1
|
Chen Y, Danchana K, Kaneta T. Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay. Anal Bioanal Chem 2024; 416:6679-6686. [PMID: 39375210 PMCID: PMC11541255 DOI: 10.1007/s00216-024-05575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3',5,5'-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes.
Collapse
Affiliation(s)
- Yang Chen
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kaewta Danchana
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Takashi Kaneta
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
2
|
Timilsina SS, Li X. A paper-in-polymer-pond (PiPP) hybrid microfluidic microplate for multiplexed ultrasensitive detection of cancer biomarkers. LAB ON A CHIP 2024; 24:4962-4973. [PMID: 39327979 DOI: 10.1039/d4lc00485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Conventional affinity-based colorimetric enzyme-linked immunosorbent assay (ELISA) is one of the most widely used methods for the detection of biomarkers. However, rapid point-of-care (POC) detection of multiple cancer biomarkers by conventional ELISA is limited by long incubation time, large reagent volume, and costly instrumentation along with low sensitivity due to the nature of colorimetric methods. Herein, we have developed a reusable and cost-effective paper-in-polymer-pond (PiPP) hybrid microfluidic microplate for ultrasensitive and high-throughput multiplexed detection of disease biomarkers within an hour without using specialized instruments. A piece of pre-patterned chromatography paper placed in the PMMA polymer pond facilitates rapid protein immobilization to avoid intricate surface modifications of polymer and can be changed with a fresh paper layer to reuse the device. Reagents can be simply delivered from the top PMMA layer to multiple microwells in the middle PMMA layer via flow-through microwells, thereby increasing the efficiency of washing and avoiding repeated manual pipetting or costly robots. Quantitative colorimetric analysis was achieved by calculating the brightness of images scanned by an office scanner or a smartphone camera. Sandwich-type immunoassay was performed in the PiPP hybrid device after the optimization of multiple assay conditions. Limits of detection of 0.32 ng mL-1 for carcinoembryonic antigen (CEA) and 0.20 ng mL-1 for prostate-specific antigen (PSA) were obtained, which were about 10-fold better than those of commercial ELISA kits. We envisage that this simple but versatile hybrid device can have broad applications in various bioassays in resource-limited settings.
Collapse
Affiliation(s)
- Sanjay S Timilsina
- Department of Chemistry & Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA.
| | - XiuJun Li
- Department of Chemistry & Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA.
- Forensic Science & Environmental Science and Engineering, 500 W University Ave, El Paso, TX, USA
| |
Collapse
|
3
|
Yan XH, Ji B, Fang F, Guo XL, Zhao S, Wu ZY. Fast and sensitive smartphone colorimetric detection of whole blood samples on a paper-based analytical device. Talanta 2024; 270:125515. [PMID: 38101035 DOI: 10.1016/j.talanta.2023.125515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Methods based on paper-based analytical devices (PAD) and smartphone photographic colorimetric detection have become representative instrument-independent point-of-care testing (POCT) platforms due to their low cost and simplicity. However, the detection of target components from whole blood sample still presents challenges in terms of field preparation of small amounts of blood sample and detection sensitivity. This paper presents a rapid online processing method for whole blood samples on PAD based on plasma separation membrane (PSM), and combined with electrokinetic stacking and selective chromatic reaction. Real-time smartphone-based colorimetric detection of free hemoglobin (FHb) and human serum albumin (HSA) was successfully demonstrated. RESULTS With the proposed method, both detections for low and high concentration analytes could be implemented. The limits of detection of 16.6 mg L-1 for FHb and 0.67 g L-1 for HSA were obtained, respectively, with RSD below 8 %. The reliability of the method was verified by the recovery test and desktop spectrophotometric method. The detection results for real blood samples were in agreement with that by clinical methods. SIGNIFICANCE AND NOVELTY The PAD method is inexpensive, simple and fast, and detection of a whole blood sample of 5 μL can be finished in 5 min. This work shows that POCT of biomarkers from whole blood with PAD is possible without using any desktop facilities.
Collapse
Affiliation(s)
- Xiang-Hong Yan
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Bin Ji
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Fang Fang
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiao-Lin Guo
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Zhao
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Zhi-Yong Wu
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
4
|
Nagahashi Y, Hasegawa K, Takagi K, Yano S. Enzyme immobilization on α-1,3-glucan: development of flow reactor with fusion protein of α-1,3-glucan binding domains and histamine dehydrogenase. J GEN APPL MICROBIOL 2024; 69:206-214. [PMID: 37197975 DOI: 10.2323/jgam.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
α-1,3-Glucanase Agl-KA from Bacillus circulans KA-304 consists of a discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), a threonine-proline-rich-linker (TP linker), a discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. The binding of DS1, CBM6, and DS2 to α-1,3-glucan can be improved in the presence of two of these three domains. In this study, DS1, CBM6, and TP linker were genetically fused to histamine dehydrogenase (HmDH) from Nocardioides simplex NBRC 12069. The fusion enzyme, AGBDs-HmDH, was expressed in Escherichia coli Rosetta 2 (DE3) and purified from the cell-free extract. AGBDs-HmDH bound to 1% micro-particle of α-1,3-glucan (diameter: less than 1 μm) and 7.5% coarse-particle of α-1,3-glucan (less than 200 μm) at about 97 % and 70% of the initial amounts of the enzyme, respectively. A reactor for flow injection analysis filled with AGBDs-HmDH immobilized on the coarse-particle of α-1,3-glucan was successfully applied to determine histamine. A linear calibration curve was observed in the range for about 0.1 to 3.0 mM histamine. These findings suggest that the combination of α-1,3-glucan and α-1,3-glucan binding domains is a candidate for novel enzyme immobilization.
Collapse
Affiliation(s)
- Yuta Nagahashi
- Graduate School of Sciences and Engineering, Yamagata University
| | - Kazuki Hasegawa
- Graduate School of Sciences and Engineering, Yamagata University
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University
| |
Collapse
|
5
|
Fotouhi M, Seidi S, Razeghi Y, Torfinezhad S. A dual-mode assay kit using a portable potentiostat connected to a smartphone via Bluetooth communication and a potential-power angle-based paper device susceptible for low-cost point-of-care testing of iodide and dopamine. Anal Chim Acta 2024; 1287:342127. [PMID: 38182351 DOI: 10.1016/j.aca.2023.342127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Considering that the brain controls most of the body's activities, it is very important to measure the factors affecting its function, such as dopamine and iodide. Due to the growing population in the world, it is necessary to provide fast, cheap and accurate methods with the capability of on-site analysis and without the need for invasive sampling and operator skill. As a result, there is a strong desire to replace laboratory instruments with small sensors for point-of-care testing. Paper-based analytical devices (PADs) are one of the popular zero-cost approaches to achieve this goal. RESULTS We developed a simple and disposable diagnostic paper system based on electroanalytical and potential-power angle-based methods. First, we prepared an angle-based analytical system capable of performing semi-quantitative iodide analysis simply by reading the colored angle traveled. This system design is based on a channel containing complex reagents and two pencil-drawn electrodes to apply a constant voltage accelerating the anions migration. Meanwhile, a three-electrode system based on conductive pencil graphite is developed to measure dopamine concentration based on linear sweep voltammetry. For the quantitative analysis, the voltammetric data was wirelessly transmitted to a mobile device via Bluetooth communication. In this context, a power supply providing the required voltage for the migration of iodide ions, a portable potentiostat system, and a mobile application for measuring dopamine were developed. The calibration curves for I- and dopamine range from 3.5 × 10-4-47.0 × 10-4 and 10.0 × 10-6-1000.0 × 10-6 mol L-1 with LODs of 2.3 × 10-4 and 5.0 × 10-6 mol L-1, respectively. SIGNIFICANCE AND NOVELTY A new portable dual-mode voltage-assisted integrated PAD platform was designed for iodide and dopamine analysis. The characteristics of this device allow non-experts to carry out in-field analysis using sub-100 μL saliva sample with a time-to-result of <10 min along with reducing the overall cost and operational complexity.
Collapse
Affiliation(s)
- Mina Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran.
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahab Torfinezhad
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Kummari S, Panicker LR, Rao Bommi J, Karingula S, Sunil Kumar V, Mahato K, Goud KY. Trends in Paper-Based Sensing Devices for Clinical and Environmental Monitoring. BIOSENSORS 2023; 13:bios13040420. [PMID: 37185495 PMCID: PMC10135896 DOI: 10.3390/bios13040420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Environmental toxic pollutants and pathogens that enter the ecosystem are major global issues. Detection of these toxic chemicals/pollutants and the diagnosis of a disease is a first step in efficiently controlling their contamination and spread, respectively. Various analytical techniques are available to detect and determine toxic chemicals/pathogens, including liquid chromatography, HPLC, mass spectroscopy, and enzyme-linked immunosorbent assays. However, these sensing strategies have some drawbacks such as tedious sample pretreatment and preparation, the requirement for skilled technicians, and dependence on large laboratory-based instruments. Alternatively, biosensors, especially paper-based sensors, could be used extensively and are a cost-effective alternative to conventional laboratory testing. They can improve accessibility to testing to identify chemicals and pollutants, especially in developing countries. Due to its low cost, abundance, easy disposal (by incineration, for example) and biocompatible nature, paper is considered a versatile material for the development of environmentally friendly electrochemical/optical (bio) sensor devices. This review presents an overview of sensing platforms constructed from paper, pointing out the main merits and demerits of paper-based sensing systems, their fabrication techniques, and the different optical/electrochemical detection techniques that they exploit.
Collapse
Affiliation(s)
- Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | | | - Sampath Karingula
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India
| | - Venisheety Sunil Kumar
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Warangal 506015, Telangana, India
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| |
Collapse
|
7
|
Sarkar S, Gogoi M, Mahato M, Joshi AB, Baruah AJ, Kodgire P, Boruah P. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 2022; 24:32. [PMID: 36169742 DOI: 10.1007/s10544-022-00631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Abhijeet Balwantrao Joshi
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Arup Jyoti Baruah
- Department of General Surgery, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Polina Boruah
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong-793018, Meghalaya, India
| |
Collapse
|
8
|
Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. SENSORS 2022; 22:s22030718. [PMID: 35161465 PMCID: PMC8839630 DOI: 10.3390/s22030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022]
Abstract
In this review, a selection of works on the sensing of biomarkers related to diabetes mellitus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and cost-effective early detection of these devastating diseases. First, we highlight the social relevance of developing systematic screening programs for such diseases and how sensor-arrays and ML approaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g., urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for the fast and reliable early diagnosis of DM and DR.
Collapse
Affiliation(s)
- Georgina Faura
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
| | | | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania;
| | - Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Institute of Biomedical and Transplant Medicine, Department of Medical Sciences, Tartu University Hospital, L. Puusepa Street, 51014 Tartu, Estonia
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Correspondence: ; Tel.: +47-9222-6158
| |
Collapse
|
9
|
Allameh S, Rabbani M. A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range. Appl Biochem Biotechnol 2022; 194:2077-2092. [PMID: 35029790 DOI: 10.1007/s12010-022-03817-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
The prevalence of diabetes has increased over the past years. Therefore, developing minimally invasive, user-friendly, and cost-effective glucose biosensors is necessary especially in low-income and developing countries. Cellulose paper-based analytical devices have attracted the attention of many researchers due to affordability, not requiring trained personnel, and complex equipment. This paper describes a microfluidic paper-based analytical device (μPAD) for detecting glucose concentration in tear range with the naked eye. The paper-based biosensor fabricated by laser CO2; and glucose oxidase/horseradish peroxidase (GOx/HRP) enzyme solution coupled with tetramethylbenzidine (TMB) were utilized as reagents. A sample volume of 10 μl was needed for the biosensor operation and the results were observable within 5 min. The color intensity-based and distance-based results were analyzed by ImageJ and Tracker to evaluate the device performance. Distance-based results showed a linear behavior in 0.1-1.2 mM with an R2 = 0.9962 and limit of detection (LOD) of 0.1 mM. The results could be perceived by the naked eye without needing additional equipment or trained personnel in a relatively short time (3-5 min).
Collapse
Affiliation(s)
- Samira Allameh
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohsen Rabbani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Wazuddin DA, Mujawar LH, Abduljabbar TN, El-Shahawi MS. In-situ droplet assay on wax-modified paper for rapid and trace determination of Fe3+ in water. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Eze FN, Jayeoye TJ, Tola AJ. Fabrication of label-free and eco-friendly ROS optical sensor with potent antioxidant properties for sensitive hydrogen peroxide detection in human plasma. Colloids Surf B Biointerfaces 2021; 204:111798. [PMID: 33964531 DOI: 10.1016/j.colsurfb.2021.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
Herein, biogenic silver nanoparticles, Cafi-AgNPs was produced based on Cassia fistula-phenolic-rich extract (Cafi) only, without any toxic chemical reagent or organic solvent. Cafi bioactives were characterized using UHPLC-ESI-QTOF-MS/MS analysis. The as-synthesized nanoparticles were characterized using physico-chemical techniques including UV-vis, TEM, SEM, EDX, FTIR, DLS, Zeta potential, XRD, TGA and DGA. In addition, their antioxidant properties and cytocompatibility on erythrocytes and HEK-293 cells were examined. Results show that Cafi mediated the successful synthesis of stable well-dispersed AgNPs. Cafi-AgNPs demonstrated potent reducing and radical scavenging activities against ABTS˙+, DPPH˙ and NO˙. Furthermore, Cafi-AgNPs was compatible with human erythrocytes and HEK-293 cells. Based on the superior surface plasmonic and biological attributes of Cafi-AgNPs, its potential in H2O2 sensing was evaluated. The proposed sensor demonstrated satisfactory analytical performances with linearity of 10-200 μM, detection limit of 3.0 μM for H2O2, and was successfully applied in the detection of H2O2 in human plasma.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| | - Adesola Julius Tola
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Québec, G9A, 5H7, Canada.
| |
Collapse
|
12
|
|
13
|
Jin S, Liu L, Fan M, Jia Y, Zhou P. A Facile Strategy for Immobilizing GOD and HRP onto Pollen Grain and Its Application to Visual Detection of Glucose. Int J Mol Sci 2020; 21:ijms21249529. [PMID: 33333754 PMCID: PMC7765182 DOI: 10.3390/ijms21249529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Pollen grain was explored as a new carrier for enzyme immobilization. After being modified with boric acid-functionalized titania, the pollen grain was able to covalently immobilize glycosylated enzymes by boronate affinity interaction under very mild experimental conditions (e.g., pH 7.0, ambient temperature and free of organic solvent). The glucose oxidase and horse radish peroxidase-immobilized pollen grain became a bienzyme system. The pollen grain also worked as an indicator of the cascade reaction by changing its color. A rapid, simple and cost-effective approach for the visual detection of glucose was then developed. When the glucose concentration exceeded 0.5 mM, the color change was observable by the naked eye. The assay of glucose in body fluid samples exhibited its great potential for practical application.
Collapse
Affiliation(s)
- Shanxia Jin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Liping Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Mengying Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Yaru Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
- Correspondence:
| |
Collapse
|
14
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
15
|
Liu M, Zhao Y, Monshat H, Tang Z, Wu Z, Zhang Q, Lu M. An IoT-enabled paper sensor platform for real-time analysis of isothermal nucleic acid amplification tests. Biosens Bioelectron 2020; 169:112651. [PMID: 33002794 DOI: 10.1016/j.bios.2020.112651] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Paper-based sensors can be exploited to develop low-cost, disposable, and rapid assays for the detection of a large variety of analytes. We report a paper-based sensor system for a point-of-care (POC) nucleic acid amplification test that can quantitatively detect multiple genes from different pathogens. The POC system combines a paper sensor chip and a portable instrument, which is built on an Internet of Things (IoT) platform. The paper-based sensor provides the functions of reagent storage, sample transportation, and nucleic acid amplification. The IoT instrument uses an Arduino microcontroller to control temperature, collect fluorescence images, and store the data in cloud storage via a WiFi network. A compact fluorescence reader was designed to measure fluorescence images of the amplicons during a loop-mediated isothermal amplification reaction in real-time. The real-time detection capability enables the quantitative analysis of target genes. The results show that the paper-based sensor cam distinguish multiple genes of the genomic DNA extracted from Escherichia coli and Campylobacter jejuni, with the concentration as low as 2 × 103 copies/μL. The affordable instrument, in conjunction with the disposable paper sensor chip, would have a great potential for POC detections of pathogens.
Collapse
Affiliation(s)
- Mingdian Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Hosein Monshat
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zheyuan Tang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Prasad KS, Abugalyon Y, Li C, Xu F, Li X. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 2020; 145:5113-5117. [PMID: 32589169 PMCID: PMC7446663 DOI: 10.1039/d0an00704h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A low-cost, sensitive, and disposable paper-based immunosensor for instrument-free colorimetric detection of pancreatic cancer biomarker PEAK1 was reported for the first time by capitalizing the catalytic properties of gold nanoparticles in colour dye degradation. This simple signal amplification method enhances the detection sensitivity by about 10 fold.
Collapse
Affiliation(s)
- K Sudhakara Prasad
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | | | | | | | | |
Collapse
|
17
|
Chang M, Song T, Liu X, Lin Q, He B, Ren J. Cellulose-based Biosensor for Bio-molecules Detection in Medical Diagnosis: A Mini-Review. Curr Med Chem 2020; 27:4593-4612. [DOI: 10.2174/0929867327666200221145543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Background::
Biosensors are widely applied for the detection of bio-molecules in blood
glucose , cholesterol, and gene. Cellulose as the most dominating natural polymer has attracted
more and more interest, especially in the field of medicine such as advanced medical diagnosis.
Cellulose could endow biosensors with improved biocompatibility, biodegradability and nontoxicity,
which could help in medical diagnosis. This mini-review summarizes the current development
of cellulose-based biosensors as well as their applications in medical diagnosis in recent
years.
Methods:
After reviewing recent years’ publications we can say that, there are several kinds of
cellulose used in biosensors including different cellulose derivatives, bacterial cellulose and nanocellulose.
Different types of cellulose-based biosensors, such as membrane, nano-cellulose and
others were briefly described in addition to the detection principle. Cellulose-based biosensors
were summarized as in the previous papers. The description of various methods used for preparing
cellulose-based biosensors was also provided.
Results:
Cellulose and its derivatives with their unique chemical structure proved to be versatile
materials providing a good platform for achieving immobilizing bioactive molecules in biosensors.
These cellulose-based biosensors possess various desirable properties such as accuracy, sensitivity,
convenience, low cost and fast response. Among them, cellulose paper-based biosensors
have the advantages of low cost and easy operation. Nano-cellulose has unique properties such as
a large aspect ratio, good dispersing ability and high absorption capacity.
Conclusion:
Cellulose displays a promising application in biosensors which could be used to detect
different bio-molecules such as glucose, lactate, urea, gene, cell, amino acid, cholesterol, protein
and hydroquinone. In future, the attention will be focused on designing miniaturized, multifunctional,
intelligent and integrated biosensors. Creation of low cost and environmentally
friendly biosensors is also very important.
Collapse
Affiliation(s)
- Minmin Chang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bei He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
|
19
|
Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Mikrochim Acta 2020; 187:173. [DOI: 10.1007/s00604-020-4129-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
|
20
|
Marques AC, Pinheiro T, Martins GV, Cardoso AR, Martins R, Sales MG, Fortunato E. Non-enzymatic lab-on-paper devices for biosensing applications. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/bs.coac.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Chu W, Chen Y, Liu W, Zhang L, Guo X. Three-dimensional ring-oven washing technique for a paper-based immunodevice. LUMINESCENCE 2019; 35:503-511. [PMID: 31868303 DOI: 10.1002/bio.3756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022]
Abstract
Washing is a standard step for enzyme-linked immunosorbent assays (ELISA) performed on a paper-based chip, in which nonspecific-binding antibodies and antigens should be removed completely from the paper surface. In this study, a novel three-dimensional (3D) washing strategy using a heating ring-oven was carried out on a paper-based chip. Compared with a plane washing mode by a ring-oven, this 3D washing strategy obtained a lower background, as gravity played an important role in the washing step. The paper-based chip was placed on a 3D plastic holder and the waste area was connected to a heating ring. Use of a heating waste area meant that the nonspecific-binding protein was continuously carried to the waste area through gravity and capillary action. The angle between the plastic holder and the ring plane was carefully selected. The effect of washing on different parts of the detection area was investigated by upconversion fluorescence and chemiluminescence (CL). This novel 3D washing strategy was performed for carcinoembryonic antigen detection through CL and a lower detection limit of 2 pg ml-1 was obtained. This approach provides an effective washing strategy to remove nonspecific-binding antibody from a paper-based immunodevice.
Collapse
Affiliation(s)
- Weiru Chu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Ying Chen
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
22
|
|
23
|
Qi L, Zhang A, Wang Y, Liu L, Wang X. Atom transfer radical polymer-modified paper for improvement in protein fixation in paper-based ELISA. BMC Chem 2019; 13:110. [PMID: 31463479 PMCID: PMC6706939 DOI: 10.1186/s13065-019-0622-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
A newly modified paper-based enzyme-linked immunosorbent assay (P-ELISA) was established by immobilizing more proteins on the paper surface through an atom transfer radical polymerization (ATRP) reaction. In addition, introducing graphene oxide (GO) sheets, Au nanoparticles (AuNps) and two primary antibodies (Ab1s) led to signal amplification and cost reduction.
Collapse
Affiliation(s)
- Lu Qi
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Aihong Zhang
- Institute of Chemical Defense, Beijing, 102205 China
| | - Yu Wang
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Long Liu
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xinghe Wang
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
24
|
Zhang H, Smith E, Zhang W, Zhou A. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 2019; 21:48. [DOI: 10.1007/s10544-019-0388-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Ren X, Lu P, Feng R, Zhang T, Zhang Y, Wu D, Wei Q. An ITO-based point-of-care colorimetric immunosensor for ochratoxin A detection. Talanta 2018; 188:593-599. [DOI: 10.1016/j.talanta.2018.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
|
26
|
Wu M, Lai Q, Ju Q, Li L, Yu HD, Huang W. Paper-based fluorogenic devices for in vitro diagnostics. Biosens Bioelectron 2018; 102:256-266. [DOI: 10.1016/j.bios.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
|
27
|
Bhattacharya S, Agarwal AK, Chanda N, Pandey A, Sen AK. Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [PMCID: PMC7123150 DOI: 10.1007/978-981-10-7751-7_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the fabrication of analytical devices utilizing microfluidic structures and lab-on-a-chip platforms has shown breakthrough advancements, both for environmental and biological applications. The ASSURED criteria (affordable, sensitive, specific, user-friendly, robust, equipment-free, delivered), developed by the WHO for diagnostics devices, point towards the need of paper-based analytical devices (PAD) for diagnostics. On the other hand, cost-effective PADs owing the great advantage of affordable applicability in both resource-rich and -limited settings are recently employed for on-site environmental monitoring. In this book chapter, we will discuss about the brief history of paper analytical devices, fabrications, need, and its environmental and biomedical applications.
Collapse
Affiliation(s)
- Shantanu Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Kanp Mechanical Engineering, Kanpur, Uttar Pradesh India
| | - Avinash Kumar Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India
| | - Nripen Chanda
- Microsystem Technology Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal India
| | - Ashok Pandey
- Department of Biotechnology, CSIR-Indian Institute of Toxicology Research, Mohali, Punjab India
| | - Ashis Kumar Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras Department of Mechanical Engineering, Chennai, Tamil Nadu India
| |
Collapse
|
28
|
Ren X, Ma H, Zhang T, Zhang Y, Yan T, Du B, Wei Q. Sulfur-Doped Graphene-Based Immunological Biosensing Platform for Multianalysis of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37637-37644. [PMID: 28994581 DOI: 10.1021/acsami.7b13416] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The accurate tumor marker detection at an early stage can prevent people from getting cancer to a great extent. Herein, a novel tri-antibody dual-channel biosensing strategy is applied in multianalysis of carcino-embryonic antigen (CEA) and nuclear matrix protein 22 (NMP22). In this immunosensor fabrication process, graphene oxide/polyaniline nanostructures are used as matrix and mesoporous NKF-5-3 is used as labels. Two kinds of antigens can be obtained from the signals of neutral red and toluidine blue, respectively, which are modified on the labels. In this tri-antibody dual-channel biosensing platform, sulfur-doped graphene sheet is synthesized by click chemistry as the framework structure. Majority of the incubations are conducted in individual steps, which ensure the surface incubation more tightly. The detection limit of NMP22 and CEA are 25 and 30 fg/mL, respectively. The low detection limit and excellent stability can ascribe to the tri-antibody dual-channel strategy, which makes the sensor platform from surface to the space. The clinical urine sample analysis achieves a good performance. The urine-based test can avoid the secondary injury on hemophilia or ischemic patients, displaying a potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Tong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Tao Yan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering and ‡School of Resource and Environment, University of Jinan , Jinan 250022, China
| |
Collapse
|
29
|
Sharma N, Barstis T, Giri B. Advances in paper-analytical methods for pharmaceutical analysis. Eur J Pharm Sci 2017; 111:46-56. [PMID: 28943443 DOI: 10.1016/j.ejps.2017.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Paper devices have many advantages over other microfluidic devices. The paper substrate, from cellulose to glass fiber, is an inexpensive substrate that can be readily modified to suit a variety of applications. Milli- to micro-scale patterns can be designed to create a fast, cost-effective device that uses small amounts of reagents and samples. Finally, well-established chemical and biological methods can be adapted to paper to yield a portable device that can be used in resource-limited areas (e.g., field work). Altogether, the paper devices have grown into reliable analytical devices for screening low quality pharmaceuticals. This review article presents fabrication processes, detection techniques, and applications of paper microfluidic devices toward pharmaceutical screening.
Collapse
Affiliation(s)
- Niraj Sharma
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, PO Box 23002, Kalanki-13, Kathmandu, Nepal
| | - Toni Barstis
- Department of Chemistry and Physics, College of Saint Mary, Notre Dame, IN 46556, United States
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, PO Box 23002, Kalanki-13, Kathmandu, Nepal.
| |
Collapse
|
30
|
Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-Based Apolipoprotein E Immunosensor for Point-of-Care Testing. ACS Sens 2017; 2:1267-1271. [PMID: 28884572 DOI: 10.1021/acssensors.7b00495] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) biomarkers can reflect the neurochemical indicators used to estimate the risk in clinical nephrology. Apolipoprotein E (ApoE) is an early biomarker for AD in clinical diagnosis. In this research, through bactrian camel immunization, lymphocyte isolation, RNA extraction, and library construction, ApoE-specific Nbs with high affinity were successfully separated from an immune phage display nanobody library. Herein, a colorimetric immunosensor was developed for the point-of-care testing of ApoE by layer-by-layer nanoassembly techniques and novel nanobodies (Nbs). Using highly oriented Nbs as the capture and detection antibodies, an on-site immunosensor was developed by detecting the mean gray value of fade color due to the glutaraldehyde@3-aminopropyltrimethoxysilane oxidation by H2O2. The detection limit of AopE is 0.42 pg/mL, and the clinical analysis achieves a good performance. The novel easily operated immunosensor may have potential application in the clinical diagnosis and real-time monitoring for AD.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Junrong Yan
- Institute
of Life Sciences, Southeast University, Nanjing 210000, P.R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yakun Wan
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| |
Collapse
|
31
|
Si Z, Xie B, Chen Z, Tang C, Li T, Yang M. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2338-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Akar Z, Küçük M, Doğan H. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem 2017; 32:640-647. [PMID: 28262029 PMCID: PMC6009954 DOI: 10.1080/14756366.2017.1284068] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,2-Diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging, the most commonly used antioxidant method with more than seventeen thousand articles cited, is very practical; however, as with most assays, it has the major disadvantage of dependence on a spectrophotometer. To overcome this drawback, the colorimetric determination of the antioxidant activity using a scanner and freely available Image J software was developed. In this new method, the mixtures of solutions of DPPH• and standard antioxidants or extracts of common medicinal herbs were dropped onto TLC plates, after an incubation period. The spot images were evaluated with Image J software to determine CSC50 values, the sample concentrations providing 50% colour reduction, which were very similar with the SC50 values obtained with spectrophotometric method. The advantages of the new method are the use of lower amounts of reagents and solvents, no need for costly spectrophotometers, and thus significantly lowered costs, and convenient implementation in any environment and situation.
Collapse
Affiliation(s)
- Zeynep Akar
- a Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences , Gumushane University , Gumushane , Turkey
| | - Murat Küçük
- b Department of Chemistry, Faculty of Sciences , Karadeniz Technical University , Trabzon , Turkey.,c Faculty of Engineering and Natural Sciences , Gumushane University , Gumushane , Turkey
| | - Hacer Doğan
- b Department of Chemistry, Faculty of Sciences , Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
33
|
Liu S, Su W, Ding X. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. SENSORS 2016; 16:s16122086. [PMID: 27941634 PMCID: PMC5191067 DOI: 10.3390/s16122086] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
Abstract
Glucose, as an essential substance directly involved in metabolic processes, is closely related to the occurrence of various diseases such as glucose metabolism disorders and islet cell carcinoma. Therefore, it is crucial to develop sensitive, accurate, rapid, and cost effective methods for frequent and convenient detections of glucose. Microfluidic Paper-based Analytical Devices (μPADs) not only satisfying the above requirements but also occupying the advantages of portability and minimal sample consumption, have exhibited great potential in the field of glucose detection. This article reviews and summarizes the most recent improvements in glucose detection in two aspects of colorimetric and electrochemical μPADs. The progressive techniques for fabricating channels on μPADs are also emphasized in this article. With the growth of diabetes and other glucose indication diseases in the underdeveloped and developing countries, low-cost and reliably commercial μPADs for glucose detection will be in unprecedentedly demand.
Collapse
Affiliation(s)
- Shuopeng Liu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Wenqiong Su
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
34
|
Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 2016; 87:918-930. [PMID: 27664412 DOI: 10.1016/j.bios.2016.09.061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 12/14/2022]
Abstract
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia
| | - Elena N Esimbekova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia.
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|
35
|
Shen C, Zhang K, Gao N, Wei S, Liu G, Chai Y, Yang M. Colorimetric and electrochemical determination of the activity of protein kinase based on retarded particle growth due to binding of phosphorylated peptides to DNA – capped silver nanoclusters. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1944-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Single cell HaloChip assay on paper for point-of-care diagnosis. Anal Bioanal Chem 2016; 408:7753-7759. [DOI: 10.1007/s00216-016-9872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 01/27/2023]
|
37
|
López-Marzo AM, Merkoçi A. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. LAB ON A CHIP 2016; 16:3150-76. [PMID: 27412239 DOI: 10.1039/c6lc00737f] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This review shows the recent advances and state of the art in paper-based analytical devices (PADs) through the analysis of their integration with microfluidics and LOC micro- and nanotechnologies, electrochemical/optical detection and electronic devices as the convergence of various knowledge areas. The important role of the paper design/architecture in the improvement of the performance of sensor devices is discussed. The discussion is fundamentally based on μPADs as the new generation of paper-based (bio)sensors. Data about the scientific publication ranking of PADs, illustrating their increase as an experimental research topic in the past years, are supplied. In addition, an analysis of the simultaneous evolution of PADs in academic lab research and industrial commercialization highlighting the parallelism of the technological transfer from academia to industry is displayed. A general overview of the market behaviour, the leading industries in the sector and their commercialized devices is given. Finally, personal opinions of the authors about future perspectives and tendencies in the design and fabrication technology of PADs are disclosed.
Collapse
Affiliation(s)
- Adaris M López-Marzo
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain. and Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Gorai T, Maitra U. Supramolecular Approach to Enzyme Sensing on Paper Discs Using Lanthanide Photoluminescence. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00341] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tumpa Gorai
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| |
Collapse
|
39
|
Cunningham JC, DeGregory PR, Crooks RM. New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:183-202. [PMID: 27049635 DOI: 10.1146/annurev-anchem-071015-041605] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the last decade, paper analytical devices (PADs) have evolved into sophisticated yet simple sensors with biological and environmental applications in the developed and developing world. The focus of this review is the technological improvements that have over the past five years increased the applicability of PADs to real-world problems. Specifically, this review reports on advances in sample processing, fluid flow control, signal amplification, and component integration. Throughout, we have sought to emphasize advances that retain the main virtues of PADs: low cost, portability, and simplicity.
Collapse
Affiliation(s)
| | - Paul R DeGregory
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| |
Collapse
|
40
|
Chen YA, Tsai FJ, Zeng YT, Wang JC, Hong CP, Huang PH, Chuang HL, Lin SY, Chan CT, Ko YC, Chou YC, Lin TL, Lee GH, Ho ML. Fast and Effective Turn-on Paper-based Phosphorescence Biosensor for Detection of Glucose in Serum. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Xu S, Dong B, Zhou D, Yin Z, Cui S, Xu W, Chen B, Song H. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Sci Rep 2016; 6:23406. [PMID: 27001460 PMCID: PMC4802215 DOI: 10.1038/srep23406] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test.
Collapse
Affiliation(s)
- Sai Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.,Department of Physics, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Ze Yin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Shaobo Cui
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Wen Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Baojiu Chen
- Department of Physics, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
42
|
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron 2016; 77:774-89. [DOI: 10.1016/j.bios.2015.10.032] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/27/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
|
43
|
Affiliation(s)
- Jarinya SITTIWONG
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Fuangfa UNOB
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| |
Collapse
|
44
|
Moreno-Guzman M, Jodra A, López MÁ, Escarpa A. Self-Propelled Enzyme-Based Motors for Smart Mobile Electrochemical and Optical Biosensing. Anal Chem 2015; 87:12380-6. [PMID: 26595193 DOI: 10.1021/acs.analchem.5b03928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A millimeter-sized tubular motor for mobile biosensing of H2O2 in environmental and relevant clinical samples is reported. The concept relies on the self-propelled motion by the Marangoni effect, where the asymmetric release of SDS surfactant induces fluid convection and rapid dispersion of horseradish peroxidase (HRP) enzyme into the sample solution. This efficient movement together with the continuous release of fresh enzyme leads to greatly accelerated enzymatic reaction processes without the need of external stirring or chemical and physical attachment of the enzyme as in common classical biosensing approaches. In this strategy, the use of a single millimeter-sized tubular motor during 120 s allows the reliable and accurate quantification of hydrogen peroxide in a set of different matrices such as tap and mineral waters, urine, plasma, and tumor cell cultures treated with antineoplasic Cisplatin without any previous sample preparation. Furthermore, detection can be performed electrochemically, optically, and via visual detection, which makes this approach a clear candidate as a point-of-care analytical tool.
Collapse
Affiliation(s)
- María Moreno-Guzman
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Ctra. Madrid-Barcelona, Km. 33,600, E-28871 Alcalá de Henares (Madrid), Spain
| | - Adrián Jodra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Ctra. Madrid-Barcelona, Km. 33,600, E-28871 Alcalá de Henares (Madrid), Spain
| | - Miguel-Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Ctra. Madrid-Barcelona, Km. 33,600, E-28871 Alcalá de Henares (Madrid), Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Ctra. Madrid-Barcelona, Km. 33,600, E-28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
45
|
Hughes S, Dasary SSR, Begum S, Williams N, Yu H. MEISENHEIMER COMPLEX BETWEEN 2,4,6-TRINITROTOLUENE AND 3-AMINOPROPYLTRIETHOXYSILANE AND ITS USE FOR A PAPER-BASED SENSOR. SENSING AND BIO-SENSING RESEARCH 2015; 5:37-41. [PMID: 26380171 PMCID: PMC4566156 DOI: 10.1016/j.sbsr.2015.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
2,4,6-Trinitrotoluene (TNT) forms a red-colored Meisenheimer complex with 3-aminopropyltrenthoxysilane (APTES) both in solution and on solid phase. The TNT-APTES complex is unique since it forms yellow-colored complexes with 2,4,6-trinitrophenol and 4-nitrophenol, and no complex with 2,4-dinitrotoluene. The absorption spectrum of TNT-APTES has two absorption bands at 530 and 650 nm, while APTES complexes with 2,4,6-trinitrophenol and 4-nitrophenol have absorption maxima at around 420 nm, and no absorption change for 2,4-dinitrotoluene. The TNT-APTES complex facilitates the exchange of the TNT-CH3 proton/deuteron with solvent molecules. The red color of TNT-APTES is immediately visible at 1 µM of TNT.
Collapse
Affiliation(s)
- Shantelle Hughes
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Samuel S R Dasary
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Salma Begum
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Nya Williams
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Hongtao Yu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| |
Collapse
|
46
|
Quan H, Zuo C, Li T, Liu Y, Li M, Zhong M, Zhang Y, Qi H, Yang M. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Abstract
The use of cancer biomarkers is emerging as one of the most promising strategies for early detection and management of cancer. Biosensors can provide advanced platforms for biomarker analysis with the advantages of being easy to use, inexpensive, rapid and offering multi-analyte testing capability. The intention of this article is to discuss recent advances and trends in affinity biosensors for cancer diagnosis, prognosis and even theragnosis. The different types of affinity biosensors will be reviewed in terms of molecular recognition element. Current challenges and trends for this technology will be also discussed, with a particular emphasis on recent developments in miRNA detection.
Collapse
|
48
|
Guo PL, Tang M, Hong SL, Yu X, Pang DW, Zhang ZL. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens Bioelectron 2015. [PMID: 26201979 DOI: 10.1016/j.bios.2015.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples.
Collapse
Affiliation(s)
- Pei-Lin Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
49
|
Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. Carbohydr Polym 2015; 132:261-73. [PMID: 26256349 DOI: 10.1016/j.carbpol.2015.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
Cellulose fibres have poor reactivity and limited potential for surface engineering with advanced chemical functionalization in water. In this work, cellulose fibres were decorated with azide functions by charge-directed self-assembly of a novel water-soluble multifunctional cellulose derivative yielding reactive fibres. Propargylamine and 1-ethynylpyrene were utilized as a proof of concept that alkyne molecules may react with the azide functions of the reactive fibres via copper(I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAc) reaction in mild conditions. Chemical characterization of the fibres was carried out using classical techniques such as Raman-, fluorescence-, and UV-vis spectroscopy. Among other techniques, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray spectroscopy (XPS), two-photon microscopy (TPM), and inductively coupled plasma mass spectrometry (ICP-MS) were useful tools for additional characterization of the fibres decorated with amino- or photoactive groups. The information gathered in this work might contribute to the basis for the preparation of reactive cellulose-based interfaces with potential application in CuAAc reactions.
Collapse
|
50
|
Liu J, Lu L, Li A, Tang J, Wang S, Xu S, Wang L. Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens Bioelectron 2015; 68:204-209. [DOI: 10.1016/j.bios.2014.12.053] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
|