1
|
Qiu W, Zhang J, Ma N, Kong J, Zhang X. FADH 2-mediated radical polymerization amplification for microRNA-21 detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123548. [PMID: 37871544 DOI: 10.1016/j.saa.2023.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
For early diagnosis of disease, ultrasensitive mircoRNA-21 detection has considerable potential. In this paper, an ultra-sensitive fluorescence detection method for microRNA was developed by atom transfer radical polymerization (ATRP). This ATRP reaction was first initiated by using flavin mononucleotide (FADH2). The DNA probe 1 modified with amino group was fixed on the magnetic nanoparticle Fe3O4, and microRNA-21 was added to form the probe 1-microRNA-21. Another carboxy-modified DNA 2 forms a sandwich structure with the bound microRNA-21. Two terminally modified DNA types are used as microRNA probes, using complementary base pairing to form a stable super-sandwich structure between the DNA probe and the microRNA. Under optimal conditions, microRNA was detected in PBS buffer with a detection limit of 0.19 fM. And even in 10% of human serum, microRNA-21 can be detected with a detection limit of 47.8 fM. Results show that this method has high selectivity, efficiency and stability, which broad application prospect in microRNA ultra-sensitive detection.
Collapse
Affiliation(s)
- Wenhao Qiu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
2
|
García JF, Reguera D, Valls A, Aviñó A, Dominguez A, Eritja R, Gargallo R. Detection of pyrimidine-rich DNA sequences based on the formation of parallel and antiparallel triplex DNA and fluorescent silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122752. [PMID: 37084680 DOI: 10.1016/j.saa.2023.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.
Collapse
Affiliation(s)
- Juan Fernando García
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - David Reguera
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Andrea Valls
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Arnau Dominguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
3
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Beyrampour-Basmenj H, Pourhassan-Moghamddam M, Nakhjavani SA, Faraji N, Alivand M, Zarghami N, Talebi M, Rahmati M, Ebrahimi-Kalan A. Sensitive and convenient detection of miRNA-145 using a gold nanoparticle-HCR coupled system: computational and in vitro validations. IEEE Trans Nanobioscience 2022; PP:155-162. [PMID: 35533171 DOI: 10.1109/tnb.2022.3170530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple sclerosis (MS) remains a challenging disease that requires timely diagnosis. Therefore, an ultrasensitive optical biosensor based on hybridization chain reaction (HCR) was developed to detect microRNA-145 (miRNA-145) as an MS biomarker. To construct such a sensor, HCR occurred between specific hairpin probes, as MB1 contains a poly-cytosine nucleotide loop and MB2 has a poly-guanine nucleotide sticky end. By introducing miR-145 as a target sequence, long-range dsDNA polymers are formed. Then, positively charged gold nanoparticles (AuNPs) were incubated with the HCR product, which adsorbed onto the dsDNA polymers due to electrostatic adsorption. This resulted in the precipitation of the AuNPs. By incubating different concentrations of miR-145 with AuNPs, the changes in the UV-vis spectrum of the supernatant were analyzed. The proposed biosensor showed a great ability to detect miR-145 in a wide linear range from 1 pM-1 nM with an excellent detection limit (LOD) of 0.519 nM. Furthermore, the developed biosensor indicated considerable selectivity in discriminating between miR-145 and mismatched sequences. It shows high selectivity in differentiating targets. Interestingly, the proposed method was also able to detect miRNA-145 in the diluted serum samples. In conclusion, this sensing platform exhibits high selectivity and specificity for the detection of circulating microRNAs, which holds great promise for translation to routine clinical applications.
Collapse
|
5
|
Lin X, Zou L, Lan W, Liang C, Yin Y, Liang J, Zhou Y, Wang J. Progress of metal nanoclusters in nucleic acid detection. Dalton Trans 2021; 51:27-39. [PMID: 34812463 DOI: 10.1039/d1dt03183j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and application of metal nanoclusters (MNCs) in nucleic acid testing in the past 10 years have been summarized. Fluorescence enhancement and red shift can occur when the G-rich sequence gets close to Ag NCs or the complementary DNA strand hybridizes with Ag NCs tail strand, which can be used to identify the nucleic acid. Ag NCs with the abasic site in DNA duplex can distinguish mutant genes such as cancer suppression gene p53. Ag NCs with auxiliary DNA can be used to detect miR-21, miR-16-5p, miR-19b-3p, and miR-141. Cu NCs/Cu NPs can recognize miRNA-155, miR-21, and miR-let-7d without auxiliary DNA. Au NCs can identify H1N1 gene fragments by fluorescence quenching caused by proximity to the G-rich sequence. Besides, Au NCs can recognize miRNA-21 and let-7a. SsDNA MNCs adsorbed on the surface of GO and CNPs oxide can be used to identify HBV and HIV gene fragments. The addition of enzymes or auxiliary amplification technologies is a popular way to improve probe sensitivity. Ag NCs combined with TAIEA has the best performance and can obtain LOD as low as aM for miRNA.
Collapse
Affiliation(s)
- Xia Lin
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China. .,Guangxi medical college, Nanning, 530023, China.
| | - Lianjia Zou
- Guangxi medical college, Nanning, 530023, China.
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | | | - Yanchun Yin
- Guangxi medical college, Nanning, 530023, China.
| | - Jian Liang
- Medical college, Guangxi University, Nanning, 530004, China.
| | | | - Jianyi Wang
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
de la Hoz A, Navarro A, Aviñó A, Eritja R, Gargallo R. Studies on the interactions of Ag(i) with DNA and their implication on the DNA-templated synthesis of silver nanoclusters and on the interaction with complementary DNA and RNA sequences. RSC Adv 2021; 11:9029-9042. [PMID: 35423401 PMCID: PMC8695332 DOI: 10.1039/d1ra00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoclusters (AgNCs) prepared by the reduction of silver ions in the presence of DNA oligonucleotides have attracted great interest as potential diagnostic tools for their tunable and high fluorescent properties. In this work, three DNA sequences that consist of a 12-nucleotide long probe sequence at the 5′-end linked to the complementary sequence to three miRNAs are studied. First, the interaction of these sequences with Ag(i) was characterized by means of circular dichroism spectroscopy. By applying multivariate methods to the analysis of spectroscopic data, two complexes with different Ag(i) : DNA ratios were resolved. Secondly, the impact of several experimental variables, such as temperature, borohydride concentration and reaction time, on the formation of AgNCs templated by these three sequences was studied. Finally, the fluorescence properties of the duplexes formed by DNA probes with complementary DNA or miRNA sequences were studied. The results presented here highlight the role of the secondary structure adopted by the DNA probe on the fluorescence properties of DNA-stabilized AgNCs which, in turn, affect the development of methods for miRNA detection. Variables affecting the fluorescent properties of DNA-stabilized silver nanoclusters are studied. The secondary structure of the AgNC-stabilizing DNA sequence dramatically affects the analytical signal behind the hybridization reaction.![]()
Collapse
Affiliation(s)
- Alejandra de la Hoz
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Alba Navarro
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| |
Collapse
|
7
|
Zhang Y, Mu F, Duan Y, Li Q, Pan Y, Du H, He P, Shen X, Luo Z, Zhu C, Wang L. Label-Free Analysis of H5N1 Virus Based on Three-Segment Branched DNA-Templated Fluorescent Silver Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48357-48362. [PMID: 33052659 DOI: 10.1021/acsami.0c14509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since H5N1 virus is a highly infectious pathogen that causes outbreaks of avian influenza, developing a sensitive and rapid diagnostic platform to sense it becomes significant. Here, a novel label-free fluorescence sensing platform based on DNA-templated silver nanoclusters (DNA-Ag NCs) is developed to detect the H5N1 gene sequence representing H5N1 virus. The three-segment-branched DNA structure with closed cytosine-rich loop is designed as an effective template to produce fluorescent Ag NCs, which is different with the previous design of cytosine-rich loop formed by hairpin-like single-stranded DNA or double-stranded DNA. The proposed fluorescence detection approach gives a wide linear range (500 pM-2 μM) and a low detection limit (500 pM) to sense H5N1 gene sequence. Furthermore, selective analysis of target DNA shows that our constructed analytical strategy has a high selectivity to H5N1 gene sequence. It is regarded as a promising method for highly sensitive and selective sensing of H5N1 virus.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fei Mu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yefan Duan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qi Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yating Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hongfang Du
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Panpan He
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhimin Luo
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and optical Engineering & College of Microelectronic, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
8
|
Kong XJ, Ji X, He T, Xie LH, Zhang YZ, Lv H, Ding C, Li JR. A Green-Emission Metal-Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35375-35384. [PMID: 32657122 DOI: 10.1021/acsami.0c10038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The modular nature of metal-organic frameworks (MOFs) permits their tunable structure and function for target application, such as in biomedicine. Herein, a green-emission Zr(IV)-MOF (BUT-88) was constructed from a customized luminescent carbazolyl ligand. BUT-88 represents the first bcu-type MOF with both organic linker and metal node in eight connections and shows medium-sized pores, rich accessible linking sites, and good water stability and biocompatibility. In virtue of these merits, BUT-88 was then fabricated into a MOF-based fluorescent nanoprobe, drDNA-BUT-88. Using it, the live-cell imaging of dual tumor biomarkers was achieved for the first time upon a MOF-based probe, offering enhanced detection precision in early cancer diagnosis. Particularly, the probe showed efficient ratiometric fluorescent sensing toward the cytoplasmic biomarker microRNA-21, further improving the detection accuracy at the cellular level. In this work, the elaborate combination of MOF engineering and the fluorescent detection technique has contributed a facile biosensing platform, unlocking more possibilities of MOF chemistry.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yong-Zheng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Haoyuan Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
DNAzyme-functionalized porous carbon nanospheres serve as a fluorescent nanoprobe for imaging detection of microRNA-21 and zinc ion in living cells. Mikrochim Acta 2020; 187:249. [DOI: 10.1007/s00604-020-04226-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
|
10
|
Xu J, Zhu X, Zhou X, Khusbu FY, Ma C. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Guo Y, Shen F, Cheng Y, Yu H, Xie Y, Yao W, Pei R, Qian H, Li HW. DNA-Hairpin-Templated Silver Nanoclusters: A Study on Stem Sequence. J Phys Chem B 2020; 124:1592-1601. [PMID: 32045529 DOI: 10.1021/acs.jpcb.9b09741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA hairpins are widely used to synthesize silver nanoclusters (AgNCs) with excellent optical properties due to their specific secondary structure. Hairpin-AgNCs have been popularly employed for sensoring applications, while no systematic study has been done about the effect of stem sequence on the fluorescence property of hairpin-AgNCs. In this presented work, the synthesizing conditions of hairpin-AgNCs were fully examined first. Then, the effect of percentage content and distribution of GC base pairs as well as stem length on the fluorescence property of hairpin-AgNCs were studied. Intriguing phenomena were observed and basic conclusions were drawn, which would be helpful to understand the hairpin-AgNCs comprehensively and instructional for the applications using hairpin-AgNC probes.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fumiao Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road, Suzhou 215123, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
12
|
Zhang S, Zhang X, Su Z. Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. J Mater Chem B 2020; 8:4176-4194. [DOI: 10.1039/c9tb02936b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To help those suffering from viral infections and cancers, scientists are exploring enhanced therapeutic methods via metal nanoclusters (MNCs).
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Xiaoyuan Zhang
- Faculty of Physics and Astronomy
- Friedrich-Schiller University Jena
- 07743 Jena
- Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|
13
|
Li X, Zhang H, Zhao Y, Lian L, Wang X, Gao W, Zhu B, Lou D. Design and Synthesis of Ag Nanocluster Molecular Beacon for Adenosine Triphosphate Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2786156. [PMID: 31737403 PMCID: PMC6815610 DOI: 10.1155/2019/2786156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
This study presents a fluorescence method for detecting adenosine triphosphate (ATP) based on a label-free Ag nanocluster molecular beacon (MB) with high sensitivity. The sensor contains a hairpin-shaped MB, two short single-stranded DNA strands, and T4 DNA ligase. The MB consists of three parts, which are the template DNA sequence for synthesizing Ag nanoclusters at the 5' end, the middle DNA with a hairpin-shaped structure, and the guanine base-rich DNA sequence at the 3' end. The sensor exhibits high fluorescence intensity in the absence of ATP. However, when the probe is used for ATP detection, the two short DNA sequences in the sensor would form a long sequence by enzymatic ligation reaction; this long sequence opens the hairpin-shaped structure of the MB and decreases the fluorescence of the system. Under optimal analytical conditions, a clear linear relationship is observed between ATP concentration and fluorescence intensity in the range of 0.1-10 μM. The interference presented by other small molecules during ATP detection is evaluated, and results confirm the good selectivity of the proposed sensor. Compared with traditional methods, the sensor is label free, easy to operate, inexpensive, and highly sensitive.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Ying Zhao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| |
Collapse
|
14
|
In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA. Biosens Bioelectron 2019; 137:82-87. [DOI: 10.1016/j.bios.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
|
15
|
Wang C, Xing K, Zhang G, Yuan M, Xu S, Liu D, Chen W, Peng J, Hu S, Lai WH. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chem 2019; 281:91-96. [DOI: 10.1016/j.foodchem.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
|
16
|
Li X, Han L, Guo Y, Chang Y, Yan J, Wang Y, Li N, Ding Y, Cai J. Rapid detection and cellular fluorescence imaging of the TBI biomarker Let-7i using a DNA–AgNC nanoprobe. NEW J CHEM 2019. [DOI: 10.1039/c9nj00489k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid fluorescence detection of Let-7i for TBI diagnosis and intracellular imaging have been studied using the multifunctional DNA–AgNCs.
Collapse
Affiliation(s)
- Xingmei Li
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Leiming Han
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yadong Guo
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yunfeng Chang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jie Yan
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yong Wang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Na Li
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha 410013
- China
| | - Yanjun Ding
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jifeng Cai
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
17
|
Zhang B, Wei C. Highly sensitive and selective detection of Pb 2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta 2018; 182:125-130. [PMID: 29501131 DOI: 10.1016/j.talanta.2018.01.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 11/25/2022]
Abstract
A novel turn-on fluorescent biosensor has been constructed using C-PS2.M-DNA-templated silver nanoclusters (Ag NCs) with an average diameter of about 1 nm. The proposed approach presents a low-toxic, simple, sensitive, and selective detection for Pb2+. The fluorescence intensity of C-PS2.M-DNA-Ag NCs enhances significantly in the presence of Pb2+, which is attributed to the special interaction between Pb2+ and its aptamer DNA PS2.M. Pb2+ induces the aptamer to form G-quadruplex and makes two darkish DNA/Ag NCs located at the 3' and 5' terminus close, resulting in the fluorescence light-up. Moreover, Pb2+ can be detected as low as 3.0 nM within a good linear range from 5 to 50 nM (R = 0.9862). Furthermore, the application for detection of Pb2+ in real water samples further demonstrates the reliability of the sensor. Thus, this sensor system shows a potential application for monitoring Pb2+ in environmental samples.
Collapse
Affiliation(s)
- Baozhu Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China; College of Chemistry and Chemical Engineering, Jinzhong University, Yuci 030619, PR China
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
18
|
Lin R, Tao G, Chen Y, Chen M, Liu F, Li N. Constructing a Robust Fluorescent DNA-Stabilized Silver Nanocluster Probe Module by Attaching a Duplex Moiety. Chemistry 2017; 23:10893-10900. [PMID: 28510342 DOI: 10.1002/chem.201701879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 12/16/2022]
Abstract
Fluorescent DNA-templated silver nanoclusters (DNA-Ag NCs) have served as excellent luminescent probes and operation units in various applications. However, the fluorescence property of DNA-Ag NCs is very sensitive to elongation or modification of the DNA template, limiting the breadth of applications. In this work, we propose a strategy for constructing a robust fluorescent DNA-Ag NCs probe module by attaching a duplex moiety to the nanocluster-bearing sequence. The fluorescence intensity of the DNA-Ag NCs can be enhanced 90-fold upon hybridization of the elongated moiety. Adenine in the linker sequence has a further enhancing effect on the fluorescence intensity, whereas thymine has a quenching effect. The transformation from a non-fluorescent species to fluorescent nanoclusters is responsible for the fluorescence enhancement with duplex formation of the elongated moiety. We hope that this design will aid future diversification of experimental designs to facilitate more applications that are currently limited by the aforementioned problems.
Collapse
Affiliation(s)
- Ruoyun Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingxing Chen
- Medium Instrument Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
19
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Shah P, Cho SK, Thulstrup PW, Bjerrum MJ, Lee PH, Kang JH, Bhang YJ, Yang SW. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology. J Mov Disord 2017; 10:18-28. [PMID: 28122423 PMCID: PMC5288660 DOI: 10.14802/jmd.16037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/12/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs), has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | - Phil Hyu Lee
- Department of Neurology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, Inha University School of Medicine, Incheon, Korea
| | | | - Seong Wook Yang
- UNIK Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
21
|
New SY, Lee ST, Su XD. DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. NANOSCALE 2016; 8:17729-17746. [PMID: 27722695 DOI: 10.1039/c6nr05872h] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
12 years after the introduction of DNA-templated silver nanoclusters (DNA-AgNCs), exciting progress has been made and yet we are still in the midst of trying to fully understand this nanomaterial. The prominent excellence of DNA-AgNCs is undoubtedly its modulatable emission property, of which how variation in DNA templates causes emission tuning remains elusive. Based on the up-to-date DNA-AgNCs, we aim to establish the correlation between the structure/sequence of DNA templates and emission behaviour of AgNCs. Herein, we systematically present a wide-range of DNA-AgNCs based on the structural complexity of the DNA templates, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), triple-stranded DNA (tsDNA) and DNA nanostructures. For each DNA category, we discuss the emission property, quantum yield and synthesis condition of the respective AgNCs, before cross-comparing the impact of different DNA scaffolds on the properties of AgNCs. A future outlook for this area is given as a conclusion. By putting the information together, this review may shed new light on understanding DNA-AgNCs while we are expecting continuous breakthroughs in this field.
Collapse
Affiliation(s)
- S Y New
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - S T Lee
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - X D Su
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore 138634.
| |
Collapse
|
22
|
Hu S, Ye B, Yi X, Cao Z, Wu D, Shen C, Wang J. Dumbbell-shaped metallothionein-templated silver nanoclusters with applications in cell imaging and Hg2+ sensing. Talanta 2016; 155:272-7. [DOI: 10.1016/j.talanta.2016.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/23/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
23
|
Y-shaped probe for convenient and label-free detection of microRNA-21 in vitro. Anal Biochem 2016; 499:8-14. [DOI: 10.1016/j.ab.2016.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
|
24
|
Zhang Y, Chen Z, Tao Y, Wang Z, Ren J, Qu X. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. Chem Commun (Camb) 2016; 51:11496-9. [PMID: 26097912 DOI: 10.1039/c5cc03144c] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel enzyme-free platform for amplified detection of cancer cells and miRNAs was constructed with high sensitivity by fluorescent Cu metallization on HCR engineered dsDNA templates.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Chemical Biology, State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | |
Collapse
|
25
|
Cao F, Ju E, Liu C, Pu F, Ren J, Qu X. Coupling a DNA–ligand ensemble with Ag cluster formation for the label-free and ratiometric detection of intracellular biothiols. Chem Commun (Camb) 2016; 52:5167-70. [DOI: 10.1039/c5cc10606k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A smart nanoprobe was constructed by coupling a DNA–ligand ensemble with Ag cluster formation for the ratiometric detection of intracellular biothiols.
Collapse
Affiliation(s)
- Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
26
|
Larkey NE, Zhang L, Lansing SS, Tran V, Seewaldt VL, Burrows SM. Förster resonance energy transfer to impart signal-on and -off capabilities in a single microRNA biosensor. Analyst 2016; 141:6239-6250. [DOI: 10.1039/c6an01555g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The influence of spacer molecules and different dye pairs on the signal-on/off analytical metrics of a Förster Resonance Energy Transfer based microRNA biosensor.
Collapse
Affiliation(s)
| | - Lulu Zhang
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | | | - Victoria Tran
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | | | | |
Collapse
|
27
|
Zhang J, Li C, Zhi X, Ramón GA, Liu Y, Zhang C, Pan F, Cui D. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection. Anal Chem 2015; 88:1294-302. [PMID: 26675240 DOI: 10.1021/acs.analchem.5b03729] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.
Collapse
Affiliation(s)
- Jingpu Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chao Li
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiao Zhi
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Gabriel Alfranca Ramón
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Fei Pan
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering; ‡School of Biomedical Engineering, §National Center for Translational Medicine, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
28
|
Shah P, Choi SW, Kim HJ, Cho SK, Bhang YJ, Ryu MY, Thulstrup PW, Bjerrum MJ, Yang SW. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs. Nucleic Acids Res 2015; 44:e57. [PMID: 26681688 PMCID: PMC4824086 DOI: 10.1093/nar/gkv1377] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Suk Won Choi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Ho-Jin Kim
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Seok Keun Cho
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Yong-Joo Bhang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Moon Young Ryu
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Morten Jannik Bjerrum
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seong Wook Yang
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Korea
| |
Collapse
|
29
|
Liu W, Lai H, Huang R, Zhao C, Wang Y, Weng X, Zhou X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5’-C-rich/G-rich-3’ tails. Biosens Bioelectron 2015; 68:736-740. [DOI: 10.1016/j.bios.2015.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/25/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
|
30
|
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs of ~22 nucleotides that play important functions in the regulation of many biological processes, including cell proliferation, differentiation, and death. Since their expression has been in close association with the development of many diseases, recently, miRNAs have been regarded as clinically important biomarkers and drug discovery targets. However, because of the short length, high sequence similarity and low abundance of miRNAs in vivo, it is difficult to realize the sensitive and selective detection of miRNAs with conventional methods. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. In particular, fluorimetric methodologies in combination with nanotechnology are especially rapid, sensitive and efficient. The aim of this review is to provide insight into nanomaterials-based fluorimetric methods for the detection of miRNAs, including metal nanomaterials, quantum dots (QDs), graphene oxide (GO) and silicon nanoparticles.
Collapse
|
31
|
Hu Y, Zhang L, Zhang Y, Wang B, Wang Y, Fan Q, Huang W, Wang L. Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2459-66. [PMID: 25546579 DOI: 10.1021/am507218g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a class of small, endogenous, noncoding RNA molecules, can serve as biomarkers for potential applications in cancer diagnosis, prognosis, and prediction due to its abnormal expression. As a result, a novel label-free biosensor with nanometer scale was prepared and employed in the detection of trace oligonucleotides based on the localized surface plasmon resonance (LSPR). The dielectric constant on the surface of DNA modified gold nanoparticle would change when probe single-strand DNA hybridized with target oligonucleotides, which resulted in the notable red shift of scattering peak position. The biosensor with excellent selectivity can be used in a real-time monitoring hybridization process. Notably, this method provided label-free detection of DNA and miRNA at single nanoparticle level with limit of detection up to 3 nM. Due to the advantages of LSPR scattering spectra, single nanoparticle biosensor can be designed for trace cancer-relevant miRNAs detection in the future.
Collapse
Affiliation(s)
- Yanling Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Conde J, Edelman ER, Artzi N. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics? Adv Drug Deliv Rev 2015; 81:169-83. [PMID: 25220355 DOI: 10.1016/j.addr.2014.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/19/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs) show high potential for cancer treatment, however one of the most significant bottlenecks in enabling miRNA effect is the need for an efficient vehicle capable of selective targeting to tumor cells without disrupting normal cells. Even more challenging is the ability to detect and silence multiple targets simultaneously with high sensitivity while precluding resistance to the therapeutic agents. Focusing on the pervasive role of miRNAs, herein we review the multiple nanomaterial-based systems that encapsulate DNA/RNA for miRNA sensing and inhibition in cancer therapy. Understanding the potential of miRNA detection and silencing while overcoming existing limitations will be critical to the optimization and clinical utilization of this technology.
Collapse
|
33
|
Qiu X, Wang P, Cao Z. Hybridization chain reaction modulated DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelectron 2014; 60:351-7. [DOI: 10.1016/j.bios.2014.04.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
|
34
|
Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 2014; 20:9476-92. [PMID: 24989446 DOI: 10.1002/chem.201402649] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and many pathological conditions, including cancer, are characterized by altered miRNA expression levels. Therefore, accurate and sensitive quantification of miRNAs may result in correct disease diagnosis establishing these small noncoding RNA transcripts as valuable biomarkers. Aiming at overcoming some limitations of conventional quantification strategies, nanotechnology is currently providing numerous significant alternatives to miRNA sensing. In this review an up-to-date account of nanotechnology-based strategies for miRNA detection and quantification is given. The topics covered are: nanoparticle-based approaches in solution, sensing based on nanostructured surfaces, combined nanoparticle/surface sensing approaches, and single-molecule approaches.
Collapse
Affiliation(s)
- Federica Degliangeli
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy)
| | | | | |
Collapse
|
35
|
Yuan Z, Chen YC, Li HW, Chang HT. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun (Camb) 2014; 50:9800-15. [DOI: 10.1039/c4cc02981j] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|