1
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
2
|
Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ. DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations. Mol Cell Probes 2021; 59:101758. [PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Healthcare Pharmaceuticals Ltd., Rajendrapur, Gazipur, Bangladesh
| | - Abu Hashem
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Amit R Nath
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, China
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wageeh A Yehye
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemistry, Universiti Malaya, Malaysia
| |
Collapse
|
3
|
Khalil I, Yehye WA, Muhd Julkapli N, Sina AAI, Rahmati S, Basirun WJ, Seyfoddin A. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Analyst 2020; 145:1414-1426. [PMID: 31845928 DOI: 10.1039/c9an02106j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
4
|
Mirsalari M, Elhami S. Colorimetric detection of insulin in human serum using GO/AuNPs/TX-100 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118617. [PMID: 32593845 DOI: 10.1016/j.saa.2020.118617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, graphene oxide/gold nanoparticles/Triton X-100 nanocomposites (GO/AuNPs/TX-100) were synthesized using the sonochemical method and their ability in ultrasound-assisted colorimetric detection of insulin was investigated. The synthesized GO/AuNPs/TX-100 nanocomposites were characterized by UV-visible absorption spectroscopy and TEM analysis. The interaction between the nanocomposites and insulin was observed by both naked eye and optical absorption spectroscopy. The GO/AuNPs/TX-100 nanocomposites displayed apparent color changes (red to blue) and absorption spectra changes (decreasing of the band around 528 nm and appearance of a new red-shifted band at 640 nm) in presence of insulin. The interaction mechanism of the nanocomposites and insulin was discussed. It is based on the special structure of insulin, that insulin can be easily self-assemble into the GO/AuNP/TX-100 nanocomposites and can also play the role of a bridge between two different GO/AuNPs/TX-100 nanocomposites by peptide chains. The effective parameters for insulin detection were optimized. The colorimetric method was used for quantification of insulin in the range of 2-300 ng mL-1 with a detection limit of 0.1 ng mL-1. Moreover, the relative standard deviation of the method was 3.1 and 2.7% (n = 10) at concentrations of 50 and 200 ng mL-1, respectively on the same day and 4.8% at a concentration (200.0 ng mL-1) on five consecutive days. The present method was utilized for insulin assay in human blood serums with satisfactory results.
Collapse
Affiliation(s)
- Marzieh Mirsalari
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Shahla Elhami
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| |
Collapse
|
5
|
Fan Y, Cui M, Liu Y, Jin M, Zhao H. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117735. [PMID: 31757698 DOI: 10.1016/j.saa.2019.117735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Rapid and accurate diagnosis of methicillin-resistant staphylococcus aureus (MRSA) is vital for patient treatment, control of infection and monitoring epidemiology. Penicillin binding proteins (PBP2a), as an important marker protein of MRSA, has been proposed as the screening test target for tolerant bacteria of MRSA. However, current technologies based on PBP2a activity or PBP2a immunoassays were suboptimal specificity and sensitivity. In this report, the selection and characterization of DNA aptamers that binds to PBP2a was described. The DNA aptamer is with high affinity and selectivity to binding with PBP2a. Furthermore, utilizing the switched mimicking peroxidase for gold nanoparticles loaded graphene oxide (GO/Au) nanomaterials based on the effect between GO/Au and DNA, a powerful strategy was set out for designing aptamer-based colorimetric biosensor for detection of PBP2a. In this strategy, the employment of biosensor based on GO/Au and PBP2a aptamer greatly improved the detection sensitivity and selectivity with limit of detection as low as 20 nM. Accordingly, the reversible nanozyme inhibition/activation approach may be universally applicable for the biomedical diagnosis.
Collapse
Affiliation(s)
- Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mengyu Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
6
|
|
7
|
Gao L, Xiang W, Deng Z, Shi K, Wang H, Shi H. Cocaine detection using aptamer and molybdenum disulfide-gold nanoparticle-based sensors. Nanomedicine (Lond) 2020; 15:325-335. [PMID: 31976806 DOI: 10.2217/nnm-2019-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: The current work highlighted a novel colorimetric sensor based on aptamer and molybdenum disulfide (MoS2)-gold nanoparticles (AuNPs) that was developed for cocaine detection with high sensitivity. Materials & methods: Due to the presence of the plasmon resonance band on the surface of AuNPs, AuNPs aggregated and the color was changed from red to blue after adding a certain concentration of NaCl. We used MoS2 to optimize the sensing system of AuNPs. The folded conformation of the aptamer in combination with cocaine enhanced the salt tolerance of the MoS2-AuNPs, effectively preventing their aggregation. Results & conclusion: The detection limit of cocaine was 7.49 nM with good selectivity. The method based on MoS2-AuNPs colorimetry sensor is simple, quick, label-free and low cost.
Collapse
Affiliation(s)
- Li Gao
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Wenwen Xiang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Zebin Deng
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Huixing Wang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Haixia Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| |
Collapse
|
8
|
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019; 271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
The exceptional electrical, thermal, optical and mechanical properties have made two dimensional sp2 hybridized graphene a material of choice in both academic as well as industrial research. In the last few years, researchers have devoted their efforts towards the development of graphene/polymer, graphene/metal nanoparticle and graphene/ceramic nanocomposites. These materials display excellent mechanical, electrical, thermal, catalytic, magnetic and optical properties which cannot be obtained separately from the individual components. Fascinating physical and chemical properties are displayed by noble metal nanomaterials and thus they represent model building blocks for modifying nanoscale structures for diverse applications extending from catalysis, optics to nanomedicine. Insertion of noble metal (Au, Ag) nanoparticles (NPs) into chemically derived graphene is thus of primary importance to open new avenues for both materials in various fields where the specific properties of each material act synergistically to provide hybrid materials with exceptional performances. This review attempts to summarize the different synthetic procedures for the preparation of Ag and Au NPs/reduced graphene oxide (rGO) composites. The synthesis processes of metal NPs/rGO composites are categorised into in-situ and ex-situ techniques. The in-situ approach consists of simultaneous reduction of metal salts and GO to obtain metal NPs/rGO nanocomposite materials, while in the ex-situ process, the metal NPs of desired size and shape are first synthesized and then transferred onto the GO or rGO matrix. The application of the Ag NPs and Au NPs/rGO composite materials in the area of biomedical (drug delivery and photothermal therapy) and biosensing are the focus of this review article.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India.
| | - Surya P Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind K Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
9
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Khalil I, Yehye WA, Julkapli NM, Rahmati S, Sina AAI, Basirun WJ, Johan MR. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Biosens Bioelectron 2019; 131:214-223. [DOI: 10.1016/j.bios.2019.02.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022]
|
11
|
Ghobadi MZ, Mozhgani SH, Hakimian F, Norouzi M, Rezaee SA, Ghourchian H. Long segment detection of HTLV-1 genome based on the fluorescence quenching technique. Heliyon 2018; 4:e00996. [PMID: 30547109 PMCID: PMC6282111 DOI: 10.1016/j.heliyon.2018.e00996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Detecting fluorescence changes due to energy transfer between a quencher and fluorophore is a common method used for the fluorescence-based biosensors. In the present report, a new biosensor for long segment detection of the human T cell-lymphotropic virus 1 genome was constructed based on the fluorescence quenching of graphene oxide by gold nanoparticles. The fluorescence signal of unmodified graphene oxide was measured before and after hybridization of target and probes functionalized with gold nanoparticles. The limit of detection of the biosensor was determined to be around 10 pg/mL. The specific design for long segment of target assures the selectivity of biosensor. Our results proposed that further development may be useful to detect other viruses.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hakimian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
12
|
Li Y, Luo Q, Hu R, Chen Z, Qiu P. A sensitive and rapid UV–vis spectrophotometry for organophosphorus pesticides detection based on Ytterbium (Yb3+) functionalized gold nanoparticle. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Cinti S, Proietti E, Casotto F, Moscone D, Arduini F. Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal Chem 2018; 90:13680-13686. [DOI: 10.1021/acs.analchem.8b04052] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elena Proietti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Federica Casotto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH. Sensitive Leptospira DNA detection using tapered optical fiber sensor. JOURNAL OF BIOPHOTONICS 2018; 11:e201700363. [PMID: 29570957 DOI: 10.1002/jbio.201700363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
Collapse
Affiliation(s)
- Nurul H Zainuddin
- Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hui Y Chee
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Z Ahmad
- Biotechnology and Nanotechnology Research Center, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Mohd A Mahdi
- Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad H Abu Bakar
- Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd H Yaacob
- Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
17
|
Sun B, Liang Z, Xie BP, Li RT, Li LZ, Jiang ZH, Bai LP, Chen JX. Fluorescence sensing platform based on ruthenium(II) complexes as high 3S (sensitivity, specificity, speed) and "on-off-on" sensors for the miR-185 detection. Talanta 2017; 179:658-667. [PMID: 29310291 DOI: 10.1016/j.talanta.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inspired by the enormous importance attributed to the biological function of miRNA, we pour our attention into the design and synthesis of four ruthenium(II) complexes and evaluate their applications as miR-185 detection agents by spectroscopic measurements. It was found that all complexes can form sensing platform for the detection of the complementary target miR-185 through the introduction of carboxyfluorescein (FAM) labeled single stranded DNA (P-DNA), giving the detection limits of 0.42nM for Ru 1, 0.28nM for Ru 2, 0.32nM for Ru 3, 0.85nM for Ru 4, all with instantaneous detection time in 1min. The results of the binding constant, fluorescence anisotropy (FA) and polyacrylamide gel electrophoresis experiments (PAGE) revealed that the ruthenium(II) complexes prefer to bind P-DNA other than hybrid duplexes DNA@RNA upon recognition, resulting in the detection of miR-185. These results provide useful suggestions in the new type of metal-based miRNA detection agents.
Collapse
Affiliation(s)
- Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bao-Ping Xie
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lin-Ze Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
18
|
Alves LM, Rodovalho VR, Castro AC, Freitas MA, Mota CM, Mineo TW, Mineo JR, Madurro JM, Brito-Madurro AG. Development of direct assays for Toxoplasma gondii and its use in genomic DNA sample. J Pharm Biomed Anal 2017; 145:838-844. [DOI: 10.1016/j.jpba.2017.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 01/28/2023]
|
19
|
Zhao Z, Bao Y, Chu LT, Ho JKL, Chieng CC, Chen TH. Microfluidic bead trap as a visual bar for quantitative detection of oligonucleotides. LAB ON A CHIP 2017; 17:3240-3245. [PMID: 28869261 DOI: 10.1039/c7lc00836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate a microfluidic bead trap capable of forming a dipstick-type bar visible to the naked eye for simple and quantitative detection of oligonucleotides. We use magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that are connected and form MMPs-targets-PMPs when target oligonucleotides are present, leaving free PMPs with a number inversely proportional to the amount of targets. Using a capillary flow-driven microfluidic circuitry consisting of a magnetic separator to remove the MMPs-targets-PMPs, the free PMPs can be trapped at the narrowing nozzle downstream, forming a visual bar quantifiable based on the length of PMP accumulation. Such a power-free and instrument-free platform enables a limit of detection at 13 fmol (0.65 nM in 20 μl, S/N = 3) of oligonucleotides and is compatible with single-nucleotide polymorphisms and operation in a complex bio-fluid. Moreover, using DNAzyme as the target oligonucleotide that catalyzes a specific hydrolytic cleavage in the presence of lead ions, we demonstrate a model application that detects lead ions with a limit of detection of 12.2 nM (2.5 μg l-1), providing quantitative and visual detection of lead contamination at resource-limited sites.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | | | | | |
Collapse
|
20
|
Talemi RP, Mousavi SM. A novel colorimetric DNA biosensor for genetic assay purpose based on gold nanoparticles self-assembled onto a functionalized glass surface. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria. Sci Rep 2017; 7:1452. [PMID: 28469128 PMCID: PMC5431225 DOI: 10.1038/s41598-017-01371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.
Collapse
|
22
|
Su S, Cao W, Liu W, Lu Z, Zhu D, Chao J, Weng L, Wang L, Fan C, Wang L. Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS 2 nanosheet. Biosens Bioelectron 2017; 94:552-559. [PMID: 28363193 DOI: 10.1016/j.bios.2017.03.040] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
The detection of microRNA plays an important role in early cancer diagnosis. Herein, a dual-mode electronic biosensor was developed for microRNA-21 (miRNA-21) detection based on gold nanoparticle-decorated MoS2 nanosheet (AuNPs@MoS2). A classical DNA "sandwich" structure was employed to construct MoS2-based electrochemical sensor, including capture DNA, target miRNA-21 and DNA-modified nanoprobe. [Fe(CN)6]3-/4- and [Ru(NH3)6]3+ were selected as electrochemical indicators to monitor the preparation process and evaluate the performance of MoS2-based electrochemical biosensor by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV), respectively. Such MoS2-based biosensor exhibited excellent performance for miRNA-21 detection in the range from 10 fM to 1nM with detection limit of 0.78fM and 0.45fM for DPV and EIS technique, respectively. Furthermore, the proposed MoS2-based biosensor displayed high selectivity and stability, which could be used to determine miRNA-21 in human serum samples with satisfactory results. All data suggested that such MoS2-based nanocomposite may be a potential candidate for biosensing ranging from nucleic acid to protein detection.
Collapse
Affiliation(s)
- Shao Su
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wenfang Cao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Liu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zaiwei Lu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lihua Wang
- Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
23
|
Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0409-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Miao X, Ning X, Li Z, Cheng Z. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci Rep 2016; 6:32358. [PMID: 27576601 PMCID: PMC5006024 DOI: 10.1038/srep32358] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Positively charged gold nanoparticles (+)AuNPs can adsorb onto the negatively charged surface of single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA). Herein, long-range dsDNA polymers could form based on the hybridization chain reaction (HCR) of two hairpin probes (H1 and H2) by using miRNA-21 as an initiator. (+)AuNPs could adsorb onto the negatively charged surface of such long-range dsDNA polymers based on the electrostatic adsorption, which directly resulted in the precipitation of (+)AuNPs and the decrease of (+)AuNPs absorption spectra. Under optimal conditions, miRNA-21 detection could be realized in the range of 20 pM-10 nM with a detection limit of 6.8 pM. In addition, (+)AuNPs used here are much more stable than commonly used negatively charged gold nanoparticles ((−)AuNPs) in mixed solution that contained salt, protein or other metal ions. Importantly, the assay could realize the detection of miRNA in human serum samples.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xue Ning
- KeWen College, JiangSu Normal University, Xuzhou 221116, PR China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zhiyuan Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
25
|
Xu X, Gao Y, Zhang S, Li S, Bai T, Zhang Y, Hu X, Liu R. A electro-thermal atomic absorption spectrometry-based assay for disease-related DNA. Microchem J 2016. [DOI: 10.1016/j.microc.2015.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Liu L, Wang X, Ma Q, Lin Z, Chen S, Li Y, Lu L, Qu H, Su X. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles. Anal Chim Acta 2016; 916:92-101. [DOI: 10.1016/j.aca.2016.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 02/01/2023]
|
27
|
Xue Z, Yin B, Wang H, Li M, Rao H, Liu X, Zhou X, Lu X. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine. NANOSCALE 2016; 8:5488-96. [PMID: 26902537 DOI: 10.1039/c6nr00005c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Bo Yin
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hui Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Mengqian Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Honghong Rao
- School of chemistry & environmental science, Lanzhou City University, Lanzhou, 730070, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xinbin Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
28
|
Shamsipur M, Memari Z, Ganjali MR, Norouzi P, Faridbod F. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe. J Pharm Biomed Anal 2016; 118:356-362. [DOI: 10.1016/j.jpba.2015.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/31/2015] [Accepted: 10/31/2015] [Indexed: 02/04/2023]
|
29
|
Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1716-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Yang SP, Chen SR, Liu SW, Tang XY, Qin L, Qiu GH, Chen JX, Chen WH. Platforms Formed from a Three-Dimensional Cu-Based Zwitterionic Metal-Organic Framework and Probe ss-DNA: Selective Fluorescent Biosensors for Human Immunodeficiency Virus 1 ds-DNA and Sudan Virus RNA Sequences. Anal Chem 2015; 87:12206-14. [PMID: 26619043 DOI: 10.1021/acs.analchem.5b03084] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We herein report a water-stable three-dimensional Cu-based metal-organic framework (MOF) 1 supported by a tritopic quaternized carboxylate and 4,4'-dipyridyl sulfide as an ancillary ligand. This MOF exhibits unique pore shapes with aromatic rings, positively charged pyridinium and unsaturated Cu(II) cation centers, free carboxylates, tessellating H2O, and coordinating SO4(2-) on the pore surface. Compound 1 can interact with two carboxyfluorescein (FAM)-labeled single-stranded DNA sequences (probe ss-DNA, delineated as P-DNA) through electrostatic, π-stacking, and/or hydrogen-bonding interactions to form two P-DNA@1 systems, and thus quench the fluorescence of FAM via a photoinduced electron-transfer process. These P-DNA@1 systems can be used as effective fluorescent sensors for human immunodeficiency virus 1 double-stranded DNA and Sudan virus RNA sequences, respectively, with detection limits of 196 and 73 pM, respectively.
Collapse
Affiliation(s)
- Shui-Ping Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Shao-Rui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Xiao-Yan Tang
- Department of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology , Changshu 215500, Jiangsu P. R. China
| | - Liang Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Gui-Hua Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, P. R. China
| |
Collapse
|
31
|
Mazloum-Ardakani M, Aghaei R, Heidari MM. Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene. Biosens Bioelectron 2015; 72:362-9. [DOI: 10.1016/j.bios.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
32
|
Gao L, Li Q, Li R, Yan L, Zhou Y, Chen K, Shi H. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. NANOSCALE 2015; 7:10903-10907. [PMID: 25939390 DOI: 10.1039/c5nr01187f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.
Collapse
Affiliation(s)
- Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhu X, Li J, He H, Huang M, Zhang X, Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 2015; 74:113-33. [PMID: 26134290 DOI: 10.1016/j.bios.2015.04.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Jiao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China.
| | - Min Huang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| |
Collapse
|
34
|
Thavanathan J, Huang NM, Thong KL. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Int J Nanomedicine 2015; 10:2711-22. [PMID: 25897217 PMCID: PMC4396418 DOI: 10.2147/ijn.s74753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
Collapse
Affiliation(s)
- Jeevan Thavanathan
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Nay Ming Huang
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Chen J, Zhou G, Liu Y, Ye T, Xiang X, Ji X, He Z. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection. Talanta 2015; 134:271-277. [DOI: 10.1016/j.talanta.2014.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
|
36
|
Hu Y, Zhang L, Zhang Y, Wang B, Wang Y, Fan Q, Huang W, Wang L. Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2459-66. [PMID: 25546579 DOI: 10.1021/am507218g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a class of small, endogenous, noncoding RNA molecules, can serve as biomarkers for potential applications in cancer diagnosis, prognosis, and prediction due to its abnormal expression. As a result, a novel label-free biosensor with nanometer scale was prepared and employed in the detection of trace oligonucleotides based on the localized surface plasmon resonance (LSPR). The dielectric constant on the surface of DNA modified gold nanoparticle would change when probe single-strand DNA hybridized with target oligonucleotides, which resulted in the notable red shift of scattering peak position. The biosensor with excellent selectivity can be used in a real-time monitoring hybridization process. Notably, this method provided label-free detection of DNA and miRNA at single nanoparticle level with limit of detection up to 3 nM. Due to the advantages of LSPR scattering spectra, single nanoparticle biosensor can be designed for trace cancer-relevant miRNAs detection in the future.
Collapse
Affiliation(s)
- Yanling Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gao F, Du Y, Yao J, Zhang Y, Gao J. A novel electrochemical biosensor for DNA detection based on exonuclease III-assisted target recycling and rolling circle amplification. RSC Adv 2015. [DOI: 10.1039/c4ra11433g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strategy for electrochemical detection of DNA by exonuclease III-assisted DNA recycling and the rolling circle amplification was developed.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Jingwen Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| |
Collapse
|
38
|
Direct application of gold nanoparticles to one-pot electrochemical biosensors. Anal Chim Acta 2014; 849:1-6. [DOI: 10.1016/j.aca.2014.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
|