NP-sphere composites.
Collapse
Affiliation(s)
- Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cho CF, Lee K, Speranza MC, Bononi FC, Viapiano MS, Luyt LG, Weissleder R, Chiocca EA, Lee H, Lawler SE. Design of a Microfluidic Chip for Magnetic-Activated Sorting of One-Bead-One-Compound Libraries. ACS COMBINATORIAL SCIENCE 2016; 18:271-8. [PMID: 27124678 DOI: 10.1021/acscombsci.5b00180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular targeting using ligands specific to disease markers has shown great promise for early detection and directed therapy. Bead-based combinatorial libraries have served as powerful tools for the discovery of novel targeting agents. Screening platforms employing magnetic capture have been used to achieve rapid and efficient identification of high-affinity ligands from one-bead-one-compound (OBOC) libraries. Traditional manual methodologies to isolate magnetized "hit" beads are tedious and lack accuracy, and existing instruments to expedite bead sorting tend to be costly and complex. Here, we describe the design and construction of a simple and inexpensive microfluidic magnetic sorting device using standard photolithography and soft lithography approaches to facilitate high-throughput isolation of magnetized positive hit beads from combinatorial libraries. We have demonstrated that the device is able to sort magnetized beads with superior accuracy compared to conventional manual sorting approaches. This chip offers a very convenient yet inexpensive alternative for screening OBOC libraries.
Collapse
Affiliation(s)
- Choi-Fong Cho
- Harvey
Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kyungheon Lee
- Center
for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Maria-Carmela Speranza
- Harvey
Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Fernanda C. Bononi
- Departments
of Chemistry and Oncology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Mariano S. Viapiano
- Harvey
Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Leonard G. Luyt
- Departments
of Chemistry and Oncology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - E. Antonio Chiocca
- Harvey
Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hakho Lee
- Center
for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sean E. Lawler
- Harvey
Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Hu J, Zhang ZL, Wen CY, Tang M, Wu LL, Liu C, Zhu L, Pang DW. Sensitive and Quantitative Detection of C-Reaction Protein Based on Immunofluorescent Nanospheres Coupled with Lateral Flow Test Strip. Anal Chem 2016; 88:6577-84. [DOI: 10.1021/acs.analchem.6b01427] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiao Hu
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cong-Ying Wen
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Man Tang
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ling-Ling Wu
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cui Liu
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lian Zhu
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory
of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, State Key Laboratory of Virology,
The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
29
|
Yu X, Cheng G, Zheng SY. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability. Sci Rep 2016; 6:25459. [PMID: 27147586 PMCID: PMC4857104 DOI: 10.1038/srep25459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023] Open
Abstract
In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability.
Collapse
Affiliation(s)
- Xu Yu
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gong Cheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Xu S, Dong B, Zhou D, Yin Z, Cui S, Xu W, Chen B, Song H. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Sci Rep 2016; 6:23406. [PMID: 27001460 PMCID: PMC4802215 DOI: 10.1038/srep23406] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test.
Collapse
Affiliation(s)
- Sai Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.,Department of Physics, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Ze Yin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Shaobo Cui
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Wen Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Baojiu Chen
- Department of Physics, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
31
|
Xie Q, Weng X, Lu L, Lin Z, Xu X, Fu C. A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry. Biosens Bioelectron 2016; 77:46-50. [DOI: 10.1016/j.bios.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/24/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
|
32
|
Gebauer A, Schmidt S, Hoffmann W. Status and perspective of lab-on-a-chip systems for common diseases: a systematic review from 2003 to 2013. Per Med 2016; 13:71-91. [PMID: 29749869 DOI: 10.2217/pme.15.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lab-on-a-chip systems (LOCs) are a useful aid for the individualization of therapeutic algorithms at the point-of-care. MATERIALS & METHODS We performed a systematic literature review on LOCs for diseases with a global impact for healthcare. RESULTS A total of 1007 articles matched the previously specified search criteria, thereof 65 studies could be included in this review. A total of 55 different LOCs were evaluated, most for diagnosis or monitoring of cancer (n = 24). For other diseases we found considerably less analyzed LOCs. The analytical performance of the LOCs was usually very good, 37 (67%) LOCs had a sensitivity higher than 90%. CONCLUSION Although LOC systems performance has been positively evaluated in the great majority of studies, the testing was mostly limited to the research laboratory setting rather than real-world scenarios.
Collapse
Affiliation(s)
- Alexander Gebauer
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| | - Silke Schmidt
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| |
Collapse
|
33
|
Desmet C, Marquette CA. Surface Functionalization for Immobilization of Probes on Microarrays. Methods Mol Biol 2016; 1368:7-23. [PMID: 26614065 DOI: 10.1007/978-1-4939-3136-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The microarray technology has been a tremendous advance in molecular-based testing methods for biochemical and biomedical applications. As a result, the immobilization techniques and grafting chemistries of biochemical molecules have experienced great progress. The particularities of the grafting techniques adapted to the microarray development will be presented here.
Collapse
Affiliation(s)
- C Desmet
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Lyon 1 - CNRS 5246 ICBMS, Bâtiment CPE 43, bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France.
| | - C A Marquette
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Lyon 1 - CNRS 5246 ICBMS, Bâtiment CPE 43, bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
34
|
Kim C, Searson PC. Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury. NANOSCALE 2015; 7:17820-17826. [PMID: 26457768 DOI: 10.1039/c5nr05608j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level.
Collapse
Affiliation(s)
- Chloe Kim
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
35
|
Sanjay ST, Fu G, Dou M, Xu F, Liu R, Qi H, Li X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015; 140:7062-81. [PMID: 26171467 PMCID: PMC4604043 DOI: 10.1039/c5an00780a] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.
Collapse
Affiliation(s)
- Sharma T Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Dong Y, Wu H, Shang P, Zeng X, Chi Y. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. NANOSCALE 2015; 7:16366-71. [PMID: 26391198 DOI: 10.1039/c5nr04328j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hydrazide-modified graphene quantum dots (HM-GQDs) obtained by refluxing GQDs with hydrazine hydrate were hybridized with gold nanoparticles (AuNPs) through a redox reaction between HM-GQDs and AuCl4(-). The obtained nano-hybrids (HM-GQD-AuNPs) possess the unique electrochemiluminescence (ECL) properties of HM-GQDs and the easy self-assembly with some bio-molecules of AuNPs, which have great potential applications in bio-sensors. HM-GQD-AuNPs were modified on a glassy carbon electrode to develop a novel ECL immunosensor of carcinoembryonic antigen (CEA) as a model target analyte. Due to the increment of electron-transfer resistance after immunoreaction, the ECL intensity decreased as the concentration of CEA was increased. The linear response range was between 0.02 and 80 ng mL(-1), and the detection limit was 0.01 ng mL(-1).
Collapse
Affiliation(s)
- Yongqiang Dong
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and Department of Chemistry, Fuzhou University, Fujian 350108, China.
| | | | | | | | | |
Collapse
|
37
|
Yang S, Yin S, Shang Y, Wang D, Ma W, He J, Guo J, Cai J, Liu X. Specific detection of foot-and-mouth disease serotype Asia 1 virus by carboxyl-magnetic beads conjugated with single-domain antibody. BMC Biotechnol 2015; 15:83. [PMID: 26369792 PMCID: PMC4570608 DOI: 10.1186/s12896-015-0201-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Immunomagnetic nanobead (IMNB) labeled with specific antibody, has been demonstrated to be useful for the capturing and detection of viruses. RESULTS In this study, we developed an imunomagnetic bead based on carboxyl-magnetic beads (MNB) labeled with a single-domain antibody (sdAb) for capturing foot-and-mouth disease (FMD) Asia 1 virus. After magnetic separation, complexes of MNB-sdAb-virus were detected with either a sandwich ELISA or QDs-C5 probe under a fluorescence microscope, and the complexes were used as templates for extraction of total RNA for amplification of the VP1 or 3D gene fragments using RT-PCR and real-time RT-PCR. The Asia 1 VLPs were efficiently captured through IMNB with a high binding rate of 5.09 μg of antigen/μl of bead suspension. Moreover, this method has been successfully used to capture Asia 1 antigen in synthetic samples. CONCLUSION Ultimately, a specific and highly sensitive capture FMDV Asia 1 tool has been established that has the potential to enhance the sensitivity and reliability when diagnosing FMDV Asia 1.
Collapse
Affiliation(s)
- Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Shuanghui Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Di Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Weimin Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
38
|
Park JK, Han D. WITHDRAWN: Optoelectrofluidic enhanced immunoassay system for carcinoembryonic antigen based on optically-induced electrothermal flow. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Chuang CH, Wu TF, Chen CH, Chang KC, Ju JW, Huang YW, Van Nhan V. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations. LAB ON A CHIP 2015; 15:3056-64. [PMID: 26087450 DOI: 10.1039/c5lc00352k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis.
Collapse
Affiliation(s)
- Cheng-Hsin Chuang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Guo PL, Tang M, Hong SL, Yu X, Pang DW, Zhang ZL. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens Bioelectron 2015. [PMID: 26201979 DOI: 10.1016/j.bios.2015.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples.
Collapse
Affiliation(s)
- Pei-Lin Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
41
|
Wu Z, Zhou CH, Chen JJ, Xiong C, Chen Z, Pang DW, Zhang ZL. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosens Bioelectron 2015; 68:586-592. [DOI: 10.1016/j.bios.2015.01.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 01/16/2023]
|
42
|
Ranzoni A, den Hamer A, Karoli T, Buechler J, Cooper MA. Improved Immunoassay Sensitivity in Serum as a Result of Polymer-Entrapped Quantum Dots: ‘Papaya Particles’. Anal Chem 2015; 87:6150-7. [DOI: 10.1021/acs.analchem.5b00762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Ranzoni
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Anniek den Hamer
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Tomislav Karoli
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Joseph Buechler
- ALERE Inc., 9975 Summers Ridge Road, San Diego, California 92121, United States
| | - Matthew. A. Cooper
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| |
Collapse
|
43
|
Petryayeva E, Algar WR. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst 2015; 140:4037-45. [PMID: 25924885 DOI: 10.1039/c5an00475f] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of nanoparticle-based bioassays is an active and promising area of research, where point-of-care (POC) diagnostics are one of many prospective applications. Unfortunately, the majority of nanoparticle-based assays that have been developed to date have failed to address two important considerations for POC applications: use of instrumentation amenable to POC settings, and measurement of analytes in biological sample matrices such as serum and whole blood. To address these considerations, we present design criteria and demonstrate proof-of-concept for a semiconductor quantum dot (QD)-based assay format that utilizes smartphone readout for the single-step, Förster resonance energy transfer (FRET)-based detection of hydrolase activity in serum and whole blood, using thrombin as a model analyte. Important design criteria for assay development included (i) the size and emission wavelength of the QDs, which had to balance brightness for smartphone imaging, optical transmission through blood samples, and FRET efficiency for signaling; (ii) the wavelength of a light-emitting diode (LED) excitation source, which had to balance transmission through blood and the efficiency of excitation of QDs; and (iii) the use of an array of paper-in-polydimethylsiloxane (PDMS)-on-glass sample chips to reproducibly limit the optical path length through blood to ca. 250 μm and permit multiplexing. Ultimately, CdSe/CdS/ZnS QDs with peak emission at 630 nm were conjugated with Alexa Fluor 647-labeled peptide substrates for thrombin and immobilized on paper test strips inside the sample cells. This FRET system was sensitive to thrombin activity, where the recovery of QD emission with hydrolytic loss of FRET permitted kinetic assays in buffer, serum and whole blood. Quantitative results were obtained in less than 30 min with a limit of detection 18 NIH units mL(-1) of activity in 12 μL of whole blood. Proof-of-concept for a competitive binding assay was also demonstrated with the same platform. Overall, this work demonstrates that the integration of QDs with smartphones and other consumer electronics can potentiate bioassays that are highly amenable to future point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | | |
Collapse
|
44
|
Yu X, Cheng G, Zhou MD, Zheng SY. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3982-3992. [PMID: 25782525 DOI: 10.1021/acs.langmuir.5b00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple and robust method for one-step synthesis of monodisperse functional polymeric microspheres was established by generation of reversed microemulsion droplets in aqueous phase inside microfluidic chips and controlled evaporation of the organic solvent. Using this method, water-soluble nanomaterials can be easily encapsulated into biodegradable Poly(D,L-lactic-co-glycolic acid) (PLGA) to form functional microspheres. By controlling the flow rate of microemulsion phase, PLGA polymeric microspheres with narrow size distribution and diameters in the range of ∼50-100 μm were obtained. As a demonstration of the versatility of the approach, high-quality fluorescent CdTe:Zn(2+) quantum dots (QDs) of various emission spectra, superparamagnetic Fe3O4 nanoparticles, and water-soluble carbon nanotubes (CNTs) were used to synthesize fluorescent PLGA@QDs, magnetic PLGA@Fe3O4, and PLGA@CNTs polymeric microspheres, respectively. In order to show specific applications, the PLGA@Fe3O4 were modified with polydopamine (PDA), and then the silver nanoparticles grew on the surfaces of the PLGA@Fe3O4@PDA polymeric microspheres by reducting the Ag(+) to Ag(0). The as-prepared PLGA@Fe3O4@PDA-Ag microspheres showed a highly efficient catalytic reduction of the 4-nitrophenol, a highly toxic substance. The monodisperse uniform functional PLGA polymeric microspheres can potentially be critically important for multiple biomedical applications.
Collapse
|
45
|
Lu L, Wang X, Xiong C, Yao L. Recent advances in biological detection with magnetic nanoparticles as a useful tool. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5370-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Hu SW, Xu BY, Ye WK, Xia XH, Chen HY, Xu JJ. Versatile microfluidic droplets array for bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:935-940. [PMID: 25525675 DOI: 10.1021/am5075216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods.
Collapse
Affiliation(s)
- Shan-Wen Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Krizkova S, Nguyen HV, Stanisavljevic M, Kopel P, Vaculovicova M, Adam V, Kizek R. Microchip capillary electrophoresis: quantum dots and paramagnetic particles for bacteria immunoseparation: rapid superparamagnetic-beads-based automated immunoseparation of Zn-Proteins from Staphylococcus aureus with nanogram yield. Methods Mol Biol 2015; 1274:67-79. [PMID: 25673483 DOI: 10.1007/978-1-4939-2353-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The emergence of drug-resistant bacteria and new or changing infectious pathogens is an important public health problem as well as a serious socioeconomic concern. Immunomagnetic separation-based methods create new possibilities for rapidly recognizing many of these pathogens. Nanomaterial-based techniques including fluorescent labeling by quantum dots as well as immunoextraction by magnetic particles are excellent tools for such purposes. Moreover, the combination with capillary electrophoresis in miniaturized microchip arrangement brings numerous benefits such as fast and rapid analysis, low sample consumption, very sensitive electrochemical and fluorescent detection, portable miniaturized instrumentation, and rapid and inexpensive device fabrication. Here the use of superparamagnetic particle-based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II)-containing proteins (Zn-proteins) is reported using a robotic pipetting system speeding up the sample preparation and enabling to analyze 48 real samples within 6 h. Cell lysis and Zn-protein extractions were obtained from a minimum of 100 cells with the sufficient yield for SDS-PAGE (several tens ng of proteins).
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University, Zemedelska 1, 613 00, Brno, Czech Republic, European Union
| | | | | | | | | | | | | |
Collapse
|
48
|
Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens Bioelectron 2014; 66:520-6. [PMID: 25500528 DOI: 10.1016/j.bios.2014.11.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant color change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays.
Collapse
|
49
|
Li B, Lai H, Wei Y, Wang X, Chen Y, Zou M, Duan Y. Competitive immunoassay combined with magnetic separation and pulsed LIF system for cefalexin detection. RSC Adv 2014. [DOI: 10.1039/c4ra08105f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
He S, Yu X, Wang X, Tan J, Yan S, Wang P, Huang BH, Zhang ZL, Li L. Fast magnetic isolation of simple sequence repeat markers in microfluidic channels. LAB ON A CHIP 2014; 14:1410-1414. [PMID: 24615343 DOI: 10.1039/c3lc51371h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Simple sequence repeat (SSR) markers are widely used for genome mapping, genetic diversity characterization and medical diagnosis. The fast isolation by AFLP of sequence containing repeats (FIASCO) is a powerful method for SSR marker isolation, but it is laborious, costly, and time consuming and requires multiple rounds of washing. Here, we report a superparamagnetic bead (SPMB)-based FIASCO method in a magnetic field controllable microfluidic chip (MFCM-Chip). This method dramatically reduces the assay time by 4.25-fold and reduces the quantity of magnetic beads and probes by 10-fold through the magnetic capture of (AG)n-containing fragments from Herba Leonuri, followed by washing and eluting on a microchip. The feasibility of this method was further evaluated by PCR and sequencing, and the results showed that the proportion of fragments containing SSRs was 89%, confirming that this platform is a fast and efficient method for SSR marker isolation. This cost-effective platform will make the powerful FIASCO technique more accessible for routine use with a wide variety of materials.
Collapse
Affiliation(s)
- Shibin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|