1
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Seele PP, Dyan B, Skepu A, Maserumule C, Sibuyi NRS. Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10. BIOSENSORS 2023; 13:354. [PMID: 36979566 PMCID: PMC10046134 DOI: 10.3390/bios13030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The current study reports on the development of a rapid and cost-effective TB-antigen diagnostic test for the detection of Mycobacterium biomarkers from non-sputum-based samples. Two gold nanoparticle (AuNP)-based rapid diagnostic tests (RDTs) in the form of lateral flow immunoassays (LFIAs) were developed for detection of immunodominant TB antigens, the 6 kDa early secreted antigen target EsxA (ESAT-6) and the 10 kDa culture filtrate protein EsxB (CFP-10). AuNPs were synthesized using the Turkevich method and characterized by UV-vis spectrophotometer and transmission electron microscope (TEM). The AuNP-detection probe conjugation conditions were determined by comparing the stability of 14 nm AuNPs at different pH conditions, following salt challenge. Thereafter, ESAT-6 and CFP-10 antibodies were conjugated to the AuNPs and used for the colorimetric detection of TB antigens. Selection of the best detection and capture antibody pairs was determined by Dot spotting. The limits of detection (LODs) for the LFIAs were evaluated by dry testing. TEM results showed that the 14 nm AuNPs were mostly spherical and well dispersed. The ESAT-6 LFIA prototype had an LOD of 0.0625 ng/mL versus the CFP-10 with an LOD of 7.69 ng/mL. Compared to other studies in the literature, the LOD was either similar or lower, outperforming them. Moreover, in some of the previous studies, an enrichment/extraction step was required to improve on the LOD. In this study, the LFIAs produced results within 15 min and could be suitable for use at PoCs either in clinics, mobile clinics, hospitals or at home by the end user. However, further studies need to be conducted to validate their use in clinical samples.
Collapse
Affiliation(s)
- Palesa Pamela Seele
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Busiswa Dyan
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Amanda Skepu
- Advanced Chemistry and Life Sciences Division, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Charlotte Maserumule
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| |
Collapse
|
3
|
Domfe T, Njengele-Tetyana Z, Mhlanga N, Tetyana P, Skepu A, Ngila JC, Sikhwivhilu LM. Development of a Versatile Half-Strip Lateral Flow Assay toward the Detection of Rift Valley Fever Virus Antibodies. Diagnostics (Basel) 2022; 12:2664. [PMID: 36359507 PMCID: PMC9689200 DOI: 10.3390/diagnostics12112664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease that is caused by the Rift Valley fever virus (RVFV); Bunyaviridae: Phlebovirus. RVF disease can affect several different species, including ruminants, camels and humans and thus present a dual threat to public health and livestock food production in endemic regions. In livestock, the RVFV infection is characterised by an acute hepatitis, abortion and high mortality rates in new-born animals. The current RVF diagnostic techniques have shown good sensitivity. However, they require extensive sample processing and complex instrumentation. Owing to speed, low cost, ease of use, and most importantly, the ability to diagnose diseases at sites where they are managed, lateral flow immunoassays (LFIA) are the most widely used point-of-care (POC) tools for disease diagnosis. In this study, a lateral flow assay (LFA) device that is able to detect antibodies against RVFV, with a minimum detectable concentration of 0.125 mg/mL, was successfully developed. The LFA also successfully detected RVFV antibodies in reference RVFV sera. Protein A (ProA), which has the ability to bind immunoglobulins from different species, was used in the detection probe, giving the developed RVFV LFA potential for multi-species diagnosis.
Collapse
Affiliation(s)
- Thulaganyo Domfe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2050, South Africa
| | - Zikhona Njengele-Tetyana
- Advanced Materials Division, DSI/Mintek NIC, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Nikiwe Mhlanga
- Advanced Materials Division, DSI/Mintek NIC, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Phumlani Tetyana
- Advanced Materials Division, DSI/Mintek NIC, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Amanda Skepu
- Next Generation Health, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Jane Catherine Ngila
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2050, South Africa
- The African Academy of Science, 8 Miotoni Lane, Karen, Nairobi P.O. Box 24916-00502, Kenya
| | - Lucky Mashudu Sikhwivhilu
- Advanced Materials Division, DSI/Mintek NIC, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, Thohoyandou 0950, South Africa
| |
Collapse
|
4
|
Gupta Y, Ghrera AS. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch Microbiol 2021; 203:3767-3784. [PMID: 34086107 DOI: 10.1007/s00203-021-02357-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Diagnosis of bacterial infections (BI) is becoming an increasingly difficult task in clinical practice due to their high prevalence and frequency, as well as the growth of antibiotic resistance worldwide. World Health Organization (WHO) reported antibiotic resistance is a major public health problem. BI becomes difficult or impossible to treat when the bacteria acquire immunity against antibiotics. Thus, there is a need for a quick and accurate technique to detect infection. Lateral flow immunoassay (LFIA) is an ideal technique for point-of-care testing of a disease or pathological changes inside the human body. In recent years, several LFIA based strips are being used for the detection of BI by targeting specific analytes which may range from the causative bacterium, whole-cell, DNA, or biomarker. Numerous nanoparticles like lipid-based nanoparticles, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots, magnetic, ceramic, and metallic nanoparticles (copper, silver gold, iron) are widely being used in the advanced treatment of BI. Out of these gold nanoparticle (AuNPs), is being used for detection BI more effectively than other nanoparticles due to their surface functionalization, extraordinary chemical stability, biorecognition, and signal amplification properties and help to improve in conjugation with capture antibodies, and act as a color marker with unique optical properties on LFIA strips. Herein, a review that provides an overview of the principle of LFIA, how LFIA based strip is developed, and how it is helpful to detect a specific biomarker for bedside detection of the BI.
Collapse
Affiliation(s)
- Yachana Gupta
- Applied Science Department, The NorthCap University, Gurugram, India
| | | |
Collapse
|
5
|
Dahiya B, K Mehta P. Utility of nanoparticle-based assays in the diagnosis of tuberculosis. Nanomedicine (Lond) 2021; 16:1263-1268. [PMID: 33988032 DOI: 10.2217/nnm-2021-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
6
|
Liu J, Qin Q, Zhang X, Li C, Yu Y, Huang X, Mukama O, Zeng L, Wang S. Development of a Novel Lateral Flow Biosensor Combined With Aptamer-Based Isolation: Application for Rapid Detection of Grouper Nervous Necrosis Virus. Front Microbiol 2020; 11:886. [PMID: 32508768 PMCID: PMC7249735 DOI: 10.3389/fmicb.2020.00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 01/07/2023] Open
Abstract
Nervous necrosis virus (NNV) has infected more than 50 fish species worldwide, and has caused serious economic losses in the aquaculture industries. However, there is no effective antiviral therapy. The development of a rapid and accurate point-of-care diagnostic method for the prevention and control of NNV infection is urgently required. Commonly used methods for NNV detection include the cell culture-based assay, antibody-based assay and polymerase chain reaction (PCR)-based assay. However, these methods have disadvantages as they are time-consuming and complex. In the present study, we developed a simple and sensitive aptamer-based lateral flow biosensor (LFB) method for the rapid detection of red-spotted grouper nervous necrosis virus (RGNNV). An aptamer is a single-stranded nucleotide, which can specifically bind to the target and has many advantages. Based on a previously selected aptamer, which specifically bound to the coat protein of RGNNV (RGNNV-CP), two modified aptamers were used in this study. One aptamer was used for magnetic bead enrichment and the other was used for isothermal strand displacement amplification (SDA). After amplification, the product was further tested by the LFB, and the detection results were observed by the naked eye within 5 min with high specificity and sensitivity. The LFB method could detect RGNNV-CP protein as low as 5 ng/mL or 5 × 103 RGNNV-infected GB (grouper brain) cells. Overall, it is the first application of a LFB combined with aptamer in the rapid diagnosis of virus from aquatic animals, which provides a new option for virus detection in aquaculture.
Collapse
Affiliation(s)
- Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv Transl Res 2020; 10:878-902. [DOI: 10.1007/s13346-020-00771-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M. Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 2019; 194:664-672. [DOI: 10.1016/j.talanta.2018.10.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
9
|
Rong Z, Xiao R, Xing S, Xiong G, Yu Z, Wang L, Jia X, Wang K, Cong Y, Wang S. SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Analyst 2019; 143:2115-2121. [PMID: 29648566 DOI: 10.1039/c8an00160j] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In accidental irradiation situations, rapid in-field evaluation of acute radiation syndrome is critical for effective triage and timely medical treatment of irradiated individuals. A surface-enhanced Raman scattering (SERS)-based lateral flow assay was developed for the quantitative detection of C-reactive protein (CRP) as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Raman reporter-embedded gold-core silver-shell nanoparticles with built-in hot spots were synthesized and conjugated with a CRP detection antibody to serve as SERS tags in the lateral flow assay. The proposed SERS-based lateral flow assay can rapidly detect CRP with a limit of detection of 0.01 ng mL-1 and quantitative analysis ability. Furthermore, the assay was applied to evaluate the CRP levels in plasma samples of irradiated nonhuman primates at 0 to 80 h after exposure to sublethal (4 Gy) and lethal (8 Gy) doses of total body irradiation (n = 3 animals per group). The plasma CRP levels increase rapidly within few hours after irradiation. The CRP level peaks are observed at 12 or 24 h after irradiation, with a concentration of 201.30, 386.06 and 475.18 μg mL-1 for the 4 Gy irradiated animals and 197.14, 69.52 and 358.03 μg mL-1 for the 8 Gy irradiated animals. The results indicate the potential application of the proposed SERS-based lateral flow assay to serve as a rapid and accurate point-of-care biodosimetry assay for the quantitative detection of bio-indicators to triage irradiated individuals in the field of a radiation accident.
Collapse
Affiliation(s)
- Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Shuang Xing
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Guolin Xiong
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Zuyin Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Limei Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Xiaofei Jia
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Keli Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China. and Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Yuwen Cong
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
| |
Collapse
|
10
|
|
11
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
12
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Theoretical and Experimental Comparison of Different Formats of Immunochromatographic Serodiagnostics. SENSORS 2017; 18:s18010036. [PMID: 29295582 PMCID: PMC5795850 DOI: 10.3390/s18010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/16/2022]
Abstract
In this study, a comparative theoretical and experimental analysis of two immuno-chromatographic serodiagnostics schemes, which differ in the immobilization of immunoreagents and the order of the formation of immune complexes, is performed. Based on the theoretical models, the assays are characterized to determine which scheme has a higher quantity of the detected complex and thus ensures the sensitivity of the analysis. The results show that for the effective detection of low-affinity antibodies, the scheme involving the immobilization of the antigen on gold nanoparticles and the antibody-binding protein on the test strip was more sensitive than the predominantly used scheme, which inverts the immunoreagents’ locations. The theoretical predictions were confirmed by the experimental testing of sera collected from tuberculosis patients.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
13
|
El-Samadony H, Althani A, Tageldin MA, Azzazy HME. Nanodiagnostics for tuberculosis detection. Expert Rev Mol Diagn 2017; 17:427-443. [PMID: 28317400 DOI: 10.1080/14737159.2017.1308825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is a leading killer worldwide. End TB strategy aims at ending the TB epidemic by 2030. Early, accurate, and affordable diagnosis represents a cornerstone to achieve this goal. Innovative strategies for TB diagnostics have been introduced. However, the ideal assay is yet unavailable and conventional methods remain necessary for diagnosis. Unique properties of nanoparticles (NPs) have allowed their utilization in TB detection via targeting disease biomarkers. Area covered: Until now, around thirty-five TB NP-based assays have been partially or fully characterized. Accuracy, low-cost, and short time-to-result represent the common properties of proposed platforms. TB nanodiagnostics now encompass almost all clinical aspects of the disease including active TB, non-tuberculous mycobacteria, rifampicin resistant TB, TB/HIV co-infection, latent TB, and extra-pulmonary TB. This review summarizes state-of-the-art knowledge of TB nanodiagnostics for the last 10 years. Special consideration is given for fabrication concepts, detection strategies, and clinical performance using various clinical specimens. The potential of TB nanodiagnostics to fulfill the need for ideal MTB testing is assessed. Expert commentary: TB nanodiagnostics show promise to be ideal detection tools that can meet the rigorous demands to end the TB epidemic by 2030.
Collapse
Affiliation(s)
| | - Asma Althani
- b Health Sciences Department, College of Arts and Sciences , Qatar University , Doha , Qatar
| | - Mohamed Awad Tageldin
- c Department of Chest Diseases, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hassan M E Azzazy
- d Department of Chemistry, School of Sciences & Engineering , the American University in Cairo , New Cairo , Egypt
| |
Collapse
|
14
|
|
15
|
Pavankumar AR, Engström A, Liu J, Herthnek D, Nilsson M. Proficient Detection of Multi-Drug-Resistant Mycobacterium tuberculosis by Padlock Probes and Lateral Flow Nucleic Acid Biosensors. Anal Chem 2016; 88:4277-84. [DOI: 10.1021/acs.analchem.5b04312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Asalapuram R Pavankumar
- Science for Life Laboratory,
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anna Engström
- Science for Life Laboratory,
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jie Liu
- Science for Life Laboratory,
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - David Herthnek
- Science for Life Laboratory,
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory,
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71:230-242. [PMID: 25912679 DOI: 10.1016/j.bios.2015.04.041] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.
Collapse
Affiliation(s)
- Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
17
|
A rapid lateral flow immunoassay for the detection of tyrosine phosphatase-like protein IA-2 autoantibodies in human serum. PLoS One 2014; 9:e103088. [PMID: 25047039 PMCID: PMC4105419 DOI: 10.1371/journal.pone.0103088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As) are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA) based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity.
Collapse
|