1
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
2
|
Zannotti M, Ramasamy KP, Loggi V, Vassallo A, Pucciarelli S, Giovannetti R. Hydrocarbon degradation strategy and pyoverdine production using the salt tolerant Antarctic bacterium Marinomonas sp. ef1. RSC Adv 2023; 13:19276-19285. [PMID: 37377865 PMCID: PMC10291279 DOI: 10.1039/d3ra02536e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most concerning environmental problems is represented by petroleum and its derivatives causing contamination of aquatic and underground environments. In this work, the degradation treatment of diesel using Antarctic bacteria is proposed. Marinomonas sp. ef1 is a bacterial strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. Its potential in the degradation of hydrocarbons commonly present in diesel oil were studied. The bacterial growth was evaluated in culturing conditions that resembled the marine environment with 1% (v/v) of either diesel or biodiesel added; in both cases, Marinomonas sp. ef1 was able to grow. The chemical oxygen demand measured after the incubation of bacteria with diesel decreased, demonstrating the ability of bacteria to use diesel hydrocarbons as a carbon source and degrade them. The metabolic potential of Marinomonas to degrade aromatic compounds was supported by the identification in the genome of sequences encoding various enzymes involved in benzene and naphthalene degradation. Moreover, in the presence of biodiesel, a fluorescent yellow pigment was produced; this was isolated, purified and characterized by UV-vis and fluorescence spectroscopy, leading to its identification as a pyoverdine. These results suggest that Marinomonas sp. ef1 can be used in hydrocarbon bioremediation and in the transformation of these pollutants in molecules of interest.
Collapse
Affiliation(s)
- Marco Zannotti
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| | | | - Valentina Loggi
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, Biosciences and Biotechnology Division, University of Camerino 62032 Camerino Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Biosciences and Biotechnology Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| | - Rita Giovannetti
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| |
Collapse
|
3
|
Mariappan S, Mutharani B, Kavitha T, Sarojini P, Chiu FC, Ranganathan P. Green synthesis of cyclodextrin-capped AuNPs decorated on polystyrene microspheres for a furazolidone-responsive electrode. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Sun W, Jiang L, Hao X, Fan X, Qin Y, Huang T, Lou Y, Liao L, Zhang K, Chen S, Qin A. Cane Molasses Derived N-Doped Graphene Quantum Dots: Dynamic Quenching Synergistically Photoinduced Electron Transfer for the Instant Detection of Nitrofuran Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4394-4405. [PMID: 36913721 DOI: 10.1021/acs.langmuir.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of a highly selective, simple, and rapid detection method for nitrofuran antibiotics (NFs) is of great significance for food safety, environmental protection, and human health. To meet these needs, in this work, cyan-color highly fluorescent N-doped graphene quantum dots (N-GQDs) were synthesized using cane molasses as the carbon source and ethylenediamine as the nitrogen source. The synthesized N-GQDs have an average particle size of 6 nm, a high fluorescence intensity with 9 times that of undoped GQDs, and a high quantum yield (24.4%) which is more than 6 times that of GQDs (3.9%). A fluorescence sensor based on N-GQDs for the detection of NFs was established. The sensor shows advantages of fast detection, high selectivity, and sensitivity. The limit of detection for furazolidone (FRZ) was 0.29 μM, the limit of quantification (LOQ) was 0.97 μM, and the detection range was 5-130 μM. The fluorescence quenching mechanism of the sensor was explored by fluorescence spectroscopy, UV-vis absorption spectroscopy, Stern-Volmer quenching constant, Zeta potential, UV-vis diffuse reflectance spectroscopy, and cyclic voltammetry. A fluorescence quenching mechanism of dynamic quenching synergized with photoinduced electron transfer was revealed. The developed sensor was also successfully applied for detecting FRZ in various real samples, and the results were satisfactory.
Collapse
Affiliation(s)
- Wei Sun
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Li Jiang
- College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Xinyu Hao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Xingang Fan
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Yingxi Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Tao Huang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Ying Lou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Lei Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
5
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
6
|
AIEgens functionalized hollow mesoporous silica nanospheres for selective detection of the antimicrobial furazolidone. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Jesu Amalraj AJ, Wang SF. Synthesis of transition metal titanium oxide (MTiOx, M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
9
|
Umapathi R, Park B, Sonwal S, Rani GM, Cho Y, Huh YS. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Vinoth S, Govindasamy M, Wang SF, ALOthman ZA, Alshgari RA, Ouladsmane M. Fabrication of Strontium Molybdate Incorporated with Graphitic Carbon Nitride Composite: High-sensitive Amperometric Sensing Platform of Food Additive in Foodstuffs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Mahmoudpour M, Karimzadeh Z, Ebrahimi G, Hasanzadeh M, Ezzati Nazhad Dolatabadi J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit Rev Anal Chem 2021; 52:1818-1845. [PMID: 33980072 DOI: 10.1080/10408347.2021.1919987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Owing to the high toxicity and large-scale use of pesticides, it is imperative to develop selective, sensitive, portable, and convenient sensors for rapid monitoring of pesticide. Therefore, the electrochemical detection platform offers a promising analytical approach since it is easy to operate, economical, efficient, and user-friendly. Meanwhile, with advances in functional nanomaterials and aptamer selection technologies, numerous sensitivity-enhancement techniques alongside a widespread range of smart nanomaterials have been merged to construct novel aptamer probes to use in the biosensing field. Hence, this study intends to highlight recent development and promising applications on the functional nanomaterials with aptamers for pesticides detection based on electrochemical strategies. We also reviewed the current novel aptamer-functionalized microdevices for the portability of pesticides sensors. Furthermore, the major challenges and future prospects in this field are also discussed to provide ideas for further research.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas chlororaphis YL-1 under Low-Iron Conditions. Appl Environ Microbiol 2021; 87:AEM.02840-20. [PMID: 33452032 DOI: 10.1128/aem.02840-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas chlororaphis YL-1 has extensive antimicrobial activities against phytopathogens, and its genome harbors a pyoverdine (PVD) biosynthesis gene cluster. The alternative sigma factor PvdS in Pseudomonas aeruginosa PAO1 acts as a critical regulator in response to iron starvation. The assembly of the PVD backbone starts with peptide synthetase enzyme PvdL. PvdF catalyzes formylation of l-OH-Orn to produce l-N 5-hydroxyornithine. Here, we describe the characterization of PVD production in YL-1 and its antimicrobial activity in comparison with that of its PVD-deficient ΔpvdS, ΔpvdF, and ΔpvdL mutants, which were obtained using a sacB-based site-specific mutagenesis strategy. Using in vitro methods, we examined the effect of exogenous iron under low-iron conditions and an iron-chelating agent under iron-sufficient conditions on PVD production, antibacterial activity, and the relative expression of the PVD transcription factor gene pvdS in YL-1. We found that strain YL-1, the ΔpvdF mutant, and the ΔpvdS(pUCP26-pvdS) complemented strain produced visible PVDs and demonstrated a wide range of inhibitory effects against Gram-negative and Gram-positive bacteria in vitro under low-iron conditions and that with the increase of iron, its PVD production and antibacterial activity were reduced. The antibacterial compounds produced by strain YL-1 under low-iron conditions were PVDs based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Moreover, the antibacterial activity observed in vitro was correlated with in vivo control efficacies of strain YL-1 against rice bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae. Collectively, PVDs are responsible for the antibacterial activities of strain YL-1 under both natural and induced low-iron conditions.IMPORTANCE The results demonstrated that PVDs are essential for the broad-spectrum antibacterial activities of strain YL-1 against both Gram-positive and Gram-negative bacteria under low-iron conditions. Our findings also highlight the effect of exogenous iron on the production of PVD and the importance of this bacterial product in bacterial interactions. As a biocontrol agent, PVDs can directly inhibit the proliferation of the tested bacteria in addition to participating in iron competition.
Collapse
|
13
|
Sriram B, Baby JN, Wang SF, Govindasamy M, George M, Jothiramalingam R. Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Mikrochim Acta 2020; 187:654. [PMID: 33179119 DOI: 10.1007/s00604-020-04590-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
A nanorod-like structured CoMoO4 embedded on boron doped-graphitic carbon nitride composite (CoMoO4/BCN) has been developed by a simple sonochemical method for electrochemical detection of furazolidone (FUZ). Interestingly, the impedance of CoMoO4/BCN fabricated screen-printed carbon electrode (SPCE) possesses a lower resistance charge transfer (Rct), which favors superior electrochemical detection of FUZ. Such CoMoO4/BCN/SPCE exhibits an ultralow detection limit of 1.6 nM with a concentration range of 0.04-408.9 μM, and high sensitivity of 11.6 μA μM-1 cm-2 by DPV method. In addition, biological and water samples were used for demonstration of practical application of CoMoO4/BCN/SPCE towards electrochemical detection of FUZ, and the result exhibits a satisfactory recovery.Graphical abstract.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India.
| | - R Jothiramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Abinaya M, Muthuraj V. Bi-functional catalytic performance of silver manganite/polypyrrole nanocomposite for electrocatalytic sensing and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Jesu Amalraj AJ, Umesh NM, Wang SF. Synthesis of core-shell-like structure SnS2-SnO2 integrated with graphene nanosheets for the electrochemical detection of furazolidone drug in furoxone tablet. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Kulkarni P, Nandre V, Kumbhar N, Khade R, Urmode T, Kodam KM, More MA. NTO Sensing by Fluorescence Quenching of a Pyoverdine Siderophore-A Mechanistic Approach. ACS OMEGA 2020; 5:9668-9673. [PMID: 32391452 PMCID: PMC7203702 DOI: 10.1021/acsomega.9b03844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, a siderophore, pyoverdine (PVD), has been isolated from Pseudomonas sp. and used to develop a fluorescence quenching-based sensor for efficient detection of nitrotriazolone (NTO) in aqueous media, in contrast to other explosives such as research department explosive (RDX), picric acid, and trinitrotoulene (TNT). The siderophore PVD exhibited enhanced fluorescence quenching above 50% at 470 nm for a minimal concentration (38 nM) of NTO. The limit of detection estimated from interpolating the graph of fluorescence intensity (at 470 nm) versus NTO concentration is found to be 12 nM corresponding to 18% quenching. The time delay fluorescence spectroscopy of the PVD-NTO solution showed a negligible change of 0.09 ns between the minimum and maximum NTO concentrations. The in silico absorption at the emission peak of static fluorescence remains invariant upon the addition of NTO. The computational studies revealed the formation of inter- and intramolecular hydrogen-bonding interactions between the energetically stable complexes of PVD and NTO. Although the analysis of Stern-Volmer plots and computational studies imply that the quenching mechanism is a combination of both dynamic and static quenching, the latter is dominant over the earlier. The static quenching is attributed to ground-state complex formation, as supported by the computational analysis.
Collapse
Affiliation(s)
| | - Vinod Nandre
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Navanath Kumbhar
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Rahul Khade
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Tukaram Urmode
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan M. Kodam
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Mahendra A. More
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
17
|
Bashir A, Tian T, Yu X, Meng C, Ali M, Li L. Pyoverdine-Mediated Killing of Caenorhabditis elegans by Pseudomonas syringae MB03 and the Role of Iron in Its Pathogenicity. Int J Mol Sci 2020; 21:ijms21062198. [PMID: 32235814 PMCID: PMC7139650 DOI: 10.3390/ijms21062198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
The pathogenicity of the common phytopathogenic bacterium Pseudomonas syringae toward Caenorhabditis elegans has been recently demonstrated. However, the major virulence factors involved in this interaction remain unknown. In this study, we investigated the nematocidal activity of P. syringae against C. elegans under iron-sufficient/limited conditions, primarily focusing on the role of the ferric chelator pyoverdine in a P. syringae–C. elegans liquid-based pathogenicity model. Prediction-based analysis of pyoverdine-encoding genes in the genome of the wild-type P. syringae strain MB03 revealed that the genes are located in one large cluster. Two non-ribosomal peptide synthetase genes (pvdD and pvdJ) were disrupted via a Rec/TE recombination system, resulting in mutant strains with abrogated pyoverdine production and attenuated virulence against C. elegans. When used alone, pure pyoverdine also showed nematocidal activity. The role of iron used alone or with pyoverdine was further investigated in mutant and MB03-based bioassays. The results indicated that pyoverdine in P. syringae MB03 is a robust virulence factor that promotes the killing of C. elegans. We speculate that pyoverdine functions as a virulence determinant by capturing environmentally available iron for host bacterial cells, by limiting its availability for C. elegans worms, and by regulating and/or activating other intracellular virulence factors that ultimately kills C. elegans worms.
Collapse
Affiliation(s)
- Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Tian Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Xun Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Cui Meng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
- Correspondence: ; Tel.: +86-27-8728-6952
| |
Collapse
|
18
|
Mohammadi Toudeshki R, Haji Shabani AM, Dadfarnia S. Hollow fiber reinforced with molecularly imprinted polymer supported on multiwalled carbon nanotubes for microextraction of furazolidone in real samples prior to its spectrophotometric determination. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01671-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Wu W, Sun N, Zhu S, Li X, Chen J, Liu C, Fang Z, Yang Q. Ultrasensitive strips for the quadruple detection of nitrofuran metabolite residues. RSC Adv 2019; 9:2812-2815. [PMID: 35520510 PMCID: PMC9059960 DOI: 10.1039/c8ra10589h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
In this biosensor system, metabolite residues were derived by using a previous B-CBA synthesis method to label a biotin moiety for enrichment by streptavidin coated magnetic beads. Antibodies specific for derivatives were conjugated with carboxyl-modified barcode DNAs which were used as templates for strand displacement amplification (SDA). The assay can detect trace levels of 7.20 ppt of SEM, 11.58 ppt of AHD, 7.24 ppt of AOZ and 2.31 ppt of AMOZ, respectively.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University No. 700 Changcheng Road Qingdao 266179 China
| | - Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University No. 78, Hengzhigang Road Guangzhou 510095 Guangdong Province China
| | - Simin Zhu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University No. 1677 Wutaishan Road Qingdao China
| | - Xiaomei Li
- The Fifth Affiliated Hospital of Guangzhou Medical University No. 78, Hengzhigang Road Guangzhou 510095 Guangdong Province China
| | - Jitao Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University No. 78, Hengzhigang Road Guangzhou 510095 Guangdong Province China
| | - Chunzhao Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Qingdao University Qingdao 266003 China
| | - Zhiyuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University No. 78, Hengzhigang Road Guangzhou 510095 Guangdong Province China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University No. 700 Changcheng Road Qingdao 266179 China
| |
Collapse
|
20
|
White-Light-Emitting Decoding Sensing for Eight Frequently-Used Antibiotics Based on a Lanthanide Metal-Organic Framework. Polymers (Basel) 2019; 11:polym11010099. [PMID: 30960083 PMCID: PMC6402005 DOI: 10.3390/polym11010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Developing multi-selective luminescence sensing technology to differentiate serial compounds is very important but challenging. White-light-emitting decoding sensing based on lanthanide metal-organic frameworks (Ln-MOFs) is a promising candidate for multi-selective luminescence sensing application. In this work, three isomorphic Ln-MOFs based on H3dcpcpt (3-(3,5-dicarboxylphenyl)-5-(4-carboxylphenl)-1H-1,2,4-triazole) ligand, exhibiting red, blue, and green emission, respectively, have been synthesized by solvothermal reactions. The isostructural mixed Eu/Gd/Tb-dcpcpt is fabricated via the in-situ doping of different Ln3+ ions into the host framework, which can emit white light upon the excitation at 320 nm. It is noteworthy that this white-light-emitting complex could serve as a convenient luminescent platform for distinguishing eight frequently-used antibiotics: five through luminescence-color-changing processes (tetracycline hydrochloride, yellow; nitrofurazone, orange; nitrofurantoin, orange; sulfadiazine, blue; carbamazepine, blue) and three through luminescence quenching processes (metronidazole, dimetridazole, and ornidazole). Moreover, a novel method, 3D decoding map, has been proposed to realize multi-selective luminescence sensing applications. This triple-readout map features unique characteristics on luminescence color and mechanism. The mechanism has been systematically interpreted on the basis of the structural analysis, energy transfer and allocation process, and peak fitting analysis for photoluminescence spectra. This approach presents a promising strategy to explore luminescent platforms capable of effectively sensing serial compounds.
Collapse
|
21
|
Hwa KY, Sharma TSK, Karuppaiah P. Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. NEW J CHEM 2019. [DOI: 10.1039/c9nj02531f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, the simple sonochemical synthesis of functionalized carbon black (f-CB) anchored with tungsten carbide (WC) is used to prepare a novel electrocatalyst for the electrochemical detection of furazolidone (FU) by modifying screen-printed carbon electrodes (SPCE).
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| |
Collapse
|
22
|
Balasubramanian P, Annalakshmi M, Chen SM, Chen TW. Sonochemical synthesis of molybdenum oxide (MoO 3) microspheres anchored graphitic carbon nitride (g-C 3N 4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. ULTRASONICS SONOCHEMISTRY 2019; 50:96-104. [PMID: 30197063 DOI: 10.1016/j.ultsonch.2018.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Present strategy introduce the sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets as a novel electrocatalyst for the detection of Furazolidone (FU). TEM results revealed that MoO3 are microspheres with an average size of 2 µM and the g-C3N4 seems like ultrathin sheets. Owing to their peculiar morphological structure, g-C3N4/MoO3 composite modified electrode provided an enriched electroactive surface area (0.3788 cm2) and higher heterogeneous electron transfer kinetics (K°eff = 4.91×10-2 cm s-1) than the other controlled electrodes. It is obviously observed from the voltammetric studies that the proposed sensor based on g-C3N4/MoO3 composite can significantly improve the electrocatalytic efficiency towards the sensing of FU. Due to the excellent synergic effect of g-C3N4/MoO3 composite, can detect the ultra-level FU with a limit of detection of 1.4 nM and a broad dynamic range of 0.01-228 µM, which surpassed the many previously reported FU sensors. Hence, the proposed sensor was successfully applied to sensing the FU in human blood serum, urine and pharmaceutical samples, gained an agreeable recoveries.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| |
Collapse
|
23
|
Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron 2018; 117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
24
|
|
25
|
Gandouzi I, Tertis M, Cernat A, Bakhrouf A, Coros M, Pruneanu S, Cristea C. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry 2018; 120:94-103. [DOI: 10.1016/j.bioelechem.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
|
26
|
Mohammadi Toudeshki R, Dadfarnia S, Haji Shabani AM. Chemiluminescence determination of furazolidone in poultry tissues and water samples after selective solid phase microextraction using magnetic molecularly imprinted polymers. NEW J CHEM 2018. [DOI: 10.1039/c8nj01670d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a selective extraction method combined with chemiluminescence was developed for the determination of FZD in various samples.
Collapse
|
27
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
28
|
Li JH. Real-Time Observation of Pyoverdine Dissolving Ferric Hydroxide. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1605114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jia-hong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem 2016; 408:8859-8868. [DOI: 10.1007/s00216-016-0062-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
|
30
|
Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. WATER RESEARCH 2016; 103:383-390. [PMID: 27486950 DOI: 10.1016/j.watres.2016.07.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Mercury is a toxic heavy metal and presents significant threats to organisms and natural ecosystems. Recently, the mercury remediation as well as its detection by environmental-friendly biotechnology has received increasing attention. In this study, carboxylesterase E2 from mercury-resistant strain Pseudomonas aeruginosa PA1 has been successfully displayed on the outer membrane of Escherichia coli Top10 bacteria to simultaneously adsorb and detect mercury ion (Hg(2+)). The transmission electron microscopy analysis shows that Hg(2+) can be absorbed by carboxylesterase E2 and accumulated on the outer membrane of surface-displayed E. coli bacteria. The adsorption of Hg(2+) followed a physicochemical, equilibrated and saturatable mechanism, which well fits the traditional Langmuir adsorption model. The surface-displayed system can be regenerated through regulating pH values. As its activity can be inhibited by Hg(2+), carboxylesterase E2 has been used to detect the concentration of Hg(2+) in water samples. The developed surface display system will be of great potential in the simultaneous bioremediation and biodetection of environmental mercury pollution.
Collapse
Affiliation(s)
- Kun Yin
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Min Lv
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qiaoning Wang
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yixuan Wu
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weiwei Zhang
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
31
|
Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih MC. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016; 6:32950. [PMID: 27605490 PMCID: PMC5015096 DOI: 10.1038/srep32950] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion.
Collapse
Affiliation(s)
- Wen-Jen Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Yen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Chia Hsieh
- Biopesticide Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, 41358, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Mi Lai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Je-Ruei Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
32
|
Zhang W, Liang W, Li C. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:217-224. [PMID: 26476308 DOI: 10.1016/j.jhazmat.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/20/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Weikang Liang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| |
Collapse
|
33
|
Bouvier B, Cézard C, Sonnet P. Selectivity of pyoverdine recognition by the FpvA receptor of Pseudomonas aeruginosa from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:18022-34. [PMID: 26098682 DOI: 10.1039/c5cp02939b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa, a ubiquitous human opportunistic pathogen, has developed resistances to multiple antibiotics. It uses its primary native siderophore, pyoverdine, to scavenge the iron essential to its growth in the outside medium and transport it back into its cytoplasm. The FpvA receptor on the bacterial outer membrane recognizes and internalizes pyoverdine bearing its iron payload, but can also bind pyoverdines from other Pseudomonads or synthetic analogues. Pyoverdine derivatives could therefore be used as vectors to deliver antibiotics into the bacterium. In this study, we use molecular dynamics and free energy calculations to characterize the mechanisms and thermodynamics of the recognition of the native pyoverdines of P. aeruginosa and P. fluorescens by FpvA. Based on these results, we delineate the features that pyoverdines with high affinity for FpvA should possess. In particular, we show that (i) the dynamics and interaction of the unbound pyoverdines with water should be optimized with equal care as the interface contacts in the complex with FpvA; (ii) the C-terminal extremity of the pyoverdine chain, which appears to play no role in the bound complex, is involved in the intermediate stages of recognition; and (iii) the length and cyclicity of the pyoverdine chain can be used to fine-tune the kinetics of the recognition mechanism.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS FRE3517/Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex 1, France.
| | | | | |
Collapse
|