1
|
Zhu S, Zhou S, Deng L, Gu T, Li J, Chen J, Wang X, Hou C, Huo D. Hairpin probe-based one-pot multiplex isothermal amplification combined with bifunctional G-quadruplex (IHP-GT) for the detection of alkaline phosphatase. Anal Chim Acta 2024; 1329:343255. [PMID: 39396314 DOI: 10.1016/j.aca.2024.343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Abnormal alkaline phosphatase (ALP) levels have been linked to breast cancer, prostate cancer, bone damage, gingivitis and abnormal liver function. Monitoring ALP levels is important for better diagnosis and treatment of these diseases. Detection of ALP by colorimetric methods is very portable in terms of signal reading, but still suffers from low sensitivity. SERS can achieve high sensitivity detection, but cannot be separated from large precision instruments. Therefore, researchers have worked to optimize various aspects of the sensor, such as sensitivity, detection time, and operating procedures, to enable portable and rapid ALP detection. Isothermal amplification using simple system components meets the current demand for rapid, portable assays. We have developed a novel one-pot high-efficiency ALP assay strategy called IHP-GT. IHP-GT performs a one-step cascade amplification using only one probe (IGHP) as a template. The phosphorylated primer P binds to IGHP, forming a P/IGHP structure. At this point, the G-quadruplex closes and no signal is generated. In the presence of ALP, primer P is dephosphorylated to remove the restriction and then amplified in a cascade using IGHP as a template to release the full G-quadruplex structure. The single-stranded G-quadruplex will bend to form a secondary structure, facilitating secondary amplification starting with primer AT to produce PrG and P'. The PrG structure will trigger triple amplification, enabling cascade amplification. The G-quadruplex structure produced by cascade amplification has the dual role of promoting amplification of primer AT and binding to ThT to produce a fluorescent signal. The IHP-GT method provides a highly sensitive detection of ALP in less than 90 min and has been successfully used to analyze ALP in human serum samples. In addition, IHP-GT can be used to screen for ALP inhibitors. Importantly, we lyophilized the IHP-GT reaction components into powder form for user-friendly poc testing.
Collapse
Affiliation(s)
- Shuyu Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Tao Gu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210018, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210018, PR China.
| |
Collapse
|
2
|
Wang Q, Meng S, Zhou G, Shi Q, Xu Z, Xie X. Polymer-enhanced peroxidase activity of ceria nanozyme for highly sensitive detection of alkaline phosphatase. Anal Bioanal Chem 2024; 416:6113-6124. [PMID: 38704473 DOI: 10.1007/s00216-024-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Nanoceria have demonstrated a wide array of catalytic activity similar to natural enzymes, holding considerable significance in the colorimetric detection of alkaline phosphatase (ALP), which is a biomarker of various biological disorders. However, the issues of physiological stability and formation of protein corona, which are strongly related to their surface chemistry, limit their practical application. In this work, CeO2 nanoparticles characterized by enhanced dimensional uniformity and specific surface area were synthesized, followed by encapsulation with various polymers to further increase catalytic activity and physiological stability. Notably, the CeO2 nanoparticles encapsulated within each polymer exhibited improved catalytic characteristics, with PAA-capped CeO2 exhibiting the highest performance. We further demonstrated that the PAA-CeO2 obtained with enhanced catalytic activity was attributed to an increase in surface negative charge. PAA-CeO2 enabled the quantitative assessment of AA activity within a wide concentration range of 10 to 60 μM, with a detection limit of 0.111 μM. Similarly, it allowed for the evaluation of alkaline phosphatase activity throughout a broad range of 10 to 80 U/L, with a detection limit of 0.12 U/L. These detection limits provided adequate sensitivity for the practical detection of ALP in human serum.
Collapse
Affiliation(s)
- Qian Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Song Meng
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ziqiang Xu
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
3
|
Moss G, Knopke C, Diamond SG. Effects of Salt Concentration on a Magnetic Nanoparticle-Based Aggregation Assay with a Tunable Dynamic Range. SENSORS (BASEL, SWITZERLAND) 2024; 24:6241. [PMID: 39409281 PMCID: PMC11478407 DOI: 10.3390/s24196241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Magnetic nanoparticles (MNPs) can be functionalized with antibodies to give them an affinity for a biomarker of interest. Functionalized MNPs (fMNPs) cluster in the presence of a multivalent target, causing a change in their magnetization. Target concentration can be proportional to the 3rd harmonic phase of the fMNP magnetization signal. fMNP clustering can also be induced with salt. Generally, salt can alter the stability of charge stabilized fMNPs causing a change in magnetization that is not proportional to the target concentration. We have developed a model system consisting of biotinylated MNPs (biotin-MNPs) that target streptavidin to study the effects of salt concentration on fMNP-based biosensing in simulated in vivo conditions. We have found that biotin-MNP streptavidin targeting was independent of salt concentration for 0.005x to 1.00x phosphate buffered saline (PBS) solutions. Additionally, we show that our biosensor's measurable concentration range (dynamic range) can be tuned with biotin density. Our results can be leveraged to design an in vivo nanoparticle (NP)-based biosensor with enhanced efficacy in the event of varying salt concentrations.
Collapse
Affiliation(s)
- Gabrielle Moss
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | | | - Solomon G. Diamond
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Lodestone Biomedical LLC, Lebanon, NH 03766, USA;
| |
Collapse
|
4
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Hsieh PH, Yeh CY, Wang CM, Liao WS, Chen CY. Specializing Carbon Nanozyme Active Sites for Sensitive Alkaline Phosphatase Activity Metal-Free Detection. Chem Asian J 2024; 19:e202300878. [PMID: 37934144 DOI: 10.1002/asia.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
As biological enzymes regulate metabolic processes, alkaline phosphatase (ALP) is a critical diagnostic indicator associated with many diseases. To accurately measure the enzyme activity, nanozymactic materials can offer sensitive strategies for ALP detection. However, nanozymes often lack specific target binding sites, and the presence of common co-components, e. g., metal ions, may cause false-positive or false-negative results in enzyme activity determination. Herein, we developed a colorimetric assay for ALP detection using metal-free nanozymatic carbon dots (CDs). The ALP hydrolysis of pyrophosphate ions (PPi) to phosphate ions (Pi) induces a "turn-on" response based on the nanozyme activity. This PPi-induced inhibition mechanism is extensively studied via the Michaelis-Menten model, revealing that PPi acts as a noncompetitive inhibitor for CDs at a binding site distinct from the common nanozyme active site. With superior responses to ALP substrates, a highly sensitive and selective method is established for sensing ALP activity with a linear range of 0.010-0.200 U/L and a detection limit of 0.009 U/L. This finding explores the recognition and binding behavior of nanozymes, allowing for precise and reliable measurements even in complex samples, and represents a significant breakthrough for nanozyme-based assays in biological analysis.
Collapse
Affiliation(s)
- Ping-Hsuan Hsieh
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Yan Yeh
- Department of Chemistry, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Changhua University of Education, Changhua, 50007, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| |
Collapse
|
6
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Tyagi K, Kumari R, Venkatesh V. Alkaline phosphatase (ALP) activatable small molecule-based prodrugs for cancer theranostics. Org Biomol Chem 2023; 21:4455-4464. [PMID: 37191120 DOI: 10.1039/d3ob00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Highly water-soluble small molecule-based prodrugs (5-FUPD and SAHAPD) are formulated. They comprise a phosphate group to lock the active drug payload (5-fluorouracil and SAHA) along with a turn-on fluorophore consisting of a glutathione (GSH) depletory feature. Installation of the phosphate group along with purification of final product has been accomplished in an operationally facile manner. Activation of the prodrugs is facilitated by alkaline phosphatase (ALP)-mediated hydrolysis of the phosphate group followed by 1,8-elimination. The prodrugs were found to be highly effective against ALP flared human cervical cancer (HeLa) and liver cancer (HepG2) cell lines. Most notably, they were found to be innocuous to normal liver cells (WRL-68).
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - Reena Kumari
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
8
|
Fluorescence Turn-on Detection of Alkaline Phosphatase Activity and Al 3+ Using Vitamin B 6 Cofactor Conjugated GSH Capped Mn-doped ZnS Quantum Dots. J Fluoresc 2023; 33:587-594. [PMID: 36456791 DOI: 10.1007/s10895-022-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022]
Abstract
The glutathione (GSH) functionalized Mn-doped ZnS quantum dots (GSH_Mn_ZnS QDs) was conjugated with pyridoxal 5'-phosphate (PLP). The -CHO group of vitamin B6 cofactor PLP interacted with the -NH2 group of GSH functionalized Mn_ZnS QDs. The conjugation of PLP quenched the fluorescence emission of GSH_Mn_ZnS QDs at 601 nm. Addition of alkaline phosphatase (ALP) catalytically dephosphorylated the PLP into pyridoxal that restored the fluorescence emission of GSH_Mn_ZnS QDs. With a sensitivity of 0.035 U/L, the PLP conjugated GSH_Mn_ZnS QDs was applied to quantify ALP activity in human serum and plasma. Further, the developed nanoprobe PLP conjugated GSH_Mn_ZnS QDs was also applied to detect Al3+. The complexation-induced fluorescence enhancement was observed at 492 nm upon the interaction of Al3+ with the PLP conjugated GSH_Mn_ZnS QDs. Without any interference from other tested metal ions, this nanoprobe can be employed to detect Al3+ down to 2.30 µM.
Collapse
|
9
|
Rational synthesis of carbon dots with phosphate ester group for direct mapping of endogenous alkaline phosphatase and polarity monitoring in living cells. J Colloid Interface Sci 2023; 640:626-636. [PMID: 36889060 DOI: 10.1016/j.jcis.2023.02.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Carbon dots (CDs) have been extensively employed in biomolecule imaging. However, the imaging of biological enzymes with CDs has not been reported, which greatly limits their application in biological imaging. Herein, for the first time, a new type of fluorescent CDs is elaborately designed to realize the direct mapping of alkaline phosphatase (ALP) in cells. The obtained phosphorus and nitrogen co-doped CDs (P, N-CDs) generate specific structures including xanthene oxide and phosphate ester, thereby enabling P, N-CDs to be exclusively cleaved by ALP without auxiliary media. The fluorescence intensity of P, N-CDs can be specifically turned on in the presence of ALP, making them powerful probes for sensitive sensing of ALP activity with a detection limit of 1.27 U·L-1. Meanwhile, P, N-CDs possessing electron deficiency structure fulfill sensitive responding to polarity variations. The excellent photo-bleaching resistance and biocompatibility of the P, N-CDs are taken for directly mapping the intracellular endogenous ALP via turned-on fluorescence imaging, as well as real-time monitoring the polarity fluctuation in cells through ratiometric fluorescence imaging. The present work offers a new way to design and synthesize functional CDs for direct imaging of intracellular enzymes.
Collapse
|
10
|
Si F, Zhang Y, Lu J, Hou M, Yang H, Liu Y. A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Talanta 2023; 252:123775. [DOI: 10.1016/j.talanta.2022.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
|
11
|
Tsogas GZ, Vlessidis AG, Giokas DL. Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors. Mikrochim Acta 2022; 189:434. [PMID: 36307660 DOI: 10.1007/s00604-022-05536-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
The cornerstone of nanomaterial-based sensing systems is the synthesis of nanoparticles with appropriate surface functionalization that ensures their stability and determines their reactivity with organic or inorganic analytes. To accomplish these requirements, various compounds are used as additives or growth factors to regulate the properties of the synthesized nanoparticles and their reactivity with the target analytes. A different rationale is to use the target analytes as additives or growth agents to control the formation and properties of nanoparticles. The main difference is that the analyte recognition event occurs before or during the formation of nanoparticles and it is based on the reactivity of the analytes with the precursor materials of the nanoparticles (e.g., metal ions, reducing agents, and coatings). The transition from the ionic (or molecular) state of the precursor materials to ordered nanostructured assemblies is used for sensing and signal transduction for the qualitative detection and the quantitative determination of the target analytes, respectively. This review focuses on assays that are based on analyte-mediated regulation of nanoparticles' formation and differentiate them from standard nanoparticle-based assays which rely on pre-synthesized nanoparticles. Firstly, the principles of analyte-mediated nanomaterial sensors are described and then they are discussed with emphasis on the sensing strategies, the signal transduction mechanisms, and their applications. Finally, the main advantages, as well as the limitations of this approach, are discussed and compared with assays that rely on pre-synthesized nanoparticles in order to highlight the major advances accomplished with this type of nano-sensors and elucidate challenges and opportunities for further evolving new nano-sensing strategies.
Collapse
Affiliation(s)
- George Z Tsogas
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios G Vlessidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimosthenis L Giokas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
12
|
A novel electrochemical platform for assay of alkaline phosphatase based on amifostine and ATRP signal amplification. Anal Bioanal Chem 2022; 414:6955-6964. [PMID: 35972525 DOI: 10.1007/s00216-022-04264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Alkaline phosphatase (ALP), an important hydrolase involved in dephosphorylation, is a common clinical indicator of many diseases. In the present study, we constructed a novel electrochemical sensor using amifostine as the substrate of ALP and activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a signal amplification strategy for sensitive determination of ALP activity. In particular, in the presence of ALP, the phosphate group of amifostine was hydrolyzed to form a sulfhydryl group, which could attach to a gold electrode via a sulfur-gold bond. Then, the initiator α-bromophenylacetic acid (BPAA) was linked to the hydrolysis product of amifostine through an amide bond, resulting in the production of electroactive polymer chains on the gold electrode by the monomer ferrocenylmethyl methacrylate (FMMA) via ARGET ATRP. Under optimal parameters, the electrochemical sensor demonstrated a limit of detection (LOD) of 1.71 mU mL-1 with a linear range of 5-100 mU mL-1. In addition to satisfactory selectivity, the potential application of this approach for ALP activity detection in human serum samples was demonstrated. Due to its efficiency, simplicity of operation, and cost-effectiveness, the proposed electrochemical sensor has great promise as a universal method for ALP assays and inhibitor screening.
Collapse
|
13
|
Recent Advancements in Developments of Novel Fluorescent Probes: In Cellulo Recognitions of Alkaline Phosphatases. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alkaline phosphatase (ALP) is one of the vital phospho-ester bond cleaving biocatalysts that has inevitable significance in cellular systems, viz., early-stage osteoblast differentiation, cell integrity in tissues, bone mineralization, cancer biomarker, liver dysfunction, cellular osmotic pressure, protein folding and many more. Variation from optimal levels of ALP in intra and extracellular fluids can cause severe diseases, including death. Due to these reasons, ALP is considered as a vital biomarker for various preclinical and medical diagnosis. Fluorescence image-based diagnosis is the most widely used method, owing to its simplicity, robustness, non-invasive properties and excellent spatio-temporal resolution (up to the nM/pM level), as compared to conventional analytical techniques, such as the electroanalytical method, nuclear magnetic resonance (NMR) and high-performance liquid chromatography (HPLC). Most of the reviews reported for ALP’s recognition in the literature scarcely explain the structurally related, photophysical and biophysical parameters; and the sub-cellular localizations. Considering these facts, in order to enhance the opto-analytical parameters of fluorescence-based diagnostic materials at the cellular level, herein we have systematically documented recent developments in the opto-analytical capabilities of quencher-free probes for ALP, used in in vitro (biological buffers) to in cellulo conditions, along with in vivo models.
Collapse
|
14
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wang L, Chen S, Ma X, Wu Y, Tang Y, Hou S. Fast and sensitive near-infrared ratiometric fluorescent probe with a self-immolative spacer for imaging of endogenous alkaline phosphatase activity in cells and in vivo. Talanta 2022; 249:123658. [PMID: 35714416 DOI: 10.1016/j.talanta.2022.123658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Alkaline phosphatase (ALP), a vital hydrolase widely distributed in organisms, is regarded as a critical biomarker strongly associated with many physiological and pathological processes. Therefore, fast and efficient detection of ALP activity in vivo is of great value for clinical diagnosis. Herein, a novel near-infrared (NIR) ratiometric fluorescent probe (HP) was designed based on ESIPT for trapping ALP activity in cells and in vivo. Notably, incorporating a self-immolative spacer dramatically reduces the response time (8.5 min) of HP. Moreover, the probe exhibits excellent water solubility, large Stokes shift (147 nm), the ratiometric determination of ALP at 570 nm and 689 nm, low detection limit (3.98 U L-1). More importantly, the probe was also successfully applied to detect and monitor variations in endogenous ALP activity in zebrafish due to the drug (APAP) induced organ damages.
Collapse
Affiliation(s)
- Lin Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Shijun Chen
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yangyou Tang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
16
|
Kaur J, Mirgane HA, Bhosale SV, Singh PK. A cationic AIEgen and hexametaphosphate based simple and convenient fluorometric assay for alkaline phosphatase and its inhibitor. Org Biomol Chem 2022; 20:4599-4607. [PMID: 35603784 DOI: 10.1039/d2ob00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkaline phosphatase (ALP) is an important biomarker to diagnose a number of diseases, such as anaemia, hepatobiliary diseases, chronic nephritis, and hypothyroidism. Therefore, the development of simple and convenient assays to monitor levels of ALP is highly desirable. In the present study, an aggregation-induced emission based simple, real-time, and direct fluorescence detection platform has been developed, by using a tetracationic pyridinium derivative of tetraphenylethylene (TPy-TPE) and anionic sodium hexametaphosphate (HMP) as component units. The sensing system, based on the TPy-TPE-HMP assembly, is highly responsive to the ALP dependent disintegration of the TPy-TPE-HMP aggregation complex, owing to HMP digestion by ALP. The sensing platform has an ALP detection limit of 16 mU mL-1 and linear range of 0-742 mU mL-1, respectively. The enzyme kinetic parameters, Km and Vmax, have been evaluated. In addition, the potential applicability of the TPy-TPE-HMP sensing system has also been shown with diluted human serum samples. Moreover, the TPy-TPE-HMP probe system is also useful for screening inhibitors of ALP.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
17
|
Alom KM, Kumara GSR, Seo YJ. Unnatural nucleotide-based rkDNA probe combined with graphene oxide for detection of alkaline phosphatase activity. Bioorg Med Chem Lett 2022; 64:128694. [PMID: 35314327 DOI: 10.1016/j.bmcl.2022.128694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
In this study we developed a fluorescent double-stranded DNA, incorporating an unnatural dUrk nucleotide, that we used as a probe for the detection of alkaline phosphatase (ALP) based on enzymatic cleavage of the non-fluorescent complementary strand. Primer extension performed using the unnatural nucleotide triphosphate dUrkTP and the natural deoxynucleotide triphosphates dATP, dCTP, and dGTP provided a simple fluorescent DNA strand that hybridized with the 5́-monophosphate non-fluorescent complementary strand. When applying the 5́-phosphate recognition and cleavage properties of lambda exonuclease (λ-exo), this probe could bind to graphene oxide (GO) and quench the fluorescence (in the absence of ALP) or not bind to GO and retain its fluorescence (in the presence of ALP). We obtained strongly fluorescent DNA strands through simple incorporation of multiple A sites in the complementary sequence, thereby increasing the number of dUrk residues during primer extension. This unnatural nucleotide-based rkDNA probing system exhibited high fluorescence differentiation for discriminating the status of ALP. This rkDNA-GO probing system appears to be a promising tool for monitoring the activity of disease-associated enzymes.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | | | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
18
|
Gao L, Li Y, Huang ZZ, Tan H. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay. Anal Chim Acta 2022; 1207:339774. [DOI: 10.1016/j.aca.2022.339774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/01/2022]
|
19
|
Ma F, Zhao NN, Liu M, Xu Q, Zhang CY. Single-Molecule Biosensing of Alkaline Phosphatase in Cells and Serum Based on Dephosphorylation-Triggered Catalytic Assembly and Disassembly of the Fluorescent DNA Chain. Anal Chem 2022; 94:6004-6010. [PMID: 35384669 DOI: 10.1021/acs.analchem.2c00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkaline phosphatase (ALP) is a valuable biomarker and effective therapeutic target for the diagnosis and treatment of diverse human diseases, including bone disorder, cardiovascular disease, and cancers. The reported ALP assays often suffer from laborious procedures, costly reagents, inadequate sensitivity, and large sample consumption. Herein, we report a new single-molecule fluorescent biosensor for the simple and ultrasensitive detection of ALP. In this assay, the ALP-catalyzed dephosphorylation of detection probe can protect the detection probe against lambda exonuclease-mediated digestion, and the remaining detection probes can trigger ceaseless hybridization between two Cy5-labeled hairpin probes through toehold-mediated DNA strand displacement, generating a long fluorescent DNA chain, which can be subsequently separated from unhybridized hairpin probes and disassembled into dispersed Cy5 moieties upon NaOH treatment. The free Cy5 moieties indicate the presence of ALP and can be directly quantified via single-molecule counting. This biosensor enables efficient amplification and transduction of the target ALP signal through enzyme-free assembly and disassembly processes, significantly simplifying the experimental procedure and improving the assay accuracy. The proposed biosensor allows specific and ultrasensitive detection of ALP activity with a detection limit down to 2.61 × 10-6 U mL-1 and is suitable for ALP inhibition assay and kinetic analysis. Moreover, this biosensor can be applied for endogenous ALP detection in human cells and clinical human serum, holding the potential in the ALP biological function study and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
20
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
21
|
Li X, Lu J, Li Z, Yang H, Li W, Liu Y, Miao M. Electrochemical detection of alkaline phosphatase activity via atom transfer radical polymerization. Bioelectrochemistry 2022; 144:107998. [PMID: 34808503 DOI: 10.1016/j.bioelechem.2021.107998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Alkaline phosphatase (ALP) activity is a diagnostic indicator for a variety of clinical diseases. In this study, an electrochemical method for detecting ALP activity through activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) was developed. Specifically, 3-mercaptopropionic (MPA) was firstly fixed on the electrode through sulfur-gold bonding. Subsequently, α-bromophenylacetic acid (BPAA) as initiator was attached to MPA through the recognized carboxylate-Zr4+-phosphate chemistry. Finally, in the existence of ALP, L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS) was hydrolyzed to produce ascorbic acid (AA) which participated in the ARGET ATRP reaction, grafting polymer containing plenty of ferrocene electroactive probes on the surface of electrode. Under optimal experimental conditions, this method had a linear scope of 20-200 mU mL-1, and a limit of detection (LOD) of 1.64 mU mL-1. In addition, the proposed method had good selectivity as well as anti-interference capability, with satisfactory results in inhibition rate and human serum experiments. By merits of good analytical performance, easy operation, and low cost, such a method for ALP activity detection has promising applications in ALP-related disease detection and inhibitor screening.
Collapse
Affiliation(s)
- Xiaofei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jing Lu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zutian Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Haoyuan Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weiming Li
- The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, PR China.
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
22
|
Lu J, Li D, Ma L, Miao M, Liu Y, Kong J. Fluorescent assay of alkaline phosphatase activity via atom transfer radical polymerization. Mikrochim Acta 2022; 189:84. [DOI: 10.1007/s00604-022-05189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
|
23
|
Wang DE, You S, Huo W, Han X, Xu H. Colorimetric detection of alkaline phosphatase activity based on pyridoxal phosphate-induced chromatic switch of polydiacetylene nano-liposomes. Mikrochim Acta 2022; 189:70. [PMID: 35067757 DOI: 10.1007/s00604-022-05175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
A colorimetric assay based on polydiacetylenes (PDA) nano-liposomes is reported for facile and sensitive detection of alkaline phosphatase (ALP) activity. The critical basis of this method is that the interaction of pyridoxal phosphate (PLP) with nitrogenous group functionalized PDA nano-liposomes induces distinct blue-to-red color changes of PDA nano-liposomes. In the presence of ALP, as a nature substrate, PLP is enzymatically hydrolyzed to form pyridoxal, which cannot interact with PDA nano-liposomes. As a result, the concentration of PLP is reduced and the color change of PDA nano-liposomes is retarded, which is associated with ALP level. Under optimal conditions, the proposed method showed good linear relationship with ALP activity in the range 10-200 U/L with a limit of detection of 2.8 U/L. The detection process could be vividly observed with the naked eye. Additional attempts by using the method for the evaluation of inhibitor efficiency were also achieved with satisfying results. The method was further challenged with real human serum samples, showing consistent results when compared with a commercial standard assay kit. Such simple and easy-to-use approach may provide a new alternative for clinical and biological detection of ALP.
Collapse
Affiliation(s)
- Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shangqi You
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenjing Huo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiang Han
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
24
|
Li X, Cai M, Shen Z, Zhang M, Tang Z, Luo S, Lu N. “Three-in-One” Nanocomposite as Multifunctional Nanozyme for Ultrasensitive Ratiometric Fluorescence Detection of Alkaline Phosphatase. J Mater Chem B 2022; 10:6328-6337. [DOI: 10.1039/d2tb01365g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes, as a unique class of nanomaterials with enzyme-like properties, have attracted significant interests due to their potential applications in many significant fields. Great endeavours have been devoted to improving...
Collapse
|
25
|
Peng C, Xue Y, Zhu X, Fan Y, Li J, Wang E. Midas Touch: Engineering Activity of Metal-Organic Frameworks via Coordination for Biosensing. Anal Chem 2021; 94:1465-1473. [PMID: 34958552 DOI: 10.1021/acs.analchem.1c05007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ever-increasing attention on the highly sensitive biosensors pushes people to explore functional nanomaterials for signal amplification. To endow inert metal-organic frameworks (MOFs) with enzyme mimicking activity, a simple strategy of introducing Cu2+ via coordination with 2,2'-bipyridine ligands of Zr-MOF, just like "Midas touch," is proposed. More details on the coordination environment of Cu active sites in Zr-MOF-Cu are disclosed via electron paramagnetic resonance and synchrotron-radiation-based X-ray absorption fine structure analyses. The as-prepared Zr-MOF-Cu exhibits unparalleled catalytic ability, which can catalyze ascorbic acid (AA) to dehydroascorbic acid and further stimulate the reaction with o-phenylenediamine to produce fluorescent signal probes with 8-fold signal amplification. On the basis of catalyzing the dephosphorylation process of l-ascorbic acid-2-phosphate to yield AA via alkaline phosphatase (ALP) and AA-dependent signal responses, a universal fluorescent system has been successfully constructed for quantitative measurement of the activity of ALP and the ALP-related enzyme-linked immunosorbent assay with carcinoembryonic antigen as a model. Moreover, the stable loading of Cu active sites endows the sensing platform with anti-inference capacity and enables its reuse without loss of catalytic activity after 6 months.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongchao Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Mu X, Jiang X, Zhang Y, Liu X, Zhang S, Wang W, Huang Y, Ma P, Song D. Sensitive ratiometric fluorescence probe based on chitosan carbon dots and calcein for Alkaline phosphatase detection and bioimaging in cancer cells. Anal Chim Acta 2021; 1188:339163. [PMID: 34794579 DOI: 10.1016/j.aca.2021.339163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Alkaline phosphatase (ALP) is a commonly used marker in clinical practice, and this enzyme is a key indicator for diagnosing various diseases. In this study, we describe the development of a reliable and novel fluorescent assay for ALP detection based on chitosan carbon dots (C-CDs, peak emission, 412 nm) and calcein (peak emission, 512 nm). In the presence of Eu3+ (which binds calcein), the fluorescence intensity of calcein is quenched. Utilizing the ALP-triggered generation of phosphate ions (PO43-) from the substrate p-nitrophenyl phosphate (pNPP), the Eu3+ ions bind PO43- (which shows a higher affinity toward Eu3+ than calcein), and the fluorescence of calcein is recovered. As a consequence, C-CDs fluorescence is decreased by inner filter effect (IFE). Exploiting these changes in the fluorescence intensity ratio of C-CDs and calcein, we developed a high sensitivity, accurate, and easily synthesized ratiometric fluorescence probe. Our novel fluorescent bioassay demonstrates good linear relationship in the 0.09-0.8 mU mL-1 range, with a low detection limit of 0.013 mU mL-1. The excellent applicability of this novel assay in HepG2 cells and human serum samples demonstrates that our novel method has excellent biomedical research and disease diagnosis prospects.
Collapse
Affiliation(s)
- Xiaowei Mu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Xue Jiang
- College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yu Zhang
- College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Xin Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Siqi Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Wei Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yibing Huang
- College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
27
|
Zhu X, Wang W, Lu J, Hao L, Yang H, Liu Y, Si F, Kong J. Grafting of polymers via ring-opening polymerization for electrochemical assay of alkaline phosphatase activity. Anal Chim Acta 2021; 1185:339069. [PMID: 34711324 DOI: 10.1016/j.aca.2021.339069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 01/12/2023]
Abstract
As an important hydrolytic enzyme, abnormal activity of alkaline phosphatase (ALP) is closely associated with a variety of diseases. It has been identified as an important diagnostic indicator for clinical hepatobiliary and bone diseases. Herein, a novel electrochemical sensor based on signal amplification strategy through ring-opening polymerization (ROP) has been developed to assay of ALP activity. First of all, 3-mercaptopropanoic acid (MPA) was employed as a cross-linking agent to attach O-phosphoethanolamine to the electrode surface via amide bond. Then, ALP catalyzed the hydrolysis of phosphate monoester structures to hydroxyl groups, which could initiate ROP reaction. The polymer grafted on the electrode surface contains a large number of ferrocene electroactive molecules, which effectively increased the signal output of the electrochemical sensor and improved the sensitivity of ALP activity detection. Under optimum conditions, this electrochemical sensor rendered a satisfactory linear dependence over the range from 20 to 120 mU mL-1, with a low detection limit of 0.66 mU mL-1. Furthermore, this strategy presented satisfactory selectivity and interference resistance in human serum sample, and compared with clinical data, the relative error of the results obtained by this method was less than 5%. Thus, this method showed considerable potential for the detection of ALP activity in clinical application.
Collapse
Affiliation(s)
- Xin Zhu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Wenbin Wang
- Henan Key Laboratory of TCM Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jing Lu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Lulu Hao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Fuchun Si
- Henan Key Laboratory of TCM Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
28
|
Ma L, Xiao Y, Fang H, Yang H, Zhou Y. Highly Sensitive Alkaline Phosphatase Biosensor Based on Internal Filtration Effect between G-Quadruplex/N-methylmesoporphyrin IX and p-Nitrophenol. ANAL SCI 2021; 37:1487-1489. [PMID: 34690231 DOI: 10.2116/analsci.21c010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, an alkaline phosphatase (ALP) biosensor was established based on G-quadruplex/N-methylmesoporphyrin IX (G4/NMM) and p-nitrophenol (PNP). Because the absorption of PNP was close to the excitation wavelength of G4/NMM, PNP could reduce the fluorescence of G4/NMM. Meanwhile, PNP was the hydrolysis product of p-nitrophenylphosphate (PNPP) by ALP. Therefore, ALP could be detected. This ALP biosensor had a linear analytical range from 2.5 to 25 U/L a the detection limit of 0.81 U/L. Moreover, it showed a satisfactory selectivity and recovery rates.
Collapse
Affiliation(s)
- Liyuan Ma
- College of Life Science, Yangtze University
| | - Yao Xiao
- College of Life Science, Yangtze University
| | | | - Hualin Yang
- College of Life Science, Yangtze University.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology
| | - Yu Zhou
- College of Life Science, Yangtze University.,College of Animal Science, Yangtze University
| |
Collapse
|
29
|
A novel sensing platform for the determination of alkaline phosphatase based on SERS-fluorescent dual-mode signals. Anal Chim Acta 2021; 1183:338989. [PMID: 34627514 DOI: 10.1016/j.aca.2021.338989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022]
Abstract
Alkaline phosphatase (ALP), as an important biomarker, is closely associated with various diseases. Multi-mode sensing platforms can combine the advantages of different technologies and solve their inherent or practical limitations. Herein, we developed a sensing platform for the determination of alkaline phosphatase (ALP) in human serum based on SERS-fluorescent dual-mode assay. Based on the fact that ALP can trigger the in-situ reaction between o-phenylenediamine (OPD) and ascorbic acid (AA), we connected gold nanoparticles (AuNPs) to 3,4-diaminobenzene-thiol (OPD(SH)) through an Au-S covalent bond to synthesize a nanoprobe (OPD(S)-AuNPs). The nanoprobe provides a unique interactive ammonium group for the diol group of AA, which was then used to generate an N-heterocyclic compound that can exhibit good SERS and fluorescence signals without adding SERS reporter and fluorophores or quantum dots (QDs). When being excited at different wavelengths as 360 nm and 785 nm, the fluorescence and SERS signals can be separately generated, which can avoid the disturbance from each other. The response of the fluorescence system was linear from 1.0 to 20 mU mL-1 (R2 = 0.994) with a detection limit of 0.3 mU mL-1, while that of the SERS system was linear from 0.5 to 10 mU mL-1 (R2 = 0.998) with a detection limit of 0.2 mU mL-1. The sensing platform developed was further employed in ALP inhibitor evaluation.
Collapse
|
30
|
Ye W, Li L, Feng Z, Tu B, Hu Z, Xiao X, Wu T. Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification. J Pharm Anal 2021; 12:692-697. [PMID: 36105169 PMCID: PMC9463482 DOI: 10.1016/j.jpha.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
|
31
|
Yang C, Jiang Z, Wu Q, Hu C, Huang C, Li Y, Zhen S. One-component nano-metal-organic frameworks with superior multienzyme-mimic activities for 1,4-dihydropyridine metabolism. J Colloid Interface Sci 2021; 605:214-222. [PMID: 34332404 DOI: 10.1016/j.jcis.2021.07.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Although a number of nanozymes have been developed, it is still difficult to develop single-component nanozyme with overall high multienzyme-like activities. In this study, the nanosized metal-organic frameworks (nano-MOFs) FePCN (PCN stands for porous coordination network) was synthesized by integrating zirconium and iron ions with different catalytic property on single-component MOFs and exhibited superior intrinsic multienzyme-like activities, namely oxidase-, peroxidase- and phosphatase-mimicking activity. The catalytic active sites of oxidase- and peroxidase-, and phosphatase-like activity of FePCN were Fe-centers and Zr-O clusters, respectively. Based on the intrinsic oxidase-like activity and the similarity of molecular structures between cytochrome P450 oxidase (CYP) cofactors and the organic linker in FePCN, FePCN exhibited high CYP-like activity to catalyze the oxidation of hypotensive drug 1,4-dihydropyridine (1,4-DHP) into diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (DDPD) and the yield of DDPD reached over 80%. Moreover, as peroxidase- and phosphatase-mimics, FePCN was successfully applied to detecting H2O2 under neutral condition and catalyzing the dephosphorylation of adenosine triphosphate (ATP), respectively. This study provides a feasible way for rational design one-component nanomaterials as multienzyme-mimics.
Collapse
Affiliation(s)
- Changping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China
| | - Zhongwei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China
| | - Qing Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China
| | - Congyi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing 400715, PR China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China.
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, PR China.
| |
Collapse
|
32
|
Wang H, Xu CH, Zhao W, Chen HY, Xu JJ. Alkaline Phosphatase-Triggered Etching of Au@FeOOH Nanoparticles for Enzyme Level Assay under Dark-Field Microscopy. Anal Chem 2021; 93:10727-10734. [PMID: 34297532 DOI: 10.1021/acs.analchem.1c02761] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In clinical diagnosis, the level of biological enzymes in serum has been generally regarded as markers of human diseases. In this work, a kind of simple and sensitive plasmonic probe (indicated as Au@FeOOH) has been synthesized with the guidance of plasmonic imaging and subsequently developed for the alkaline phosphatase (ALP) level detection under dark-field microscopy (DFM). As a kind of hydrolysis enzyme, ALP can promote the hydrolysis of l-ascorbic acid 2-phosphate to ascorbic acid (AA). AA further acts as a strong reduction reagent for the decomposition of the FeOOH shell, which results in a blue shift of localized surface plasmon resonance spectra and an obvious color change under DFM. RGB analyses show that using a ΔR/G value instead of scattering wavelength or R/G value as the analytical signal, the deviation attributed to the size distribution of the initial Au NPs is greatly suppressed, and a linear range from 0.2 to 6.0 U/L (R2 = 0.99) and a limit of detection of 0.06 U/L are acquired with various concentrations of ALP during the detection. Besides, this approach exhibits excellent selectivity in complex biological serum samples, which is expected to be applied for the early diagnosis of clinical diseases by monitoring various biomarkers in the future.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Wu C, Zhang R, Du W, Cheng L, Liang G. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors. Methods Enzymol 2021; 657:111-144. [PMID: 34353484 DOI: 10.1016/bs.mie.2021.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we discuss the need for the development of enzyme-activatable probes in the field of tumor-targeted photoacoustic (PA) imaging, then we give a brief description of the innovation of designing alkaline phosphatase (ALP)-activatable probes for PA imaging. After that, we provide detailed protocols for the syntheses and characterizations of a near-infrared photoacoustic imaging probe, 1P, developed in our research group. With this tool, 1P could form nanoparticles 1-NPs under the catalysis of ALP and thus could be used to enhance PA imaging both in vitro and in vivo.
Collapse
Affiliation(s)
- Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, AH, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, JS, China
| | - Wei Du
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, AH, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, JS, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, AH, China; State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, JS, China.
| |
Collapse
|
34
|
Liu L, Yuan M, Jin Y, Zhou G, Li T, Li L, Peng H, Chen W. Tunable Dual-Effector Allostery System for Nucleic Acid Analysis with Enhanced Sensitivity and an Extended Dynamic Range. Anal Chem 2021; 93:8170-8177. [PMID: 34096261 DOI: 10.1021/acs.analchem.1c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few years, studies have demonstrated the existence of dual-effector allosteric cooperativity in nature and the mechanism underlying enhanced activation/inhibition performance. In this work, we design an artificial dual-effector allostery system for the construction of a dynamic biosensor that can achieve nucleic acid detection with superior sensitivity and across an extraordinary broad detection range. Our dual-effector allostery-regulated biosensor is based on the multibranched hybridization chain reaction (mHCR) involving three hairpins (H1, H2, and H3). In the presence of the target nucleic acid, the mHCR is initiated via cascading strand displacement events. The products of mHCR are then captured on the electrode surface based on the mechanism of the multivalent proximity ligation assay (mPLA) and the multivalent binding assay (mBA). The subsequent conjugation of streptavidin-modified horseradish peroxidase (SA-HRP) can lead to an increase in the electrochemical signal. Importantly, two distinct allosteric activation sites and two distinct allosteric inhibition sites in H1 are designed to fine-tune the nucleic acid detection sensitivity and the dynamic range. Using this new dual-effector allostery tool, we report the detection of nucleic acid at a dynamic range spanning 10-1012 aM, 11 orders of magnitude showing the broadest dynamic range reported to date with an allosteric regulation biosensor construct.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Mengmeng Yuan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yuxia Jin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| |
Collapse
|
35
|
Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase. BIOSENSORS-BASEL 2021; 11:bios11060174. [PMID: 34070918 PMCID: PMC8227771 DOI: 10.3390/bios11060174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
In this paper, we propose a simple colorimetric method for the sensitive and selective detection of alkaline phosphatase (ALP) activity based on the turn off/turn on oxidase mimic activity of His@AuNCs. His@AuNCs/graphene oxide hybrids (His@AuNCs/GO) were easily obtained using the self-assembly method with poly (diallyldimethylammonium chloride) (PDDA)-coated GO and showed high oxidase-like activity compared with His@AuNCs. We found that the pyrophosphate ion (P2O74-, PPi) could effectively inhibit the oxidase mimic activity of His@AuNCs/GO, and the hydrolysis of PPi by ALP restored the inhibited activity of His@AuNCs/GO, enabling them to efficiently catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate the blue oxidized product oxTMB. The intensity of the color showed a linear dependency with the ALP activity. ALP was detected in the linear range of 0-40 mU/mL with a low detection limit (LOD) of 0.26 mU/mL (S/N = 3). The proposed method is fast, easy, and can be applied to monitor the ALP activity in serum samples accurately and effectively, which suggests its practicability and reliability in the detection of ALP activity in clinical practice.
Collapse
|
36
|
Wang Y, Yan Y, Liu X, Ma C. An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. BIOSENSORS-BASEL 2021; 11:bios11050139. [PMID: 33946723 PMCID: PMC8145916 DOI: 10.3390/bios11050139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
As an important DNA 3'-phosphatase, alkaline phosphatase can repair damaged DNA caused by replication and recombination. It is essential to measure the level of alkaline phosphatase to indicate some potential diseases, such as cancer, related to alkaline phosphatase. Here, we designed a simple and fast method to detect alkaline phosphatase quantitively. When alkaline phosphatase is present, the resulting poly T-DNA with a 3'-hydroxyl end was cleaved by exonuclease I, prohibiting the formation of fluorescent copper nanoparticles. However, the fluorescent copper nanoparticles can be monitored with the absence of alkaline phosphatase. Hence, we can detect alkaline phosphatase with this turn-off strategy. The proposed method is able to quantify the concentration of alkaline phosphatase with the LOD of 0.0098 U/L. Furthermore, we utilized this method to measure the effects of inhibitor Na3VO4 on alkaline phosphatase. In addition, it was successfully applied to quantify the level of alkaline phosphatase in human serum. The proposed strategy is sensitive, selective, cost effective, and timesaving, having a great potential to detect alkaline phosphatase quantitatively in clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Xinfa Liu
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| | - Changbei Ma
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| |
Collapse
|
37
|
Cerra S, Salamone TA, Sciubba F, Marsotto M, Battocchio C, Nappini S, Scaramuzzo FA, Li Voti R, Sibilia C, Matassa R, Beltrán AM, Familiari G, Fratoddi I. Study of the interaction mechanism between hydrophilic thiol capped gold nanoparticles and melamine in aqueous medium. Colloids Surf B Biointerfaces 2021; 203:111727. [PMID: 33819818 DOI: 10.1016/j.colsurfb.2021.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
In the last years, intense efforts have been made in order to obtain colloidal-based systems capable of pointing out the presence of melamine in food samples. In this work, we reported about the recognition of melamine in aqueous solution, using gold nanoparticles stabilized with 3-mercapto-1-propanesulfonate (AuNPs-3MPS), with the aim of deepening how the recognition process works. AuNPs were synthesized using a wet chemical reduction method. The synthesized AuNPs-3MPS probe was fully characterized, before and after the recognition process, by both physicochemical (UV-vis, FT-IR, 1H-NMR, DLS and ζ-potential) and morphostructural techniques (AFM, HR-TEM). The chemical and electronic structure was also investigated by SR-XPS. The sensing method is based on the melamine-induced aggregation of AuNPs; the presence of melamine was successfully detected in the range of 2.5-500 ppm. The results achieved also demonstrate that negatively charged AuNPs-3MPS are potentially useful for determining melamine contents in aqueous solution. SR-XPS measurements allowed to understand interaction mechanism between the probe and the analyte. The presence of sulfonate groups allows a mutual interaction mediated by electrostatic bonds between nanoparticles surface thiols and positively charged amino groups of melamine molecules.
Collapse
Affiliation(s)
- Sara Cerra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Tommaso A Salamone
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Martina Marsotto
- Department of Sciences and CISDiC, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Chiara Battocchio
- Department of Sciences and CISDiC, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Silvia Nappini
- IOM CNR, Laboratorio TASC, S.S. 14 Km 163.5 AREA Science Park Basovizza, Trieste, 34149, Italy
| | - Francesca A Scaramuzzo
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Roberto Li Voti
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Concita Sibilia
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy
| | - Ana Maria Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011, Seville, Spain
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
38
|
Wang K, Wang W, Zhang XY, Jiang AQ, Yang YS, Zhu HL. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Wang W, Lu J, Hao L, Yang H, Song X, Si F. Electrochemical detection of alkaline phosphatase activity through enzyme-catalyzed reaction using aminoferrocene as an electroactive probe. Anal Bioanal Chem 2021; 413:1827-1836. [PMID: 33481047 DOI: 10.1007/s00216-020-03150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
As a nonspecific phosphomonoesterase, alkaline phosphatase (ALP) plays a pivotal role in tissue mineralization and osteogenesis which is an important biomarker for the clinical diagnosis of bone and hepatobiliary diseases. Herein, we described a novel electrochemical method that used aminoferrocene (AFC) as an electroactive probe for the ALP activity detection. In the condition with imidazole and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), the AFC probe could be directly labeled on single-stranded DNA (ssDNA) by one-step conjugation. Specifically, thiolated ssDNA at 3'-terminals was modified to the electrode surface through Au-S bond. In the condition without ALP, AFC could be labeled on ssDNA by conjugating with phosphate groups. In the presence of ALP, phosphate groups were catalyzed to be removed from the 5'-terminal of ssDNA. The AFC probe cannot be labeled on ssDNA. Thus, the electrochemical detection of ALP activity was achieved. Under optimal conditions, the strategy presented a good linear relationship between current intensity and ALP concentration in the range of 20 to 100 mU/mL with the limit of detection (LOD) of 1.48 mU/mL. More importantly, the approach rendered high selectivity and satisfactory applicability for ALP activity detection. In addition, this method has merits of ease of operation, low cost, and environmental friendliness. Thus, this strategy presents great potential for ALP activity detection in practical applications. An easy, sensitive and reliable strategy was developed for the detection of alkaline phosphatase activity via electrochemical "Signal off".
Collapse
Affiliation(s)
- Wenbin Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jing Lu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lulu Hao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xuejie Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Fuchun Si
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
40
|
Pang X, Li Y, Lu Q, Ni Z, Zhou Z, Xie R, Wu C, Li H, Zhang Y. A turn-on near-infrared fluorescent probe for visualization of endogenous alkaline phosphatase activity in living cells and zebrafish. Analyst 2021; 146:521-528. [PMID: 33227102 DOI: 10.1039/d0an01863e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is an essential hydrolase and widely distributed in living organisms. It plays important roles in various physiological and pathological processes. Herein, a turn-on near-infrared (NIR) fluorescent probe (DXMP) was developed for sensitive detection of ALP activity both in vitro and in vivo based on the intramolecular charge transfer (ICT) mechanism. Upon incubation with ALP, DXMP exhibited a strong fluorescence increment at 640 nm, which was attributed to the fact that ALP-catalyzed cleavage of the phosphate group in DXMP induced the transformation of DXMP into DXM-OH. The probe exhibited prominent features including outstanding selectivity, high sensitivity, and excellent biocompatibility. More importantly, it has been successfully used to detect and image endogenous ALP in living cells and zebrafish.
Collapse
Affiliation(s)
- Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gao L, Li Y, Huang ZZ, Tan H. Visual detection of alkaline phosphatase based on ascorbic acid-triggered gel-sol transition of alginate hydrogel. Anal Chim Acta 2021; 1148:238193. [PMID: 33516375 DOI: 10.1016/j.aca.2020.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
Stimuli-responsive hydrogel has been emerged as a popular tool for chemical sensing due to its unique mechanical properties. In this work, we fabricated an ascorbic acid (AA)-responsive alginate hydrogel for the visual detection of alkaline phosphatase (ALP). This alginate hydrogel (RhB@Alg/Fe3+) was crosslinked with Fe3+, and rhodamine B (RhB) was encapsulated into the hydrogel as an indicating reagent to assistant visual detection. Because of the weak affinity of Fe2+ to alginate, the presence of reductive AA can trigger the dissolution of RhB@Alg/Fe3+ to give an observable red color in the sol solution. On this basis, by using ascorbic acid 2-phosphate as a substrate of ALP, which can be hydrolyzed by ALP to produce AA, the gel-sol transition process of RhB@Alg/Fe3+ was further modulated by ALP. This finding leads to a simple visual method for ALP detection with a low detection limit of 0.37 mU/mL and an excellent selectivity over other proteins. Compared with conventional colorimetric assays, this visual sensor shows the distinct advantages of simple fabrication, cost-effectiveness and easy to implement. We believe that this study can provide a new insight into the fabrication of responsive alginate hydrogel for promising applications in chemical sensing and biomedical fields.
Collapse
Affiliation(s)
- Liping Gao
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Yong Li
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Zhen-Zhong Huang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongliang Tan
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, PR China.
| |
Collapse
|
42
|
Wang WX, Jiang WL, Guo H, Li Y, Li CY. Real-time imaging of alkaline phosphatase activity of diabetes in mice via a near-infrared fluorescent probe. Chem Commun (Camb) 2021; 57:480-483. [DOI: 10.1039/d0cc07292c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel water-soluble near-infrared fluorescent probe named QX-P with simple synthesis is developed for detecting ALP. The probe can not only visualize ALP activity in four cell lines, but also real-time image ALP activity of diabetes in mice.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Hong Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
43
|
Guo J, Yu H, Cui T. Applications of fluorescent materials in the detection of alkaline phosphatase activity. J Biomed Mater Res B Appl Biomater 2020; 109:214-226. [PMID: 32790135 DOI: 10.1002/jbm.b.34693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Alkaline phosphatase (ALP) is important in the diagnosis of many diseases. Because ALP is used to detect biomarkers for many diseases, many researchers conduct investigations to develop ALP detection strategies. The use of fluorescent material has attracted attention because of the technique's high sensitivity and the low sample volume required. Herein, we review and discuss the working mechanisms and advantages of four main categories:DNA fluorescent probes, molecular fluorescent probes, chemical coordination-based probes, and nanoparticle probes. Development prospects and trends are also discussed.
Collapse
Affiliation(s)
- Jiantao Guo
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongbo Yu
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tingting Cui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoO x with electrostatic aggregation. Anal Bioanal Chem 2020; 412:5551-5561. [PMID: 32671451 DOI: 10.1007/s00216-020-02815-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023]
Abstract
Given alkaline phosphatase (ALP) takes part in the phosphorylation/dephosphorylation processes in the body, its activity is universally taken as an important indicator of many diseases, and thus developing reliable and efficient methods for ALP activity determination becomes quite important. Here, we propose a new sensing strategy for ALP activity by integrating the improved peroxidase-mimicking catalysis of sulfuration-engineered CoOx with the hexametaphosphate ion (HMPi)-mediated electrostatic aggregation. After sulfuration engineering, the CoOx composite coming from the pyrolysis of ZIF-67 exhibits enhanced peroxidase-mimetic catalytic ability to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to its oxide TMBox, offering a remarkable color change from colorless to mazarine; with the presence of HMPi, the rapid electrostatic assembly of negatively charged HMPi and positively charged TMBox leads to the aggregation of the latter, resulting in a color fading phenomenon; when ALP is added in advance to hydrolyze the HMPi mediator, the aggregation procedure is significantly suppressed, and such that the solution color can be recovered. Based on this principle, efficient determination of ALP activity was gained, giving a wide detection scope from 0.8 to 320 U/L and a detection limit as low as 0.38 U/L. Reliable analysis of the target in serum samples was also achieved, verifying the feasibility and practicability of our strategy in measuring ALP activity for clinical applications. Graphical abstract.
Collapse
|
45
|
Chuan-Hua Zhou, Li X, Zi QJ, Wang J, Zhao WY, Cao QE. An Enzyme-Induced Metallization-Based Electrochemical Signal Amplification Strategy for Ultrahigh Sensitive Alkaline Phosphatase Detection at Attomolar Concentrations. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Ye K, Niu X, Song H, Wang L, Peng Y. Combining CeVO 4 oxidase-mimetic catalysis with hexametaphosphate ion induced electrostatic aggregation for photometric sensing of alkaline phosphatase activity. Anal Chim Acta 2020; 1126:16-23. [PMID: 32736720 DOI: 10.1016/j.aca.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
In the present work, a novel alkaline phosphatase (ALP) activity colorimetric assay is proposed by integrating the oxidase-mimicking catalytic characteristic of CeVO4 nanoparticles with the hexametaphosphate ion (HMPi) mediated electrostatic aggregation. The CeVO4 nanoparticles exhibit good oxidase-mimetic catalytic ability to promote the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to TMBox, offering a significant change from colorless to blue. After a small amount of HMPi is added, the strong electrostatic interaction between the negatively charged HMPi species and the positively charged TMBox product leads to the aggregation of the latter, generating an aubergine HMPi-TMBox agglomerate. After the agglomerate is filtered out, the reaction solution turns to be almost colorless. When ALP is used to hydrolyze the HMPi species in advance, the electrostatic aggregation process is remarkably restrained, thus retaining the blue color of the CeVO4 catalyzed TMB solution. According to the new sensing strategy, highly selective and sensitive analysis of ALP activity was realized, providing a wide detection range from 1 to 210 U/L and a detection limit of 0.68 U/L. Accurate measurement of ALP activity in clinical serum matrices was also validated, demonstrating the practicability of the proposed assay in practical applications.
Collapse
Affiliation(s)
- Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hongwei Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Linjie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinxian Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| |
Collapse
|
47
|
Colorimetric sensing platform based on MnO2 nanosheets for the detection of reducing substances and alkaline phosphatase activity in whole Hela cells. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1752-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Polysulfone Hydrogel Nanocomposite Alkaline Phosphatase Biosensor for the Detection of Vanadium. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00592-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Lin L, Luo Y, Chen Q, Lai Q, Zheng Q. Redox-modulated colorimetric detection of ascorbic acid and alkaline phosphatase activity with gold nanoparticles. LUMINESCENCE 2020; 35:542-549. [PMID: 31898408 DOI: 10.1002/bio.3749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit characteristic absorption peaks in the ultraviolet visible region due to their special surface plasmon resonance effect. This characteristic absorption peak would change with the relative colour varying from wine red to orange-yellow upon sequential addition of ascorbic acid (AA) into the mixture of AuNPs and Ag(I). Similar observations also could be found when the hydrolysis product of sodium l-ascorbyl-2-phosphate with alkaline phosphatase (ALP) was used as an alternative to AA. Results of structure characterization confirmed that the phenomena were due to the reduction of Ag(I) to Ag(0) on the surface of AuNPs and the formation of core-shell AuNPs@Ag. Therefore, a colorimetric assay for rapid visual detection of AA and ALP based on redox-modulated silver deposition on AuNPs has been proposed. Under the optimal experimental conditions, the absorbance variation ΔA522 nm /A370 nm of AuNPs was proportional to the concentration of AA (5-60 μmol/L) and ALP (3-18 U/L) with the corresponding detection limit of 2.44 μmol/L for AA and 0.52 U/L for ALP. The assay showed excellent selectivity towards AA and ALP. Moreover, the assay has been applied to detect AA and ALP activity in real samples with satisfying results.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaxin Luo
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiushuang Chen
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingjiao Lai
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoling Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
50
|
Wang X, Jiang X, Wei H. Phosphate-responsive 2D-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B 2020; 8:6905-6911. [DOI: 10.1039/c9tb02542a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphate-responsive peroxidase-mimicking two-dimensional-metal–organic-framework nanozymes were employed to develop alkaline phosphatase assays with tunable dynamic ranges and colorimetric logic gates.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| | - Xiaoqian Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| |
Collapse
|