1
|
Wang H, Jian M, Fan J, He Y, Wang Z. Scalable synthesis of Au@CeO 2 nanozyme for development of colorimetric lateral flow immunochromatographic assay to sensitively detect heart-type fatty acid binding protein. Talanta 2024; 273:125852. [PMID: 38442564 DOI: 10.1016/j.talanta.2024.125852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Nanozymes with core@shell nanostructure are considered promising biolabeling materials for their multifunctional properties. In this work, a simple one-pot strategy has been proposed for scalable synthesis of gold@cerium dioxide core@shell nanoparticles (Au@CeO2 NPs) with strong localized surface plasmon resonance (LSPR) absorption and high peroxidase-like catalytic activity by redox reactions of Ce3+ ions and AuCl4- ions in diluted ammonia solution under room temperature. A colorimetric lateral flow immunochromatographic assay (LFIA) has been successfully fabricated for sensitive detection of heart-type fatty acid binding protein (H-FABP, an early cardiac biomarker) by using the Au@CeO2 NPs as reporters. The as-developed LFIA with Au@CeO2 NP reporter (termed as Au@CeO2-LFIA) exhibits a dynamic range of nearly two orders of magnitude, and a limit of detection (LOD) as low as 0.35 ng mL-1 H-FABP with nanozyme-triggered 3,3',5,5'-tetramethylbenzidine (TMB) colorimetric amplification. Furthermore, the practicality of Au@CeO2-LFIA has been demonstrated by profiling the concentrations of H-FABP in 156 blood samples of acute myocardial infarction (AMI) patients, and satisfactory results are obtained.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Cardiology, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiwen Fan
- Department of Cardiology, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuquan He
- Department of Cardiology, The China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
2
|
Li Y, Zhao G, An B, Xu K, Wu D, Ren X, Ma H, Liu X, Feng R, Wei Q. Multimetal-Based Metal-Organic Framework System for the Sensitive Detection of Heart-Type Fatty Acid Binding Protein in Electrochemiluminescence Immunoassay. Anal Chem 2024; 96:4067-4075. [PMID: 38419337 DOI: 10.1021/acs.analchem.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this work, an electrochemiluminescence (ECL) quenching system using multimetal-organic frameworks (MMOFs) was proposed for the sensitive and specific detection of heart-type fatty acid-binding protein (H-FABP), a marker of acute myocardial infarction (AMI). Bimetallic MOFs containing Ru and Mn as metal centers were synthesized via a one-step hydrothermal method, yielding RuMn MOFs as the ECL emitter. The RuMn MOFs not only possessed the strong ECL performance of Ru(bpy)32+ but also maintained high porosity and original metal active sites characteristic of MOFs. Moreover, under the synergistic effect of MOFs and Ru(bpy)32+, RuMn MOFs have more efficient and stable ECL emission. The trimetal-based MOF (FePtRh MOF) was used as the ECL quencher because of the electron transfer between FePtRh MOFs and RuMn MOFs. In addition, active intramolecular electron transfer from Pt to Fe or Rh atoms also occurred in FePtRh MOFs, which could promote intermolecular electron transfer and improve electron transfer efficiency to enhance the quenching efficiency. The proposed ECL immunosensor demonstrated a wide dynamic range and a low detection limit of 0.01-100 ng mL-1 and 6.8 pg mL-1, respectively, under optimal conditions. The ECL quenching system also presented good specificity, stability, and reproducibility. Therefore, an alternative method for H-FABP detection in clinical diagnosis was provided by this study, highlighting the potential of MMOFs in advancing ECL technology.
Collapse
Affiliation(s)
- Yuan Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Guanhui Zhao
- School of Science and Chemical Engineering, Qilu Normal University, Jinan 250222, People's Republic of China
| | - Bing An
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Kun Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Quagliariello V, Passariello M, Bisceglia I, Paccone A, Inno A, Maurea C, Rapuano Lembo R, Manna L, Iovine M, Canale ML, Scherillo M, Ascierto PA, Gabrielli D, De Lorenzo C, Maurea N. Combinatorial immune checkpoint blockade increases myocardial expression of NLRP-3 and secretion of H-FABP, NT-Pro-BNP, interleukin-1β and interleukin-6: biochemical implications in cardio-immuno-oncology. Front Cardiovasc Med 2024; 11:1232269. [PMID: 38322766 PMCID: PMC10844473 DOI: 10.3389/fcvm.2024.1232269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Background Immune checkpoint blockade in monotherapy or combinatorial regimens with chemotherapy or radiotherapy have become an integral part of oncology in recent years. Monoclonal antibodies against CTLA-4 or PD-1 or PDL-1 are the most studied ICIs in randomized clinical trials, however, more recently, an anti-LAG3 (Lymphocyte activation gene-3) antibody, Relatlimab, has been approved by FDA in combination with Nivolumab for metastatic melanoma therapy. Moreover, Atezolizumab is actually under study in association with Ipilimumab for therapy of metastatic lung cancer. Myocarditis, vasculitis and endothelitis are rarely observed in these patients on monotherapy, however new combination therapies could expose patients to more adverse cardiovascular events. Methods Human cardiomyocytes co-cultured with human peripheral blood lymphocytes (hPBMCs) were exposed to monotherapy and combinatorial ICIs (PD-L1 and CTLA-4 or PD-1 and LAG-3 blocking agents, at 100 nM) for 48 h. After treatments, cardiac cell lysis and secretion of biomarkers of cardiotoxicity (H-FABP, troponin-T, BNP, NT-Pro-BNP), NLRP3-inflammasome and Interleukin 1 and 6 were determined through colorimetric and enzymatic assays. Mitochondrial functions were studied in cardiomyocyte cell lysates through quantification of intracellular Ca++, ATP content and NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) levels. Histone deacetylases type 4 (HDAC-4) protein levels were also determined in cardiomyocyte cell lysates to study potential epigenetic changes induced by immunotherapy regimens. Results Both combinations of immune checkpoint inhibitors exert more potent cardiotoxic side effects compared to monotherapies against human cardiac cells co-cultured with human lymphocytes. LDH release from cardiac cells was 43% higher in PD-L1/CTLA-4 blocking agents, and 35.7% higher in PD-1/LAG-3 blocking agents compared to monotherapies. HDAC4 and intracellular Ca++ levels were increased, instead ATP content and Ndufs1 were reduced in myocardial cell lysates (p < 0.001 vs. untreated cells). Troponin-T, BNP, NT-Pro-BNP and H-FABP, were also strongly increased in combination therapy compared to monotherapy regimen. NLRP3 expression, IL-6 and IL-1β levels were also increased by PDL-1/CTLA-4 and PD-1/LAG-3 combined blocking agents compared to untreated cells and monotherapies. Conclusions Data of the present study, although in vitro, indicate that combinatorial immune checkpoint blockade, induce a pro- inflammatory phenotype, thus indicating that these therapies should be closely monitored by the multidisciplinary team consisting of oncologists, cardiologists and immunologists.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - I. Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A. Inno
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - C. Maurea
- Medical Oncology, Ospedale del Mare, Naples, Italy
| | - R. Rapuano Lembo
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - L. Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. L. Canale
- U.O.C. Cardiologia, Ospedale Versilia, Lido di Camaiore (LU), Camaiore, Italy
| | - M. Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, Benevento, Italy
| | - P. A. Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Roma – Fondazione per il Tuo Cuore – Heart Care Foundation, Firenze, Italy
| | - C. De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
4
|
Alizadeh-Fanalou S, Mehdipour S, Rokhsartalb-Azar S, Mohammadi F, Ghorban K, Asri S, Mousavi SH, Karami M. Evaluation of novel biomarkers for early diagnosis of bisphenol A-induced coronary artery disease. Heliyon 2024; 10:e23768. [PMID: 38234885 PMCID: PMC10792579 DOI: 10.1016/j.heliyon.2023.e23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Bisphenol A (BPA), a ubiquitous synthetic monomer primarily used in the manufacture of polycarbonate plastic and epoxy resins and as a non-polymer additive to other plastics, can leach into the food and water supply and has been linked to cardiovascular disease (CVD). This study aimed to analyze BPA levels in patients with varying numbers of coronary artery stenosis and evaluate the prognostic value of new biomarkers cluster of differentiation 36 (CD36) and heart-type fatty acid-binding protein (H-FABP), compared to troponin I and creatine kinase (CK) MB, for detecting myocardial injury. Method Eighty nine patients undergoing angiography at Urmia Hospital from March 2019 to 2020 were included. Serum levels of BPA, CD36, H-FABP, troponin I, and CK-M were measured. Results When comparing CD36 and H-FABP with troponin I and CK-MB across coronary occlusion classes, receiver operating characteristic curves indicated CD36 and H-FABP had higher accuracy than troponin I and CK-MB for detecting stenosis stages. In patients with occlusion, significant alterations were detected in age, sex, BMI, hypertension, diabetes, dyslipidemia, and smoking. BPA serum concentration significantly increased compared to normal subjects. Conclusions Our study revealed that serum biomarkers were valuable for prognosticating myocardial injury. Among these, CD36 and H-FABP were more accurate. BPA concentration correlated with myocardial necrosis, underlying disease, and occlusion stage, suggesting BPA's harmful effects.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Mehdipour
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Rokhsartalb-Azar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Khodayar Ghorban
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Siamak Asri
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyyed Hosein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zheng J, Qiu Y, Xu Y, Quan M, Zhong Z, Wang Q, Wu Y, Zeng X, Xia C, Liu R. Magnetic particle-based chemiluminescence immunoassay for serum human heart-type fatty acid binding protein measurement. Biotechnol Lett 2023; 45:1431-1440. [PMID: 37736778 DOI: 10.1007/s10529-023-03425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES Human heart-type fatty acid binding protein (HFABP) is a biomarker for diagnosis, risk assessment, and prognosis of acute myocardial infarction, and we aimed to establish an immunoassay for HFABP quantitation. METHODS Human HFABP monoclonal antibodies (mAbs) were developed, evaluated by enzyme-linked immunosorbent assay, and a chemiluminescence enzyme immunoassay (CLEIA) generated. Analytical performance of the CLEIA was evaluated by measuring serum HFABP. RESULTS The prokaryotically expressed rHFABP was purified and four anti-HFABP mAbs with superior detection performance were obtained after immunizing BALB/c mice. MAbs 2B8 and 6B3 were selected as respective capture and detection antibodies for HFABP measurement by CLEIA (detection range, 0.01-128 μg/L). Results using the CLEIA showed excellent correlation (r, 0.9622) and the correlation coefficient was 0.9809 (P < 0.05) by the Tukey test statistical analysis with those of latex-enhanced immunoturbidimetry in hospitals. CONCLUSION Our mAbs and CLEIA for HFABP detection represent new diagnostic tools for measurement of human serum HFABP.
Collapse
Affiliation(s)
- Jiao Zheng
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Yilan Qiu
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
- College of Life Science, Hunan Normal University, Changsha, 410013, China
| | - Ye Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Meifang Quan
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Zhihong Zhong
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Qinglin Wang
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Yi Wu
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
- The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, China
| | - Xuan Zeng
- School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Chuan Xia
- Department of Laboratory Medicine, The First People's Hospital of Chenzhou, Chenzhou, 423000, China
| | - Rushi Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, China.
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
6
|
Nejati-Koshki K, Fathi F, Arabzadeh A, Mohammadzadeh A. Biomarkers and optical based biosensors in cardiac disease detection: early and accurate diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5441-5458. [PMID: 37814547 DOI: 10.1039/d3ay01414b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Rapid and precise detection methods for the early-stage detection of cardiovascular irregularities are crucial to stopping and reducing their development. Cardiovascular diseases (CVDs) are the leading cause of death in the world. Hence, cardiac-related biomarkers are essential for monitoring and managing of process. The necessity for biomarker detection has significantly widened the field of biosensor development. Bio-sensing methods offer rapid detection, low cost, sensitivity, portability, and selectivity in the development of devices for biomarker detection. For the prediction of cardiovascular diseases, some biomarkers can be used, like C-reactive protein (CRP), troponin I or T, creatine kinase (CK-MB), B-type natriuretic peptide (BNP), myoglobin (Mb), suppression of tumorigenicity 2 protein (ST2) and galectin-3 (Gal3). In this review, recent research studies were covered for gaining insight into utilizing optical-based biosensors, including surface plasmon resonance (SPR), photonic crystals (PCs), fluorescence-based techniques, fiber optics, and also Raman spectroscopy biosensors for the ultrasensitive detection of cardiac biomarkers. The main goal of this review is to focus on the improvement of optical biosensors in the future for the diagnosis of heart diseases and to discuss how to enhance their properties for use in medicine. Some main data from each study reviewed are emphasized, including the CVD biomarkers and the response range of the optical-based devices and biosensors.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Alireza Mohammadzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Yan M, Liu S, Zeng W, Guo Q, Mei Y, Shao X, Su L, Liu Z, Zhang Y, Wang L, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice. Biomed Pharmacother 2023; 164:114919. [PMID: 37302318 DOI: 10.1016/j.biopha.2023.114919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.
Collapse
Affiliation(s)
- Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Suping Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Wenru Zeng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Qiaoling Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xiaoqi Shao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Liyan Su
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yue Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Hongtao Diao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.
| |
Collapse
|
8
|
Casamián-Sorrosal D, Barrera-Chacón R, Fonfara S, Cristobal-Verdejo JI, Talavera-López J, Belinchón-Lorenzo S, Miró-Corrales G, Caro-Vadillo A, Duque FJ. Evaluation of heart fatty acid-binding protein as a biomarker for canine leishmaniosis. Vet Rec 2023; 192:e2683. [PMID: 36755402 DOI: 10.1002/vetr.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Myocarditis frequently occurs in canine leishmaniosis (CanL). Heart fatty acid-binding protein (HFABP) is a biomarker of myocardial damage. METHODS This study aimed to compare HFABP concentration (HFABPc) in healthy dogs and dogs at different stages of CanL and evaluate the correlation of this biomarker with several clinicopathological and echocardiographic variables. Thirty-one dogs diagnosed with CanL and 10 healthy dogs were included. RESULTS HFABPc was not statistically different (p > 0.05) between groups of dogs at different LeishVet stages of CanL or between groups with high versus low to intermediate serology titres. In 70% of CanL dogs, HFABPc was within the 95% confidence interval limits of the mean of healthy dogs. A moderate negative correlation with globulin (r = -0.519; p = 0.03) and haematocrit (HCT) (r = -0.538; p = 0.02) was observed. No other significant correlation (p > 0.05) was observed with any other variable. LIMITATIONS Many statistical tests were performed, and therefore, type I error cannot be ruled out. CONCLUSION HFABPc is not consistently elevated in dogs with CanL and is not associated with the severity of the disease, or most echocardiographic or clinicopathological variables studied. The correlation with globulin and HCT was not strong and not considered clinically significant. HFABPc lacks sufficient predictive capacity in dogs with CanL, discouraging further research or clinical use of this biomarker in this disease.
Collapse
Affiliation(s)
- Domingo Casamián-Sorrosal
- Veterinary Teaching Hospital & Department of Animal Medicine and Surgery, School of Veterinary Science, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Rafael Barrera-Chacón
- Department of Animal Medicine & LeishmanCeres Laboratory, Faculty of Veterinary Science, Universidad de Extremadura, Caceres, Spain
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - José Ignacio Cristobal-Verdejo
- Department of Animal Medicine & LeishmanCeres Laboratory, Faculty of Veterinary Science, Universidad de Extremadura, Caceres, Spain
| | - Jesús Talavera-López
- Department of Animal Medicine and Surgery & Teaching Veterinary Hospital, Veterinary School, Universidad de Murcia, Murcia, Spain
| | - Silvia Belinchón-Lorenzo
- Department of Animal Medicine & LeishmanCeres Laboratory, Faculty of Veterinary Science, Universidad de Extremadura, Caceres, Spain
| | - Guadalupe Miró-Corrales
- Department of Animal Health & Veterinary Teaching Hospital, Universidad Complutense de Madrid, Madrid, Spain
| | - Alicia Caro-Vadillo
- Department of Animal Medicine and Surgery & Veterinary Teaching Hospital, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Duque
- Department of Animal Medicine & LeishmanCeres Laboratory, Faculty of Veterinary Science, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
9
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
10
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
11
|
Reyes-Retana JA, Duque-Ossa LC. Acute Myocardial Infarction Biosensor: A Review From Bottom Up. Curr Probl Cardiol 2020; 46:100739. [PMID: 33250264 DOI: 10.1016/j.cpcardiol.2020.100739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/09/2023]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease that is produced due to a deficiency of oxygen generating irreversible damage in the heart muscle. In diagnosis, electrocardiogram (ECG) investigation has been the main method but is insufficient, so approaches like the measurement of biomarkers levels in plasma or saliva have become one of the most commonly applied strategies for prognosis of AMI, as some of them are specifically related to a heart attack. Many tests are carrying on to determine biological markers changes, but usually, they present disadvantages related to time consumption and laborious work. To overcome the issues, researchers around the world have been developing different ways to enhance detection through the use of biosensors. These diagnostic devices have a biological sensing element associated to a physicochemical transducer that can be made from different materials and configurations giving place to different kinds of detection: Electrical/Electrochemical, Optical and Mechanical. In this review, the authors presents relevant investigations related to the most important biomarkers and biosensors used for their detection having in mind the nanotechnology participation in the process through the application of nanostructures as a good choice for device configuration.
Collapse
Affiliation(s)
- J A Reyes-Retana
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| | - L C Duque-Ossa
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| |
Collapse
|
12
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Miniaturized technologies for high-throughput drug screening enzymatic assays and diagnostics – A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Mirna M, Topf A, Wernly B, Rezar R, Paar V, Jung C, Salmhofer H, Kopp K, Hoppe UC, Schulze PC, Kretzschmar D, Schneider MP, Schultheiss UT, Sommerer C, Paul K, Wolf G, Lichtenauer M, Busch M. Novel Biomarkers in Patients with Chronic Kidney Disease: An Analysis of Patients Enrolled in the GCKD-Study. J Clin Med 2020; 9:E886. [PMID: 32213894 PMCID: PMC7141541 DOI: 10.3390/jcm9030886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Chronic kidney disease (CKD) and cardiovascular diseases (CVD) often occur concomitantly, and CKD is a major risk factor for cardiovascular mortality. Since some of the most commonly used biomarkers in CVD are permanently elevated in patients with CKD, novel biomarkers are warranted for clinical practice. Methods: Plasma concentrations of five cardiovascular biomarkers (soluble suppression of tumorigenicity (sST2), growth differentiation factor 15 (GDF-15), heart-type fatty acid-binding protein (H-FABP), insulin-like growth factor-binding protein 2 (IGF-BP2), and soluble urokinase plasminogen activator receptor) were analyzed by means of enzyme-linked immunosorbent assay (ELISA) in 219 patients with CKD enrolled in the German Chronic Kidney Disease (GCKD) study. Results: Except for sST2, all of the investigated biomarkers were significantly elevated in patients with CKD (2.0- to 4.4-fold increase in advanced CKD (estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73 m² body surface area (BSA)) and showed a significant inverse correlation with eGFR. Moreover, all but H-FABP and sST2 were additionally elevated in patients with micro- and macro-albuminuria. Conclusions: Based on our findings, sST2 appears to be the biomarker whose diagnostic performance is least affected by decreased renal function, thus suggesting potential viability in the management of patients with CVD and concomitant CKD. The predictive potential of sST2 remains to be proven in endpoint studies.
Collapse
Affiliation(s)
- Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Albert Topf
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Richard Rezar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Hermann Salmhofer
- Department of Internal Medicine I, Division of Nephrology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Kristen Kopp
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.C.S.); (D.K.)
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.C.S.); (D.K.)
| | - Markus P. Schneider
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ulla T. Schultheiss
- Department of Medicine IV – Nephrology and Primary Care, Institute of Genetic Epidemiology, Medical Center–University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany;
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Katharina Paul
- Department of Internal Medicine III, Friedrich Schiller University Jena, 07743 Jena, Germany; (K.P.); (G.W.); (M.B.)
| | - Gunter Wolf
- Department of Internal Medicine III, Friedrich Schiller University Jena, 07743 Jena, Germany; (K.P.); (G.W.); (M.B.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.M.); (A.T.); (B.W.); (R.R.); (V.P.); (K.K.); (U.C.H.)
| | - Martin Busch
- Department of Internal Medicine III, Friedrich Schiller University Jena, 07743 Jena, Germany; (K.P.); (G.W.); (M.B.)
| |
Collapse
|
15
|
Mirna M, Rohm I, Jirak P, Wernly B, Bäz L, Paar V, Kretzschmar D, Hoppe UC, Schulze PC, Lichtenauer M, Jung C, Franz M. Analysis of Novel Cardiovascular Biomarkers in Patients With Pulmonary Hypertension (PH). Heart Lung Circ 2020; 29:337-344. [DOI: 10.1016/j.hlc.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 02/03/2023]
|
16
|
Hutchinson KA, Mohammad S, Garneau L, McInnis K, Aguer C, Adamo KB. Examination of the Myokine Response in Pregnant and Non-pregnant Women Following an Acute Bout of Moderate-Intensity Walking. Front Physiol 2019; 10:1188. [PMID: 31649549 PMCID: PMC6795697 DOI: 10.3389/fphys.2019.01188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background It is recommended that women accumulate 150-min of weekly moderate-intensity physical activity (MPA) when pregnant. Engaging in regular physical activity (PA) confers many health benefits to both the mother and the fetus. However, the molecular mechanisms by which these health benefits are bestowed are not well understood. One potential factor that may be contributing to the observed benefits is myokines, which are small peptides secreted by skeletal muscles. In the non-pregnant population, myokines are believed to be involved in the molecular mechanisms resulting from PA. The objective of this study was to characterize and compare the myokine profile of pregnant and non-pregnant women, after an acute bout of MPA. Methods Pregnant (n = 13) and non-pregnant (n = 17) women were recruited from the Ottawa region to undergo a treadmill walking session at moderate-intensity (40–60% heart rate reserve). Pre- and post-exercise serum samples were taken, and a set of 15 myokines were analyzed although only 10 were detected. IL-6 was analyzed using a high-sensitivity assay, while FGF21, EPO, BDNF, Fractalkine, IL-15, SPARC, FABP-3, FSTL-1, and oncostatin were analyzed using various multiplex assays. Results The pregnant and non-pregnant groups did not differ in terms of age, height, non/pre-pregnancy weight, BMI, and resting heart rate. Baseline levels of EPO and oncostatin were higher in the pregnant group while FGF21 was higher in the non-pregnant group. Circulating levels of three myokines, FGF21, EPO, and IL-15 significantly increased in response to the acute exercise in the pregnant group. Non-pregnant women exhibited an increase in three myokines, FABP-3, FSTL-1, and oncostatin, while one myokine, EPO, decreased post-exercise. SPARC, fractalkine and BDNF were shown to increase post-exercise regardless of pregnancy status while the response for BDNF was more pronounced in the non-pregnant group. Conclusion This is the first study examining myokine response following an acute bout of PA in pregnancy. Moderate intensity PA, which is recommended during pregnancy, elicited an increase in four myokines post-compared to pre-exercise in the pregnant group. Further research is warranted to understand the role of myokines in pregnancy.
Collapse
Affiliation(s)
- Kelly Ann Hutchinson
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Shuhiba Mohammad
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Recherche, Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kurt McInnis
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Céline Aguer
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.,Recherche, Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kristi B Adamo
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Pourafkari L, Tajlil A, Nader ND. Biomarkers in diagnosing and treatment of acute heart failure. Biomark Med 2019; 13:1235-1249. [PMID: 31580155 DOI: 10.2217/bmm-2019-0134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute heart failure (AHF) is a complex disorder involving different pathophysiological pathways. In recent years, there is an increased focus on biomarkers that help with diagnosis, risk stratification and disease monitoring of AHF. Finding a reliable set of biomarkers not only improves morbidity and mortality but it can also potentially reveal the new targets of therapy. In this paper, we have reviewed the biomarkers found useful for the diagnosis as well as for risk stratification and prognostication in patients with AHF. We have discussed the established biomarkers for AHF including cardiac troponins and natriuretic peptides and emerging biomarkers including adiponectin, mi-RNA, sST2, Gal-3, MR-proADM, OPG, CT-proAVP and H-FABP for the purposes of making diagnosis, their use as a guide of therapy or for determination of prognosis.
Collapse
Affiliation(s)
- Leili Pourafkari
- Department of Anesthesiology, University at Buffalo, Buffalo, NY 14203, USA
| | - Arezou Tajlil
- Cardiovascular Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Lam C, Casamian-Sorrosal D, Monteith G, Fonfara S. Heart-fatty acid binding protein in dogs with degenerative valvular disease and dilated cardiomyopathy. Vet J 2019; 244:16-22. [PMID: 30825889 DOI: 10.1016/j.tvjl.2018.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
The study objective was to investigate heart-fatty acid binding protein (HFABP) concentrations in dogs with degenerative valvular disease (MVD) and dilated cardiomyopathy (DCM), and its potential as a prognostic factor. Plasma HFABP, N-terminal pro brain natriuretic peptide (NTproBNP) and serum cardiac troponin I (cTnI) levels were measured in 21 control dogs, 23 dogs with MVD and 13 dogs with DCM, with repeated sampling at 1 and 3 months after initial presentation. All dogs were followed up after 6 and 12 months to verify survival. Heart-fatty acid binding protein concentrations were significantly higher in dogs with MVD and DCM than controls at initial presentation, and after 1 month in dogs with MVD. For dogs with DCM, a significant reduction in HFABP levels over time was observed. Comparing ACVIM stages, highest HFABP concentrations were detected in ACVIM stage C dogs compared to stage B, with the lowest levels seen in controls, and a reduction over time in stage C dogs was present. Similarly, cTnI concentrations were higher in DCM and stage C in comparison to control dogs and reduced over time, while NTproBNP concentrations were only higher in diseased dogs at 1 month. Heart-fatty acid binding protein and cTnI levels at initial presentation and ACVIM disease stage were independent predictors of survival in a univariate analysis. The elevation of HFABP in dogs with MVD and DCM in comparison to controls, its association with disease severity, and its potential in predicting reduced survival, suggest that HFABP might be useful as marker for canine MVD and DCM.
Collapse
Affiliation(s)
- C Lam
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., ON N1G 2W1, Canada.
| | - D Casamian-Sorrosal
- Companion Animal Studies, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., ON N1G 2W1, Canada
| | - S Fonfara
- Companion Animal Studies, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| |
Collapse
|
19
|
Qin X, Zhang X, Wang M, Dong Y, Liu J, Zhu Z, Li M, Yang D, Shao Y. Fabrication of Tris(bipyridine)ruthenium(II)-Functionalized Metal-Organic Framework Thin Films by Electrochemically Assisted Self-Assembly Technique for Electrochemiluminescent Immunoassay. Anal Chem 2018; 90:11622-11628. [PMID: 30207703 DOI: 10.1021/acs.analchem.8b03186] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple strategy for one-step fabrication of tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-functionalized metal-organic framework (Ru-MOF) thin films using a self-assembly approach assisted by an electrochemical way was introduced. In this protocol, the electrochemically driven cooperative reaction of Ru(bpy)32+ as an electrochemiluminescent (ECL) probe and a structure-directing agent, trimesic acid (H3btc) as a ligand, and Zn(NO3)2 as the Zn2+ source leads to an one-step and simultaneous synthesis and deposition of the MOF onto the electrode surface. Characterization of the Ru-MOF thin films was performed with scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Scanning ion conductance microscopy was specially applied in situ to image the topography and thickness of the Ru-MOF thin films. The Ru-MOF thin films as a sensing platform show excellent ECL behavior because of plenty of Ru(bpy)32+ molecules encapsulated in the frameworks. On the basis of the Ru-MOF modified electrodes, an ultrasensitive label-free ECL immunosensing method for the human heart-type fatty-acid-binding protein has been developed with a wide linear response range (150 fg mL-1-150 ng mL-1) and a very low limit of detection (2.6 fg mL-1). The prepared immunosensor also displayed excellent stability and good specificity in the test of practical samples.
Collapse
Affiliation(s)
- Xiaoli Qin
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xianhao Zhang
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Minghan Wang
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yifan Dong
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Junjie Liu
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Meixian Li
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Di Yang
- Institute of Cardiovascular Disease , First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Yuanhua Shao
- Beijing National Research Center for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
20
|
Persistently elevated plasma heart-type fatty acid binding protein concentration is related with poor outcome in acute decompensated heart failure patients. Clin Chim Acta 2018; 487:48-53. [PMID: 30194932 DOI: 10.1016/j.cca.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the study was to determine clinical and prognostic role of repeated heart-type fatty acid binding protein (hFABP) measurements in acute decompensated HF (ADHF) patients. METHODS In seventy-seven ADHF patients (III and IV NYHA class, mean age 70 ± 12.7 years, mean left ventricle ejection fraction [LVEF] 29.73 ± 13.3%) plasma hFABPs concentrations (SunRed Biological Technology) were measured twice - on admission and at discharge (mean time of hospitalization 10.7 ± 4.9 days). Combined end point (CEP), assessed after mean 9.2 ± 7.3 months, was defined as death or the need of HF re-hospitalization. RESULTS Median hFABP concentration on admission was significantly lower than at discharge. hFABP concentrations on admission significantly correlated with echocardiographic parameters of LV remodeling. Among fifty-six patients (72.7%) who reached CEP, significantly higher admission and discharge hFABP concentrations were found. Patients with plasma discharge hFABP concentrations higher than 7.8 ng/mL were at higher risk of CEP (log-rank test, p = 0.01). Logistic stepwise regression analysis revealed discharge hFABP, LVEF and left ventricle mass index independent and significant predictors of CEP (p < 0.05). CONCLUSIONS In ADHF patients plasma hFABP admission concentrations are related with LV remodeling. Persistently elevated hFABP concentrations have prognostic value, as may reflect continuous myocardial damage despite effective treatment and clinical improvement.
Collapse
|
21
|
Schernthaner C, Lichtenauer M, Wernly B, Paar V, Pistulli R, Rohm I, Jung C, Figulla HR, Yilmaz A, Cadamuro J, Haschke-Becher E, Pernow J, Schulze PC, Hoppe UC, Kretzschmar D. Multibiomarker analysis in patients with acute myocardial infarction. Eur J Clin Invest 2017; 47:638-648. [PMID: 28683166 DOI: 10.1111/eci.12785] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Novel biomarkers representing different pathobiological pathways and their role in patients with acute myocardial infarction (AMI) were studied. METHODS We retrospectively analysed serum levels of soluble suppression of tumorigenicity (sST2), growth-differentiation factor-15 (GDF-15), soluble urokinase plasminogen activator receptor (suPAR), heart-type fatty acid-binding protein (H-FABP) and plasma fetuin A in blood of patients with AMI (STEMI, n = 61; NSTEMI, n = 57) compared to controls with excluded coronary artery disease (n = 76). Furthermore, detailed correlation analysis was performed. RESULTS Compared with controls, in patients with STEMI and NSTEMI higher levels expressed as median of sST2 in pg/mL (STEMI: 13210·9, NSTEMI: 11989·1, control: 5248; P < 0·001), GDF-15 in pg/mL (STEMI: 818·8, NSTEMI 677·5, control 548·6; P < 0·001), suPAR in pg/mL (STEMI: 3461·1, NSTEMI: 3466·7, control: 2463·6; P < 0·001), H-FABP in ng/mL (STEMI: 5·8, NSTEMI: 5·4, control: 0·0; P < 0·001) and lower plasma fetuin A levels in μg/mL (STEMI: 95, NSTEMI: 54, control: 116·6; P < 0·001) were detected. Correlation analysis found clinical and biochemical parameters such as ejection fraction, length of hospital stay, creatine kinase, NT-proBNP and hs Troponin T levels as well as inflammatory markers (CRP, leucocytes) to be significantly correlated with novel biomarkers. CONCLUSION Plasma levels of novel biomarkers were significantly elevated (sST2, GDF-15, H-FABP, suPAR) or inversely downregulated (fetuin A) in patients with AMI compared to a control group with excluded coronary artery disease. Significant correlations with various clinical parameters and standard biochemical markers were found.
Collapse
Affiliation(s)
| | | | - Bernhard Wernly
- Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Vera Paar
- Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Rudin Pistulli
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilonka Rohm
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Hans-Reiner Figulla
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| | - Attila Yilmaz
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Schweden
| | - Paul Christian Schulze
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| | - Uta C Hoppe
- Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Kretzschmar
- Division of Cardiology, Angiology, Pneumology and Intensive MedicalCare, Department of Internal Medicine I, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
22
|
Zanato N, Talamini L, Zapp E, Brondani D, Vieira IC. Label-free Electrochemical Immunosensor for Cardiac Troponin T Based on Exfoliated Graphite Nanoplatelets Decorated with Gold Nanoparticles. ELECTROANAL 2017. [DOI: 10.1002/elan.201700157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicole Zanato
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Lucas Talamini
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education; Federal University of Santa Catarina - Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education; Federal University of Santa Catarina - Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| |
Collapse
|
23
|
Kakoti A, Goswami P. Multifaceted analyses of the interactions between human heart type fatty acid binding protein and its specific aptamers. Biochim Biophys Acta Gen Subj 2016; 1861:3289-3299. [PMID: 27545084 DOI: 10.1016/j.bbagen.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aptamer-protein interaction studies have been mainly confined to dissociation constant (Kd) determination. A combinatorial approach involving limited proteolysis mass spectroscopy, molecular docking and CD studies is reported here to elucidate the specific interactions involved. METHODS To generate aptamers specific for human FABP3, SELEX was performed incorporating counter SELEX cycles against control FABPs and GST tag, followed by their characterization by EMSA, CD and SVD analysis. Based on computationally obtained aptamer-protein complex models, the interacting aptamer, and protein residues were predicted and supported by limited proteolysis experiments. RESULTS Two aptamers N13 and N53 specific for human fatty acid binding protein (FABP3) were isolated with corresponding Kd of 0.0743±0.0142μM and 0.3337±0.1485μM for FABP3 interactions. Both aptamers possess stable B-DNA structures at salt concentration of 100mM and pH range (6-9). The N13 aptamer led interaction involved 3 salt bridges and 2 hydrogen bonds, whereas N53 had 2 salt bridges with 8 hydrogen and 7 hydrophobic interactions. CONCLUSIONS The aptamers generated are the first to be reported against human FABP3. The higher interaction footprint of N53 incited synergistic conformational changes in both N53 and FABP3 during interaction, leading to a decline in binding affinity in comparison to N13 which corroborated to the calculated Kd values. GENERAL SIGNIFICANCE This combinatorial method may be used to retrieve the possible specific binding modes and interaction patterns involved in large aptamer-protein complexes. Thus the method can be exploited to identify the optimum aptamer length for in-depth structure-function studies and its tailored applications.
Collapse
Affiliation(s)
- Ankana Kakoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
24
|
Rama EC, Costa-García A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600126] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Estefanía Costa Rama
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
25
|
Effect of Carvedilol on Serum Heart-type Fatty Acid-binding Protein, Brain Natriuretic Peptide, and Cardiac Function in Patients With Chronic Heart Failure. J Cardiovasc Pharmacol 2016; 65:480-4. [PMID: 25945865 DOI: 10.1097/fjc.0000000000000217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To observe the changes of serum heart-type fatty acid-binding protein (h-FABP) and brain natriuretic peptide (BNP) in children with chronic heart failure (CHF) and evaluate the effects of carvedilol. METHODS A total of 36 patients with CHF, including 17 of endocardial fibroelastosis and 19 of dilated cardiomyopathy, were enrolled and were randomly divided into a carvedilol treatment group (group A) and a conventional treatment group (group B). Group A (n = 16) was treated with carvedilol and conventional treatment and group B (n = 20) was managed with conventional treatment only. Thirty healthy children were enrolled as controls. The concentrations of serum h-FABP and BNP were measured by enzyme-linked immunosorbent assay, and the left ventricular end-systolic diameter, left ventricular end-diastolic diameter, left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and cardiac index (CI) were measured by echocardiography. RESULTS The concentrations of serum h-FABP and BNP in patients with CHF were significantly higher than in the control group (21.7 ± 4.3 ng/mL vs. 6.3 ± 1.7 ng/mL, 582.4 ± 180.6 pg/mL vs.31.2 ± 9.8 pg/mL, all P < 0.01), positively correlated with the degree of heart failure (all P < 0.01), and were both higher in groups endocardial fibroelastosis and dilated cardiomyopathy than in the control group (all P < 0.01), but there was no statistically significant difference between the 2 groups (P > 0.05). h-FABP concentration in patients with CHF was positively correlated with BNP (r = 0.78, P < 0.01) but negatively correlated with LVEF, LVFS, and CI (r = -0.65, -0.64, and -0.71, respectively; all P < 0.01). BNP concentration was also negatively correlated with LVEF, LVFS, and CI (r = -0.75, -0.61, and -0.79, respectively; all P<0.01). After treatment with carvedilol, the serum concentrations of h-FABP and BNP in group A were lower than in group B, and the magnitude of heart rate reduction, improvement of LVEF, LVFS, and CI, and reduction of left ventricular end-systolic diameter and left ventricular end-diastolic diameter in group A were all greater than in group B (all P < 0.01). Treatment with carvedilol had no adverse events. CONCLUSIONS Serum concentrations of h-FABP and BNP can be used as biomarkers to evaluate the severity of heart failure, and carvedilol can significantly improve heart function in children with CHF.
Collapse
|
26
|
Rezaei B, Ghani M, Shoushtari AM, Rabiee M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosens Bioelectron 2015; 78:513-523. [PMID: 26657595 DOI: 10.1016/j.bios.2015.11.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/18/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022]
Abstract
The vital importance of early and accurate diagnosis of cardiovascular diseases (CVDs) to prevent the irreversible damage or even death of patients has driven the development of biosensor devices for detection and quantification of cardiac biomarkers. Electrochemical biosensors offer rapid sensing, low cost, portability and ease of use. Over the past few years, nanotechnology has contributed to a tremendous improvement in the sensitivity of biosensors. In this review, the authors summarise the state-of-the-art of the application of one particular type of nanostructured material, i.e. nanofibres, for use in electrochemical biosensors for the ultrasensitive detection of cardiac biomarkers. A new way of classifying the nanofibre-based electrochemical biosensors according to the electrical conductance and the type of nanofibres is presented. Some key data from each article reviewed are highlighted, including the mechanism of detection, experimental conditions and the response range of the biosensor. The primary aim of this review is to emphasise the prospects for nanofibres for the future development of biosensors in diagnosis of CVDs as well as considering how to improve their characteristics for application in medicine.
Collapse
Affiliation(s)
- Babak Rezaei
- Nanotechnology Institute, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Textile Engineering, AmirKabir University of Technology, Tehran 15875-4413, Iran
| | - Mozhdeh Ghani
- Nanotechnology Institute, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Textile Engineering, AmirKabir University of Technology, Tehran 15875-4413, Iran
| | - Ahmad Mousavi Shoushtari
- Nanotechnology Institute, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Textile Engineering, AmirKabir University of Technology, Tehran 15875-4413, Iran.
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Altara R, Manca M, Sabra R, Eid AA, Booz GW, Zouein FA. Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Fail Rev 2015; 21:25-47. [PMID: 26498937 DOI: 10.1007/s10741-015-9513-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite dramatic improvements in short-term mortality rates following myocardial infarction (MI), long-term survival for MI patients who progress to heart failure remains poor. MI occurs when the left ventricle (LV) is deprived of oxygen for a sufficient period of time to induce irreversible necrosis of the myocardium. The LV response to MI involves significant tissue, cellular, and molecular level modifications, as well as substantial hemodynamic changes that feedback negatively to amplify the response. Inflammation to remove necrotic myocytes and fibroblast activation to form a scar are key wound healing responses that are highly variable across individuals. Few biomarkers of early remodeling stages are currently clinically adopted. The discovery of underlying pathophysiological mechanisms and associated novel biomarkers has the potential of improving prognostic capability and therapeutic monitoring. Combining these biomarkers with other prominent ones could constitute a powerful diagnostic and prognostic tool that directly reflects the pathophysiological remodeling of the LV. Understanding temporal remodeling at the tissue, cellular, and molecular level and its link to a well-defined set of biomarkers at early stages post-MI is a prerequisite for improving personalized care and devising more successful therapeutic interventions. Here we summarize the integral mechanisms that occur during early cardiac remodeling in the post-MI setting and highlight the most prominent biomarkers for assessing disease progression.
Collapse
Affiliation(s)
- Raffaele Altara
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marco Manca
- DG-DI, Medical Applications, CERN, Geneva, Switzerland
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
28
|
Woolley CF, Hayes MA. Sensitive Detection of Cardiac Biomarkers Using a Magnetic Microbead Immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:8632-8639. [PMID: 26527562 PMCID: PMC4625556 DOI: 10.1039/c5ay01071c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid capture surface during incubations. Following magnetic bead capture and wash steps, samples were analyzed in the presence of a manipulated magnetic field utilizing a modified microscope slide and fluorescent inverted microscope to collect video data files. Analysis of the video data allowed for the quantitation of myoglobin, heart-type fatty acid binding protein and cardiac troponin I to levels of 360 aM, 67 fM, and 42 fM, respectively. Compared to the previous detection limit of 50 pM for myoglobin, this offers a five-fold improvement in sensitivity. This improvement in sensitivity and incorporation of additional markers, along with the small sample volumes required, suggest the potential of this platform for incorporation as a detection method in a total sample analysis device enabling multiplexed detection for the analysis of clinical samples.
Collapse
Affiliation(s)
- Christine F Woolley
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | - Mark A Hayes
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
29
|
Siegler BH, Weiterer S, Lichtenstern C, Stumpp D, Brenner T, Hofer S, Weigand MA, Uhle F. [Use of biomarkers in sepsis. Update and perspectives]. Anaesthesist 2015; 63:678-90. [PMID: 25002138 DOI: 10.1007/s00101-014-2347-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis and related complications are a challenge for intensive care medicine. Despite many advances in antibiotic therapy sepsis remains one of the most common diseases of patients in intensive care units and is designated as the main cause of death in critically ill patients. Persisting sepsis leads to impaired immunity, resulting in immunosuppression. Unspecific predictive signs complicate an early diagnosis; however, an early initiation of adequate therapy is of crucial importance for the prognosis. Scoring systems can be applied for the initial evaluation but are controversially discussed concerning the monitoring of disease progression and therapy as well as outcome prediction. Biomarkers are considered as a complementary approach.
Collapse
Affiliation(s)
- B H Siegler
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Universitätsklinikum Gießen und Marburg, Standort Gießen, Rudolf-Buchheim Str. 7, 35392, Gießen, Deutschland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kojic D, Siegler BH, Uhle F, Lichtenstern C, Nawroth PP, Weigand MA, Hofer S, Brenner T. Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis? World J Exp Med 2015; 5:50-63. [PMID: 25992320 PMCID: PMC4436940 DOI: 10.5493/wjem.v5.i2.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Beside many efforts to improve outcome, sepsis is still one of the most frequent causes of death in critically ill patients. It is the most common condition with high mortality in intensive care units. The complexity of the septic syndrome comprises immunological aspects - i.e., sepsis induced immunosuppression - but is not restricted to this fact in modern concepts. So far, exact mechanisms and variables determining outcome and mortality stay unclear. Since there is no typical risk profile, early diagnosis and risk stratification remain difficult, which hinders rapid and effective treatment initiation. Due to the heterogeneous nature of sepsis, potential therapy options should be adapted to the individual. Biomarkers like C-reactive protein and procalcitonin are routinely used as complementary tools in clinical decision-making. Beyond the acute phase proteins, a wide bunch of promising substances and non-laboratory tools with potential diagnostic and prognostic value is under intensive investigation. So far, clinical decision just based on biomarker assessment is not yet feasible. However, biomarkers should be considered as a complementary approach.
Collapse
|
31
|
Jang JH, Kim DH, Paek SH, Woo EJ, Kim YW. Construction of an antimyoglobin single-chain variable fragment with rapid reaction kinetics. Biotechnol Appl Biochem 2015; 63:22-30. [DOI: 10.1002/bab.1349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/03/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Jun-Hyuck Jang
- Department of Food and Biotechnology; Korea University; Sejong Republic of Korea
| | - Dong-Hyung Kim
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Republic of Korea
| | - Se-Hwan Paek
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Republic of Korea
| | - Eui-Jeon Woo
- Medical Proteomics Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Republic of Korea
| | - Young-Wan Kim
- Department of Food and Biotechnology; Korea University; Sejong Republic of Korea
| |
Collapse
|
32
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
33
|
Pedrero M, Campuzano S, Pingarrón JM. Electrochemical Biosensors for the Determination of Cardiovascular Markers: a Review. ELECTROANAL 2014. [DOI: 10.1002/elan.201300597] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Giri B, Dutta D. Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product. Anal Chim Acta 2013; 810:32-8. [PMID: 24439502 DOI: 10.1016/j.aca.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
Abstract
In this article, we demonstrate a novel approach to enhancing the sensitivity of enzyme-linked immunosorbent assays (ELISA) through pre-concentration of the enzyme reaction product (resorufin/4-methylumbelliferone) in free solution. The reported pre-concentration was accomplished by transporting the resorufin/4-methylumbelliferone molecules produced in the ELISA process towards a high ionic-strength buffer stream in a microfluidic channel while applying a voltage drop across this merging region. A sharp change in the electric field around the junction of the two liquid streams was observed to abruptly slow down the negatively charged resorufin/4-methylumbelliferone species leading to the reported pre-concentration effect based on the field amplified stacking (FAS) technique. It has been shown that the resulting enhancement in the detectability of the enzyme reaction product significantly improves the signal-to-noise ratio in the system thereby reducing the smallest detectable analyte concentration in the ELISA method. Applying the above-described approach, we were able to detect mouse anti-BSA and human TNF-α at concentrations nearly 60-fold smaller than that possible on commercial microwell plates. For the human TNF-α sample, this improvement in assay sensitivity corresponded to a limit of detection (LOD) of 0.102pg mL(-1) using the FAS based microfluidic ELISA method as compared to 7.03pg mL(-1) obtained with the traditional microwell plate based approach. Moreover, because our ELISAs were performed in micrometer sized channels, they required sample volumes about two orders of magnitude smaller than that consumed in the latter case (1μL versus 100μL).
Collapse
Affiliation(s)
- Basant Giri
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
35
|
Uitterdijk A, Sneep S, van Duin RWB, Krabbendam-Peters I, Gorsse-Bakker C, Duncker DJ, van der Giessen WJ, van Beusekom HMM. Serial measurement of hFABP and high-sensitivity troponin I post-PCI in STEMI: how fast and accurate can myocardial infarct size and no-reflow be predicted? Am J Physiol Heart Circ Physiol 2013; 305:H1104-10. [PMID: 23873799 DOI: 10.1152/ajpheart.00447.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to compare heart-specific fatty acid binding protein (hFABP) and high-sensitivity troponin I (hsTnI) via serial measurements to identify early time points to accurately quantify infarct size and no-reflow in a preclinical swine model of ST-elevated myocardial infarction (STEMI). Myocardial necrosis, usually confirmed by hsTnI or TnT, takes several hours of ischemia before plasma levels rise in the absence of reperfusion. We evaluated the fast marker hFABP compared with hsTnI to estimate infarct size and no-reflow upon reperfused (2 h occlusion) and nonreperfused (8 h occlusion) STEMI in swine. In STEMI (n = 4) and STEMI + reperfusion (n = 8) induced in swine, serial blood samples were taken for hFABP and hsTnI and compared with triphenyl tetrazolium chloride and thioflavin-S staining for infarct size and no-reflow at the time of euthanasia. hFABP increased faster than hsTnI upon occlusion (82 ± 29 vs. 180 ± 73 min, P < 0.05) and increased immediately upon reperfusion while hsTnI release was delayed 16 ± 3 min (P < 0.05). Peak hFABP and hsTnI reperfusion values were reached at 30 ± 5 and 139 ± 21 min, respectively (P < 0.05). Infarct size (containing 84 ± 0.6% no-reflow) correlated well with area under the curve for hFABP (r(2) = 0.92) but less for hsTnI (r(2) = 0.53). At 50 and 60 min reperfusion, hFABP correlated best with infarct size (r(2) = 0.94 and 0.93) and no-reflow (r(2) = 0.96 and 0.94) and showed high sensitivity for myocardial necrosis (2.3 ± 0.6 and 0.4 ± 0.6 g). hFABP rises faster and correlates better with infarct size and no-reflow than hsTnI in STEMI + reperfusion when measured early after reperfusion. The highest sensitivity detecting myocardial necrosis, 0.4 ± 0.6 g at 60 min postreperfusion, provides an accurate and early measurement of infarct size and no-reflow.
Collapse
Affiliation(s)
- André Uitterdijk
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|