1
|
Wen X, Chen Y, He Y, Yuan R, Chen S. Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis. Anal Chem 2025; 97:2094-2102. [PMID: 39841891 DOI: 10.1021/acs.analchem.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy. Astonishingly, the IR@PFN nanoparticles (NPs) synthesized from IR 783 and PFN by a nanoprecipitation method emitted a strong coreactant-free NIR-ECL signal at +1.05 V, and the maximum emission wavelength was 815 nm. IR@PFN NPs were integrated in a spontaneous entropy-driven chain replacement (ESDR) reaction to achieve ECL analysis of microRNA-21 (miRNA-21), and the limit of detection was as low as 0.25 fM. IR@PFN NPs created a promising coreactant-free NIR-ECL platform for bioanalysis and imaging, providing a novel NIR-ECL detection method for miRNA-21.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingying Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
2
|
Gu C, Zhu S, Gu Z. Advances in bismuth utilization for biomedical applications – From a bibliometric perspective. Coord Chem Rev 2024; 517:215988. [DOI: 10.1016/j.ccr.2024.215988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Zhou Y, Yin H, Ai S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Cui X, Fang X, Zhou Y, Ren Z, Wei L, Zheng Y, Yin H, Wang J, Ai S. Photoelectrochemical immunosensor for RNA methylation detection based on the enhanced photoactivity of Bi2S3 nanorods by g-C3N4 nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Gao L, Zhou Y, Cao L, Cui X, Zheng Y, Yin H, Ai S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO 4 by Gold Nanoparticles and SnS 2. Anal Chem 2022; 94:16936-16944. [PMID: 36416225 DOI: 10.1021/acs.analchem.2c04380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| |
Collapse
|
7
|
Gao J, Ding Y, Yan K, Zhang J. A near-infrared light-driven photoelectrochemical aptasensing platform for adenosine triphosphate detection based on Yb-doped Bi 2S 3 nanorods. J Mater Chem B 2022; 10:3524-3530. [PMID: 35416227 DOI: 10.1039/d2tb00180b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to its capability of low spectral interference, high light stability, and minimal photodamage to biological species, near-infrared (NIR) light is advantageous in biosensing and biochemical analysis. This work developed a photoelectrochemical (PEC) aptasensor for adenosine triphosphate (ATP) detection using NIR light as the irradiation source. In order to utilize NIR light, we prepared Yb-doped Bi2S3 (Yb-Bi2S3) nanorods to act as photoelectric transducing materials. Due to the unfilled 4f orbitals of Yb which introduced the impurity level between the valence band and conduction band of Bi2S3, Yb-Bi2S3 exhibited admirable photo-to-current conversion efficiency under NIR light irradiation. The Yb-Bi2S3 modified electrode was employed to construct a NIR light-driven PEC sensor using an ATP-binding aptamer as the recognition element. When ATP was present, the photocurrent signal of the proposed aptasensor declined, owing to the formation of an ATP-aptamer complex which enhanced the steric hindrance of electron transfer on the electrode. Under optimal conditions, the sensor showed a sensitive response to ATP in the concentration range from 0.5 to 300 nmol L-1 with a detection limit of 0.1 nmol L-1. The proposed aptasensor exhibited high selectivity, good repeatability and desirable stability. Moreover, it was successfully applied to ATP detection in human serum samples.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yifan Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| | - Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| |
Collapse
|
8
|
Zhao Y, Xiang J, Cheng H, Liu X, Li F. Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification. Biosens Bioelectron 2021; 194:113581. [PMID: 34461568 DOI: 10.1016/j.bios.2021.113581] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Precise microRNA (miRNA) analysis is significant importance for early disease diagnosis. Herein, a novel flexible photoelectrochemical (PEC) biosensor for miRNA determination was developed by employing CdS NPs-modified carbon cloth (CC) on polyimide (PI) film as photoelectric material to provide the PEC responses and an efficient four-stage reaction system as the target recognition and signal amplification unit to improve the analytical performance. In this PEC biosensor, the presence of target miR-21 would trigger the catalytic hairpin assembly (CHA) and the following hybridization chain reaction (HCR) to produce a long dsDNA labeled with numerous biotins, which would further capture a large amount of alkaline phosphatase (ALP) for catalyzing the generation of ascorbic acid (AA). As an efficient electron donor, AA could be oxidized by the photoelectrode, which would initiate a redox cycling amplification process to regenerate AA, resulting in the enhancement of the photocurrent response. Benefitting from the synergistic nucleic acid-based, enzyme catalytic, and chemical signal amplification strategies, the proposed biosensing strategy enabled ultrasensitive miRNA determination. As expected, the PEC biosensor performed satisfactory analytical performances with a linear range of 1 fM to 1 nM and the detection limit down to 0.41 fM. Furthermore, the PEC biosensing strategy exhibited recommendable selectivity, stability, flexibility, and practical applicability. Therefore, this sensing platform provides promising potential for application in bioassay and early diagnosis of disease.
Collapse
Affiliation(s)
- Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Junzhu Xiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Hao Cheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
9
|
Liu S, Jia Y, Li Y, Wang P, Xu Z, Liu Q, Li Y, Wei Q. Separation of Biological Events from the Photoanode: Toward the Ferricyanide-Mediated Redox Cyclic Photoelectrochemical System of an Integrated Photoanode and Photocathode. ACS Sens 2020; 5:3540-3546. [PMID: 33064465 DOI: 10.1021/acssensors.0c01695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photoanode sensing platforms with remarkable photoelectrochemical (PEC) response and satisfying visible-light absorption have become the most promising detection systems. Nevertheless, their inevitable electrophilic character limits their expansion in the bioassay because of reductive substances in serum or other body fluids that can severely interfere with the photocurrent to be read. To solve it, a PEC platform-assembled dual-active electrode is designed to realize the separation of biological monitoring from the photoanode. The ferricyanide ([Fe(CN)6]3-)-mediated redox cycle is first proposed to meet the gain and loss electron requirements of the PEC system. It can avoid the self-reaction in the electrolyte caused by the addition of a traditional electron donor and acceptor, for instance, ascorbic acid and hydrogen peroxide. As a consequence, the traditional counter electrode (Pt wire) is replaced by Fe2O3/AgInS2 heterojunction, which can amplify the PEC response of the cathode to meet the requirement of trace analysis. An aptasensor fabricated by the above strategies exhibits convincing data for 17β-estradiol (E2) detection from which a wide detection range is obtained in 10 fg/mL to 1 μg/mL with a detection limit of 2.74 fg/mL (S/N = 3). These advanced elements show a rosy prospect for environmental monitoring and point-of-care biomarker diagnosis.
Collapse
Affiliation(s)
- Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuewen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
10
|
Liu S, Jia Y, Dong H, Yu X, Zhang DP, Ren X, Li Y, Wei Q. Intramolecular Photoelectrochemical System Using Tyrosine-Modified Antibody-Targeted Peptide as Electron Donor for Detection of Biomarkers. Anal Chem 2020; 92:10935-10939. [PMID: 32806903 DOI: 10.1021/acs.analchem.0c02804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An intramolecular photoelectrochemical (PEC) system is designed from the novel electron donor YYYHWRGWV (Y3-H) peptide ligand for the first time. The bifunctional nonapeptide cannot only rely on the HWRGWV sequence as a site-oriented immobilizer to recognize the crystallizable fragment (Fc) domains of the antibody but also acts as electron donors for PEC generation via three tyrosine (Y) of the N-terminal. The Bi2WO6/AgInS2 heterojunction with a significant visible-light absorption is utilized as a photoelectric generator, and the motivation is ascribed to a proven proposition, namely, that short-wavelength illuminant radiates proteins, causing a decline in bioactivity of immune protein. An innovative biosensor is fabricated using the above strategies for the detection of CYFRA21-1, a biomarker of squamous cell lung carcinoma. This sort of PEC-based sensing platform shows convincing experimental data and could be an effective candidate for clinical application in the future due to their extremely skillful conception.
Collapse
Affiliation(s)
- Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiaodong Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Dao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
11
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
12
|
|
13
|
Wang Y, Zhang L, Cui K, Ge S, Zhao P, Yu J. Paper-Supported Self-Powered System Based on a Glucose/O 2 Biofuel Cell for Visual MicroRNA-21 Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5114-5122. [PMID: 30640420 DOI: 10.1021/acsami.8b20034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exploitation of self-powered devices that get rid of the power source restriction represents the development tendency of sensing systems. Herein, a paper-supported glucose/O2 biofuel cell (BFC)-based self-powered sensing platform for visual analysis was developed. The BFC device utilized gold nanoparticle-modified paper fibers as the electrode to wire glucose oxidase (GOx) and bilirubin oxidase for the fabrication of bioanodes and biocathodes. To implement an assay protocol, a target-responsive cargo release system based on mesoporous silica nanocarriers controlled by microRNA-21 (miRNA-21) was designed. During the BFC operation, undesired H2O2, the side product of glucose oxidation which would be deleterious for GOx, was generated, leading to inevitable degeneration of BFC performance. On the basis of the H2O2-mediated iodide oxidation reaction to form iodine that further modulated the starch chromogenic reaction, undesired H2O2 could be effectively removed, resulting in remarkably improved BFC performance as well as providing a means for visual signal readout. Thanks to the dual output signals (maximum power output density or length of blue bar), enhanced analysis reliability and sensitive detection of miRNA-21 over a range of 5 fM to 100 pM were achieved. Moreover, this study demonstrates a proof of concept in visualized BFC-based self-powered systems for sensing applications and provides a blueprint to advance future sensors and analysis devices powered by BFCs in a wide variety of in vitro applications.
Collapse
Affiliation(s)
| | | | | | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research , University of Jinan , Jinan 250022 , P. R. China
| | | | | |
Collapse
|
14
|
Wang M, Yin H, Zhou Y, Sui C, Wang Y, Meng X, Waterhouse GIN, Ai S. Photoelectrochemical biosensor for microRNA detection based on a MoS 2/g-C 3N 4/black TiO 2 heterojunction with Histostar@AuNPs for signal amplification. Biosens Bioelectron 2019; 128:137-143. [PMID: 30660928 DOI: 10.1016/j.bios.2018.12.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of microRNA-396a based on a MoS2/g-C3N4/black TiO2 heterojunction as the photoactive material and gold nanoparticles carrying Histostar antibodies (Histostar@AuNPs) for signal amplification. Briefly, MoS2/g-C3N4/black TiO2 was deposited on an indium tin oxide (ITO) electrode surface, after which gold nanoparticles (AuNPs) and probe DNA were assembled on the modified electrode. Hybridization with miRNA-396a resulted in a rigid DNA: RNA hybrid being formed, which was recognized by the S9.6 antibody. The captured antibody can further conjugate with the secondary IgG antibodies of Histostar@AuNPs, thereby leading to the immobilization of horse radish peroxidase (HRP). In the presence of HRP, the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 was accelerated, producing the insoluble product benzo-4-chlorohexadienone on the electrode surface and causing a significant decrease in the photocurrent. The developed biosensor could detect miRNA-396a at concentrations from 0.5 fM to 5000 fM, with a detection limit of 0.13 fM. Further, the proposed method can also be used to investigate the effect of heavy metal ions on the expression level of miRNAs. Results suggest that the biosensor developed herein offers a promising platform for the ultrasensitive detection of miRNA.
Collapse
Affiliation(s)
- Minghui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chengji Sui
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yue Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xiangjian Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
15
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
16
|
Tan Q, Zhang R, Kong W, Qu F, Lu L. Ascorbic Acid-Loaded Apoferritin-Assisted Carbon Dot-MnO2 Nanocomposites for the Selective and Sensitive Detection of Trypsin. ACS APPLIED BIO MATERIALS 2018; 1:777-782. [DOI: 10.1021/acsabm.8b00235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingqing Tan
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Weisu Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
| | - Limin Lu
- Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China
| |
Collapse
|
17
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
18
|
Bettazzi F, Laschi S, Voccia D, Gellini C, Pietraperzia G, Falciola L, Pifferi V, Testolin A, Ingrosso C, Placido T, Comparelli R, Curri ML, Palchetti I. Ascorbic acid-sensitized Au nanorods-functionalized nanostructured TiO2 transparent electrodes for photoelectrochemical genosensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wang B, Cao JT, Dong YX, Liu FR, Fu XL, Ren SW, Ma SH, Liu YM. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem Commun (Camb) 2018; 54:806-809. [DOI: 10.1039/c7cc08132d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ascorbic acid oxidase–ascorbic acid bioevent-based electron donor consumption mode is introduced into the PEC bioassay for the first time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Fu-Rao Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | | | - Shu-Hui Ma
- Xinyang Central Hospital
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| |
Collapse
|
20
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
21
|
Chen J, Zhao GC. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosens Bioelectron 2017; 98:155-160. [DOI: 10.1016/j.bios.2017.06.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
|
22
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
23
|
Chen J, Zhao GC. Nano-encapsulant of ascorbic acid-loaded apoferritin-assisted photoelectrochemical sensor for protease detection. Talanta 2017; 168:62-66. [DOI: 10.1016/j.talanta.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
|
24
|
Wang J, Long J, Liu Z, Wu W, Hu C. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 2017; 91:53-59. [DOI: 10.1016/j.bios.2016.12.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022]
|
25
|
Li X, Zhou Y, Xu Y, Xu H, Wang M, Yin H, Ai S. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal Chim Acta 2016; 934:36-43. [DOI: 10.1016/j.aca.2016.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
26
|
Okoth OK, Yan K, Liu Y, Zhang J. Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens Bioelectron 2016; 86:636-642. [PMID: 27471154 DOI: 10.1016/j.bios.2016.07.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
Bismuth sulphide (Bi2S3) nanorods doped with graphene (G) were synthesized and explored as photoactive materials for constructing a photoelectrochemical (PEC) aptasensor for sulfadimethoxine (SDM) detection. The formation of Bi2S3 nanorods and G nanosheets was observed by scanning electron microscopy (SEM) and further characterized by X-ray diffraction (XRD) spectroscopy. The PEC measurements indicated that the photocurrent response of Bi2S3 was obviously improved by doping suitable amount of G. The G-Bi2S3 composite coated electrode was utilized for fabricating a PEC aptasensor by covalently immobilizing a 5'-amino-terminated SDM aptamer on the electrode surface. Based on the specific interaction between SDM and the aptamer, a PEC sensor responsive to SDM was obtained. Under optimal conditions, the proposed sensor showed a linear photocurrent response to SDM in the concentration range of 1.0-100nM, with a low detection limit (3S/N) of 0.55nM. Moreover, the sensor showed high sensitivity, stability and reproducibility. The potential applicability of the PEC aptasensor was confirmed by detecting SDM in veterinary drug formulation and milk.
Collapse
Affiliation(s)
- Otieno Kevin Okoth
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 PR China
| | - Kai Yan
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 PR China
| | - Yong Liu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 PR China
| | - Jingdong Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 PR China.
| |
Collapse
|
27
|
Electrochemical biosensor for microRNA detection based on poly(U) polymerase mediated isothermal signal amplification. Biosens Bioelectron 2016; 79:79-85. [DOI: 10.1016/j.bios.2015.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
|
28
|
Affiliation(s)
- Richard M. Graybill
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
29
|
Vaisocherová H, Šípová H, Víšová I, Bocková M, Špringer T, Laura Ermini M, Song X, Krejčík Z, Chrastinová L, Pastva O, Pimková K, Dostálová Merkerová M, Dyr JE, Homola J. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron 2015; 70:226-31. [DOI: 10.1016/j.bios.2015.03.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
|
30
|
Zang Y, Lei J, Ling P, Ju H. Catalytic Hairpin Assembly-Programmed Porphyrin–DNA Complex as Photoelectrochemical Initiator for DNA Biosensing. Anal Chem 2015; 87:5430-6. [DOI: 10.1021/acs.analchem.5b00888] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang Zang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Pinghua Ling
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
31
|
Li B, Li X, Wang M, Yang Z, Yin H, Ai S. Photoelectrochemical biosensor for highly sensitive detection of microRNA based on duplex-specific nuclease-triggered signal amplification. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2747-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Abstract
This review provides a panoramic snapshot of the state of the art in the dynamically developing field of photoelectrochemical bioanalysis.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
33
|
Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 2014; 20:9476-92. [PMID: 24989446 DOI: 10.1002/chem.201402649] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and many pathological conditions, including cancer, are characterized by altered miRNA expression levels. Therefore, accurate and sensitive quantification of miRNAs may result in correct disease diagnosis establishing these small noncoding RNA transcripts as valuable biomarkers. Aiming at overcoming some limitations of conventional quantification strategies, nanotechnology is currently providing numerous significant alternatives to miRNA sensing. In this review an up-to-date account of nanotechnology-based strategies for miRNA detection and quantification is given. The topics covered are: nanoparticle-based approaches in solution, sensing based on nanostructured surfaces, combined nanoparticle/surface sensing approaches, and single-molecule approaches.
Collapse
Affiliation(s)
- Federica Degliangeli
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy)
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Wei-Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|