1
|
Teng P, Gao Z, Quan Q, He G, Song Q, Zhang X, Xiao W, Zhao J, Cao D, Liang J, Tang Y. SERS-based CRISPR/Cas12a assays for protein biomarker prostate-specific antigen detection. Anal Bioanal Chem 2025; 417:573-582. [PMID: 39576313 DOI: 10.1007/s00216-024-05663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Sensitive and accurate detection of protein biomarkers is crucial for disease diagnosis, especially for early diagnosis. Here, we describe surface-enhanced Raman scattering (SERS)-based CRISPR/Cas12a assays (S-CRISPR) for protein biomarker detection. Firstly, an S-CRISPR-driven enzyme-linked immunosorbent assay (S-CasLISA) was developed utilizing a capture antibody coated on a microplate to recognize the target and a detection antibody labeled with active DNA to trigger the activity of CRISPR/Cas12a. With this assay, we achieved detection of prostate-specific antigen (PSA) as models at the picogram level. The limit of detection (LoD) of S-CasLISA was 0.17 pg mL-1 and in the range of 0.1 pg mL-1 to 10 ng mL-1. Further, we applied aptamer to S-CRISPR (S-Apt-CRISPR), combining the high sensitivity of SERS with the high selectivity of aptamers, while simplifying the operation process of CRISPR detection of protein biomarkers. The proposed S-Apt-CRISPR also could detect picogram-level PSA and without repeated washing steps. The LoD of S-Apt-CRISPR was 0.35 pg mL-1 and in the range of 0.1 pg mL-1 to 10 ng mL-1. Both SERS-based CRISPR/Cas12a assays were validated with clinical samples and demonstrated accuracy consistent with the chemiluminescence immunoassay. The introduction of the CRISPR/Cas12a system with SERS has the effect of improving the analytical capabilities of the system, thereby broadening and facilitating its application in the analysis of sensitive and accurate protein biomarkers.
Collapse
Affiliation(s)
- Peijun Teng
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhixing Gao
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qiang Quan
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guangbo He
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China
| | - Qifang Song
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaoli Zhang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiajie Liang
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China.
| | - Yong Tang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
3
|
Cai L, Wang H, Cao Y, Hao W, Fang G, Wang S. "Blocking-effect" detection strategy of clenbuterol by molecularly imprinted electrochemiluminescence sensor based on multiple synergistic excitation of AgNW luminophores signal with highly active BNQDs@AuNFs nanoscale co-reaction accelerator. Biosens Bioelectron 2023; 234:115336. [PMID: 37126875 DOI: 10.1016/j.bios.2023.115336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
A molecularly imprinted electrochemiluminescence sensor (MIECLS) is constructed to selectively detect clenbuterol (CLB) based on boron nitride quantum dots@gold nanoflowers/silver nanowires (BNQDs@AuNFs/AgNWs). The abundant amino and hydroxyl groups on the surface of the BNQDs generate an electrostatic self-assembly effect with the multi-tipped spatial structure of AuNFs, constituting a novel nanoscale co-reaction accelerator (NCRA) with high activity and large load capacity. An NCRA embedded in the network structure of the AgNW luminophores significantly promotes the reduction of peroxydisulfate (S2O82-) to sulfate anion radicals (SO4-•) through the catalysis of amino groups and boron radicals (B•) and the electron acceleration of AuNFs while also reducing the reaction distance between SO4-• and AgNWs-•, realizing the multiple synergistic amplification of the electrochemiluminescence (ECL) signal. Imprinted cavities in the molecularly imprinted polymers (MIPs) prepared by electropolymerization can generate a "blocking-effect" by recognizing CLB, realizing ECL signal quenching. Analytical results indicate that the established MIECLS detects CLB in a line concentration range of 0.5-50000 nM and detection limit of 0.00693 nM. The spiked recoveries are 85.90%-97.77%, with the relative standard deviations (RSD) under 5.1%, consistent with those of high-performance liquid chromatography (HPLC). This work demonstrates that an efficient NCRA can significantly enhance the output of the ECL signal in collaboration with the original luminophore, providing a new method to realize the ultra-detection of targeted substances by MIECLS.
Collapse
Affiliation(s)
- Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wen Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal Bioanal Chem 2022; 414:4717-4726. [PMID: 35589864 DOI: 10.1007/s00216-022-04094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
A new fluorescent probe TPE-GHK was synthesized containing a tetrastyrene (TPE) derivative as fluorophore and classical tripeptide (Gly-His-Lys-NH2) as a receptor based on the aggregation-induced emission (AIE) mechanism. TPE-GHK displayed high selectivity and rapid fluorescent "turn-on" response to Hg2+ among other competitive metal ions. The 2:1 complex binding mechanism of TPE-GHK toward Hg2+ was verified by fluorometric titration, Job's plots, and ESI-HRMS spectra. The fluorescent emission showed a good linear response in the range of 0-1.0 μM with the low detection limit of 28.6 nM. Meanwhile, TPE-GHK exhibited the excellent biocompatibility and low toxicity and was successfully applied in monitoring Hg2+ in living CAKI 2 cells, which demonstrated its potential application in environment and biological science. More importantly, TPE-GHK could be used to detect Hg2+ in two real water samples and also was successfully designed as test strips.
Collapse
|
5
|
Pei S, Li J, Kang N, Zhang G, Zhang B, Zhang C, Shuang S. Synthesis of a new environment-sensitive fluorescent probe based on TICT and application for detection of human serum albumin and specific lipid droplets imaging. Anal Chim Acta 2022; 1190:339267. [PMID: 34857148 DOI: 10.1016/j.aca.2021.339267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Environment-sensitive fluorescent probes have always been as forceful tools to understand the pathophysiological processes of relevant diseases. In this work, a new fluorescent probe with typical D-π-A structure was designed and showed high sensitivity to polarity and viscosity changes. DPAR could selectively detect human serum albumin (HSA) with turn-on orange emission in aqueous PBS buffer (pH 7.4), which showed advantages such as rapid response (4 min), high sensitivity (LOD 0.98 μg/mL). Therefore, it was successfully used for achieving HSA levels in urine samples and HSA imaging in HeLa cells. DPAR also exhibited the capability to recognize the cancer cells over the normal cells by lower polarity guided lipid droplets (LDs) imaging (in green emission channel). The detection mechanism for HSA and cancer diagnosis was convinced that DPAR encountered the lower-polarity and higher-viscosity microenvironment, resulting in the confinement of the TICT process and intramolecular rotation. These facts showed that DPAR had good application prospects in environment-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Shizeng Pei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jiale Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Na Kang
- School of Engineering, Yanching Institute of Technology, Sanhe, 065200, China.
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Bo Zhang
- Huayang New Material Technology Group Co., Ltd., Yangquan, 045000, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 2022; 342:228-240. [PMID: 35016917 DOI: 10.1016/j.jconrel.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
7
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
8
|
Bapli A, Jana R, Pandit S, Seth D. Selective prototropism of lumichrome in the liposome/graphene oxide interface: A detailed spectroscopic study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kim SH, Lee DH, Choi S, Yang JY, Jung K, Jeong J, Oh JH, Lee JH. Skin Sensitization Potential and Cellular ROS-Induced Cytotoxicity of Silica Nanoparticles. NANOMATERIALS 2021; 11:nano11082140. [PMID: 34443968 PMCID: PMC8399877 DOI: 10.3390/nano11082140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Nowadays, various industries using nanomaterials are growing rapidly, and in particular, as the commercialization and use of nanomaterials increase in the cosmetic field, the possibility of exposure of nanomaterials to the skin of product producers and consumers is increasing. Due to the unique properties of nanomaterials with a very small size, they can act as hapten and induce immune responses and skin sensitization, so accurate identification of toxicity is required. Therefore, we selected silica nanomaterials used in various fields such as cosmetics and biomaterials and evaluated the skin sensitization potential step-by-step according to in-vitro and in-vivo alternative test methods. KeratinoSensTM cells of modified keratinocyte and THP-1 cells mimicking dendritic-cells were treated with silica nanoparticles, and their potential for skin sensitization and cytotoxicity were evaluated, respectively. We also confirmed the sensitizing ability of silica nanoparticles in the auricle-lymph nodes of BALB/C mice by in-vivo analysis. As a result, silica nanoparticles showed high protein binding and reactive oxygen species (ROS) mediated cytotoxicity, but no significant observation of skin sensitization indicators was observed. Although more studies are needed to elucidate the mechanism of skin sensitization by nanomaterials, the results of this study showed that silica nanoparticles did not induce skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Correspondence: (S.-H.K.); (J.H.L.); Tel.: +82-43-719-5110 (S.-H.K.); +82-43-719-5106 (J.H.L.); Fax.: +82-43-719-5100 (S.-H.K. & J.H.L.)
| | | | | | | | | | | | | | - Jin Hee Lee
- Correspondence: (S.-H.K.); (J.H.L.); Tel.: +82-43-719-5110 (S.-H.K.); +82-43-719-5106 (J.H.L.); Fax.: +82-43-719-5100 (S.-H.K. & J.H.L.)
| |
Collapse
|
10
|
Romo-Herrera J, Juarez-Moreno K, Guerrini L, Kang Y, Feliu N, Parak W, Alvarez-Puebla R. Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Mater Today Bio 2021; 11:100125. [PMID: 34485892 PMCID: PMC8397899 DOI: 10.1016/j.mtbio.2021.100125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The engineering of advanced materials capable of mimicking the cellular micro-environment while providing cells with physicochemical cues is central for cell culture applications. In this regard, paper meets key requirements in terms of biocompatibility, hydrophilicity, porosity, mechanical strength, ease of physicochemical modifications, cost, and ease of large-scale production, to be used as a scaffold material for biomedical applications. Most notably, paper has demonstrated the potential to become an attractive alternative to conventional biomaterials for creating two-dimensional (2D) and three-dimensional (3D) biomimetic cell culture models that mimic the features of in vivo tissue environments for improving our understanding of cell behavior (e.g. growth, cell migration, proliferation, differentiation and tumor metastasis) in their natural state. On the other hand, integration of plasmonic nanomaterials (e.g. gold nanoparticles) within the fibrous structure of paper opens the possibility to generate multifunctional scaffolds equipped with biosensing tools for monitoring different cell cues through physicochemical signals. Among different plasmonic based detection techniques, surface-enhanced Raman scattering (SERS) spectroscopy emerged as a highly specific and sensitive optical tool for its extraordinary sensitivity and the ability for multidimensional and accurate molecular identification. Thus, paper-based plasmonic substrates in combination with SERS optical detection represent a powerful future platform for monitoring cell cues during cell culture processes. To this end, in this review, we will describe the different methods for fabricating hybrid paper-plasmonic nanoparticle substrates and their use in combination with SERS spectroscopy for biosensing and, more specifically, in cell culture applications.
Collapse
Affiliation(s)
- J.M. Romo-Herrera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
| | - K. Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
- CONACYT, Catedras at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
| | - L. Guerrini
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili. C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Y. Kang
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
| | - N. Feliu
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
- CAN, Fraunhofer Institute for Applied Polymer Research IAP, Grindelallee 117, 20146 Hamburg, Germany
| | - W.J. Parak
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
| | - R.A. Alvarez-Puebla
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili. C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeja Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Grel H, Ratajczak K, Jakiela S, Stobiecka M. Gated Resonance Energy Transfer (gRET) Controlled by Programmed Death Protein Ligand 1. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1592. [PMID: 32823551 PMCID: PMC7466588 DOI: 10.3390/nano10081592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
Abstract
The resonance energy transfer (RET) between an excited fluorescent probe molecule and a plasmonic nanoparticle (AuNP) has been investigated to evaluate the effect of protein molecules on the RET efficiency. We have found that the energy transfer to a functionalized AuNP can be modulated by a sub-monolayer film of programmed death-ligand 1 (PD-L1) protein. The interactions of PD-L1 with AuNP@Cit involve incorporation of the protein in AuNP shell and formation of a submonolayer adsorption film with voids enabling gated surface plasmon resonance energy transfer (SPRET). A model of the gated-RET system based on the protein size, estimated using Fisher-Polikarpov-Craievich density approximation, has been developed and can be utilized for other proteins, with minimum data requirement, as well. The value of the equilibrium constant KL determined for the Langmuir isotherm is high: KL = 1.27 × 108 M-1, enabling highly sensitive control of the gated-RET by PD-L1. Thus, with the gated-RET technique, one can determine PD-L1 within the dynamic range, extending from 1.2 to 50 nM. Moreover, we have found that the Gibbs free energy for PD-L1 binding to AuNP@Cit is -46.26 kJ/mol (-11.05 kcal/mol), indicating a strong adsorption with supramolecular interactions. The proposed gated-RET system, with the fluorescence intensity of the fluorophore probe molecule modulated by plasmonic quenching with AuNP and shielding of energy transfer by the adsorbed PD-L1 can be further developed for determination of PD-L1 in pharmaceutical formulations for immune checkpoint control in cancer therapy.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| |
Collapse
|
12
|
Silanized carbon dot-based thermo-sensitive molecularly imprinted fluorescent sensor for bovine hemoglobin detection. Anal Bioanal Chem 2020; 412:5811-5817. [PMID: 32651648 DOI: 10.1007/s00216-020-02803-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Using the surface molecular imprinting technique, a thermo-sensitive molecularly imprinted fluorescent sensor was constructed for bovine hemoglobin (BHb) detection with the silanized carbon dots (CD@SiO2) as fluorescent signal, N-isopropylacrylamide as monomer sensitive to temperature, and BHb as template. The silanized carbon dots coated by the molecularly imprinted polymer (CD@SiO2@MIP) were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Owing to the combination of the strong fluorescence sensitivity of CDs and the high selectivity of the molecular imprinting shell, the prepared sensor showed good recognition and detection performance to the target protein BHb, with a linear range of 0.31-1.55 μM and a detection limit of 1.55 μM. Furthermore, the sensor was utilized to detect the content of BHb in real urine with a recovery of 98.6-100.5%. The CD@SiO2@MIP sensors present a high potential for applications in the detection of BHb in biological systems. Graphical abstract.
Collapse
|
13
|
Li Z, Jiang H, Liu S, Li Y, Yuchi Z, Gao Q. Ryanodine receptor-targeting small molecule fluorescent probes enables non-isotopic labeling and efficient drug screening for green insecticides. Anal Chim Acta 2020; 1108:108-117. [PMID: 32222232 DOI: 10.1016/j.aca.2020.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
Ryanodine receptors (RyRs) are calcium release channels located on endoplasmic reticulum (ER) membrane, which play important role in excitation-contraction coupling in muscular response. Flubendiamide represents a novel chemical family of green insecticides which selectively activate invertebrate RyR by interacting with the receptor distinct from the ryanodine binding site and has almost no effect on mammalian ryanodine receptors. Traditional methods to screen RyR modulators involve either radio-labeled RyR substrates or calcium signal-based indirect approaches. However, there is lack of RyR-directed non-isotope molecular tools for RyR agonists/antagonists screening and bioimaging. Here we developed a series of fluorescent probes based on the pharmacophore of flubendiamide with the aims to elucidate the mechanism of diamide insecticides and screen novel RyR-targeting insecticides. These probes revealed the specific RyR staining and in vivo RyR targeting properties in diamondback moth RyR transfected Sf9 cells (Sf9-RyR) and RyR enriched insect tissues. The designed fluorescent probes could induce an effective calcium release from ER membrane of Sf9-RyR cells and also showed competitive RyR binding effect with flubendiamide in cell-based fluorometric assay. Having the non-isotope RyR recognition probes will not only accelerate the screening process of new green agrochemicals but also enables deciphering molecular mechanisms of the high selectivity and the drug resistance associated with the diamides.
Collapse
Affiliation(s)
- Zizhen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Central Institute of Pharmaceutical Research, CSPC Pharmaceutical Group, 226 Huanhe Road, Shijiazhuang, Hebei, 050035, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shengnan Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Weijin Road 94th, Tianjin, 300071, China.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Department of Biology, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin, 300384, China.
| |
Collapse
|
14
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
15
|
Abstract
The field of nanomedicine has recently emerged as a product of the expansion of a range of nanotechnologies into biomedical science, pharmacology and clinical practice. Due to the unique properties of nanoparticles and the related nanostructures, their applications to medical diagnostics, imaging, controlled drug and gene delivery, monitoring of therapeutic outcomes, and aiding in medical interventions, provide a new perspective for challenging problems in such demanding issues as those involved in the treatment of cancer or debilitating neurological diseases. In this review, we evaluate the role and contributions that the applications of magnetic nanoparticles (MNPs) have made to various aspects of nanomedicine, including the newest magnetic particle imaging (MPI) technology allowing for outstanding spatial and temporal resolution that enables targeted contrast enhancement and real-time assistance during medical interventions. We also evaluate the applications of MNPs to the development of targeted drug delivery systems with magnetic field guidance/focusing and controlled drug release that mitigate chemotherapeutic drugs’ side effects and damage to healthy cells. These systems enable tackling of multiple drug resistance which develops in cancer cells during chemotherapeutic treatment. Furthermore, the progress in development of ROS- and heat-generating magnetic nanocarriers and magneto-mechanical cancer cell destruction, induced by an external magnetic field, is also discussed. The crucial roles of MNPs in the development of biosensors and microfluidic paper array devices (µPADs) for the detection of cancer biomarkers and circulating tumor cells (CTCs) are also assessed. Future challenges concerning the role and contributions of MNPs to the progress in nanomedicine have been outlined.
Collapse
|
16
|
FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties. Biosens Bioelectron 2019; 148:111832. [PMID: 31706173 DOI: 10.1016/j.bios.2019.111832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Fluorescence-activated cell sorting (FACS) has rarely been applied to screening of microorganisms because of poor detection resolution, which is compromised by poor stability, toxicity, or interference from background fluorescence of the fluorescence sensors used. Here, a fluorescence-based rapid high-throughput cell sorting method was first developed using a fluorescence resonance energy transfer (FRET) fluorescent nanoprobe NP-RA, which was constructed by coating a silica nanoparticle with Rhodamine B and methyl-red (an azo dye). Rhodamine B (inner layer) is the FRET donor and methyl-red (outer layer) is the acceptor. This ready-to-use NP-RA is non-fluorescent, but fluoresces once the outer layer is degraded by microorganisms. In our experiment, NP-RA was ultrasensitive to model strain Shewanella decolorationis S12, showing a broad detection range from 8.0 cfu/mL to 8.7 × 108 cfu/mL under confocal laser scanning microscopy, and from 1.1 × 107 to 9.36 × 108 cfu/mL under a fluorometer. In addition, NP-RA bioimaging can clearly identify other azo-respiring cells in the microbial community, including Bosea thiooxidans DSM 9653 and Lysinibacillus pakistanensis NCCP-54. Furthermore, the fluorescent probe NP-RA is compatible with downstream FACS so that azo-respiring cells can be rapidly sorted out directly from an artificial microbial community. To our knowledge, no fluorescent nanoprobe has yet been designed for tracking and sorting azo-respiration functional microorganisms.
Collapse
|
17
|
Man T, Lai W, Xiao M, Wang X, Chandrasekaran AR, Pei H, Li L. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 2019; 147:111742. [PMID: 31672389 DOI: 10.1016/j.bios.2019.111742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) as one of the effective tools for sensitive and selective detection of biomolecules has attracted tremendous attention. Here, we construct a versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy (PIERS) effect for ultrasensitive detection of multiple analytes. In our PIERS sensor, we exploit the molecular recognition capacity of aptamers and the high affinity of aptamers with analyte to trigger TiO2@AgNP substrates binding with Raman tag-labeled gold nanoparticles probes via analyte, thus forming sandwich complexes. Additionally, combining plasmonic nanoparticles with photo-activated substrates allows PIERS sensor to achieve increased sensitivity beyond the normal SERS effect upon ultraviolet irradiation. Accordingly, the PIERS can be implemented for analysis of multiple analytes by designing different analyte aptamers, and we further demonstrate that the constructed PIERS sensor can serve as a versatile detection platform for sensitively analyzing various biomolecules including small molecules (adenosine triphosphate (ATP), limit of detection (LOD) of 0.1 nM), a biomarker (thrombin, LOD of 50 pM), and a drug (cocaine, LOD of 5 nM). Therefore, this versatile biomolecular detection platform based on PIERS effect for ultrasensitive detection of multiple analytes holds great promise to be a practical tool.
Collapse
Affiliation(s)
- Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | | | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
18
|
Miao P, Liu Z, Guo J, Yuan M, Zhong R, Wang L, Zhang F. A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC Adv 2019; 9:17698-17705. [PMID: 35520579 PMCID: PMC9064595 DOI: 10.1039/c9ra02460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023] Open
Abstract
Nitrite is a common food additive, however, its reduction product, nitrosamine, is a strong carcinogen, and hence the ultra-sensitive detection of nitrite is an effective means to prevent related cancers. In this study, different sized gold nanoparticles (AuNPs) were modified with P-aminothiophenol (ATP) and naphthylethylenediamine (NED). In the presence of nitrite, satellite-like AuNPs aggregates formed via the diazotization coupling reaction and the color of the system was changed by the functionalized AuNPs aggregates. The carcinogenic nitrite content could be detected by colorimetry according to the change in the system color. The linear concentration range of sodium nitrite was 0-1.0 μg mL-1 and the detection limit was determined to be 3.0 ng mL-1. Compared with the traditional method, this method has the advantages of high sensitivity, low detection limit, good selectivity and can significantly lower the naked-eye detection limit to 3.0 ng mL-1. In addition, this method is suitable for the determination of nitrite in various foods. We think this novel designed highly sensitive nitrate nanosensor holds great market potential.
Collapse
Affiliation(s)
- Pandeng Miao
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zhongdong Liu
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
| | - Jun Guo
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ming Yuan
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ruibo Zhong
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| | - Feng Zhang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| |
Collapse
|
19
|
Zong H, Wang X, Mu X, Wang J, Sun M. Plasmon-Enhanced Fluorescence Resonance Energy Transfer. CHEM REC 2019; 19:818-842. [PMID: 30716206 DOI: 10.1002/tcr.201800181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022]
Abstract
In this review, we firstly introduce physical mechanism of fluorescence resonance energy transfer (FRET), the methods to measure FRET efficiency, and the applications of FRET. Secondly, we introduce the principle and applications of plasmon-enhanced fluorescence (PEF). Thirdly, we focused on the principle and applications of plasmon-enhanced FRET. This review can promote further understanding of FRET and PE-FRET.
Collapse
Affiliation(s)
- Huan Zong
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China.,School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xijiao Mu
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jingang Wang
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
20
|
Cao SH, Weng YH, Xie KX, Wang ZC, Pan XH, Chen M, Zhai YY, Xu LT, Li YQ. Surface Plasmon Coupled Fluorescence-Enhanced Interfacial “Molecular Beacon” To Probe Biorecognition Switching: An Efficient, Versatile, and Facile Signaling Biochip. ACS APPLIED BIO MATERIALS 2019; 2:625-629. [DOI: 10.1021/acsabm.8b00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zheng-Chuang Wang
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao-Hui Pan
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Yun Zhai
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lin-Tao Xu
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
21
|
Investigation of the Effects of Polymer Dispersants on Dispersion of GO Nanosheets in Cement Composites and Relative Microstructures/Performances. NANOMATERIALS 2018; 8:nano8120964. [PMID: 30469503 PMCID: PMC6316744 DOI: 10.3390/nano8120964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
This study focused on the uniform distribution of graphene oxide (GO) nanosheets in cement composites and their effect on microstructure and performance. For this, three polymer dispersants with different level of polar groups (weak, mild, and strong) poly(acrylamide-methacrylic acid) (PAM), poly(acrylonitrile-hydroxyethyl acrylate) (PAH), and poly(allylamine-acrylamide) (PAA) were used to form intercalation composites with GO nanosheets. The results indicated that GO nanosheets can exist as individual 1⁻2, 2⁻5, and 3⁻8 layers in GO/PAA, GO/PAH, and GO/PAM intercalation composites, respectively. The few-layered (1⁻2 layers) GO can be uniformly distributed in cement composites and promote the formation of regular-shaped crystals and a compact microstructure. The compressive strengths of the blank, control, GO/PAM, GO/PAH, and GO/PAA cement composites were 55.72, 78.31, 89.75, 116.82, and 128.32 MPa, respectively. Their increase ratios relative to the blank sample were 40.54%, 61.07%, 109.66%, and 130.29%, respectively. Their corresponding flexural strengths were 7.53, 10.85, 12.35, 15.97, and 17.68 MPa, respectively, which correspond to improvements of 44.09%, 64.01%, 112.09%, and 134.79%.
Collapse
|
22
|
Gai QQ, Wang DM, Huang RF, Liang XX, Wu HL, Tao XY. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2′-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications. Biosens Bioelectron 2018; 118:80-87. [DOI: 10.1016/j.bios.2018.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
23
|
Liao S, Huang X, Yang H, Chen X. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal Bioanal Chem 2018; 410:7701-7710. [PMID: 30269161 DOI: 10.1007/s00216-018-1387-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/24/2022]
Abstract
A facile one-step hydrothermal method was developed to synthesize nitrogen-doped carbon quantum dots (N-CQDs) by utilizing hexamethylenetetramine as the carbon and nitrogen source. The quantum yield (QY) of 21.7% was under the excitation wavelength of 420 nm with maximum emission at 508 nm. This N-CQD fluorescent probe has been successfully applied to selectively determine the concentration of copper ion (Cu2+) with a linear range of 0.1-40 μM and a limit of detection of 0.09 μM. In addition, the fluorescence of N-CQDs could be effectively quenched by Cu2+ and specifically recovered by glutathione (GSH), which render the N-CQDs as a premium fluorescent probe for GSH detection. This fluorescence "turn-on" protocol was applied to determine GSH with a linear range of 0.1-30 μM as well as a detection limit of 0.05 μM. For pH detection, there is good linearity in the pH range of 2.87-7.24. Furthermore, N-CQD is a promising and convenient fluorescent pH, Cu2+, and glutathione sensor with brilliant biocompatibility and low cytotoxicity in environmental monitoring and bioimaging applications.
Collapse
Affiliation(s)
- Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xueqian Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
24
|
Lv Y, Xing B, Zheng M, Yi G, Huang G, Zhang C, Yuan R, Chen Z, Cao Y. Hydrothermal Synthesis of Ultra-Light Coal-Based Graphene Oxide Aerogel for Efficient Removal of Dyes from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E670. [PMID: 30158446 PMCID: PMC6164370 DOI: 10.3390/nano8090670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
A novel carboxymethyl cellulose (CMC)-supported graphene oxide aerogel (CGOA) was fabricated from a cost-effective and abundant bituminous coal by a mild hydrothermal process and freeze-drying treatment. Such an aerogel has cross-linked graphene oxide layers supported by CMC, and therefore, displays high mechanical strength while having ultra-low density (8.257 mg·cm-3). The CGOA has a 3D interconnected porous structure, beneficial graphene framework defects and abundant oxygen-containing functional groups, which offer favorable diffusion channels and effective adsorption sites for the transport and adsorption of dye molecules. The adsorption performance of rhodamine B by an optimized CGOA shows a maximum monolayer adsorption capacity of 312.50 mg·g-1, as determined by Langmuir isotherm parameters. This CGOA exhibited a better adsorption efficiency (99.99%) in alkaline solution, and satisfactory stability (90.60%) after three cycles. In addition, adsorption experiments on various dyes have revealed that CGOA have better adsorption capacities for cationic dyes than anionic dyes.
Collapse
Affiliation(s)
- You Lv
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Baolin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingkun Zheng
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Guangxu Huang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ruifu Yuan
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Zhengfei Chen
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yijun Cao
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: A comparative study. Biosens Bioelectron 2018; 102:226-233. [DOI: 10.1016/j.bios.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
|
26
|
Huang L, Zhang L, Yang L, Yuan R, Yuan Y. Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor. Biosens Bioelectron 2017; 104:21-26. [PMID: 29294407 DOI: 10.1016/j.bios.2017.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022]
Abstract
In this work, the manganese porphyrin (MnPP) decorated on DNA networks could serve as quencher and mimicking enzyme to efficiently reduce the photocurrent of photoactive material 3,4,9,10-perylene tetracarboxylic acid (PTCA), which was elaborately used to construct a novel label-free aptasensor for ultrasensitive detection of thrombin (TB) in a signal-off manner. The Au-doped PTCA (PTCA-PEI-Au) with outstanding membrane-forming and photoelectric property was modified on electrode to acquire a strong initial photoelectrochemistry (PEC) signal. Afterward, target binding aptamer Ι (TBAΙ) was modified on electrode to specially recognize target TB, which could further combine with TBAII and single-stranded DNA P1-modified platinum nanoparticles (TBAII-PtNPs-P1) for immobilizing DNA networks with abundant MnPP. Ingeniously, the MnPP could not only directly quench the photocurrent of PTCA, but also acted as hydrogen peroxide (HRP) mimicking enzyme to remarkably stimulate the deposition of benzo-4-chlorhexidine (4-CD) on electrode for further decreasing the photocurrent of PTCA, thereby obtaining a definitely low photocurrent for detection of TB. As a result, the proposed PEC aptasensor illustrated excellent sensitivity with a low detection limit down to 3 fM, exploiting a new avenue about intergrating two functions in one substance for ultrasensitive biological monitoring.
Collapse
Affiliation(s)
- Liaojing Huang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Li Zhang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Liu Yang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Yali Yuan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
27
|
Ratajczak K, Stobiecka M. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers. J Phys Chem B 2017. [PMID: 28650635 DOI: 10.1021/acs.jpcb.7b04295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interactions of fluorescent probes and biomolecules with nanocarriers are of key importance to the emerging targeted drug delivery systems. Graphene oxide nanosheets (GONs) as the nanocarriers offer biocompatibility and robust drug binding capacity. The interactions of GONs with fluorophores lead to strong fluorescence quenching, which may interfere with fluorescence bioimaging and biodetection. Herein, we report on the interactions and energy transfers in a model ternary system: GONs-FITC-ATP, where FITC is a model fluorophore (fluorescein isothiocyanate) and ATP is a common biomolecule (adenosine-5'-triphosphate). We have found that FITC fluorescence is considerably quenched by ATP (the quenching constant KSV = 113 ± 22 M-1). The temperature coefficient of KSV is positive (αT = 4.15 M-1deg-1). The detailed analysis of a model for internal self-quenching of FITC indicates that the temperature dependence of the net quenching efficiency η for the FITC-ATP pair is dominated by FITC internal self-quenching modes with their contribution estimated at 79%. The quenching of FITC by GONs is much stronger (KSV = 598 ± 29 M-1) than that of FITC-ATP and is associated with the formation of supramolecular assemblies bound with hydrogen bonding and π-π stacking interactions. For the analysis of the complex behavior of the ternary system GONs-FITC-ATP, a model of chemisorption of ATP on GONs, with partial blocking of FITC quenching, has been developed. Our results indicate that ATP acts as a moderator for FITC quenching by GONs. The interactions between ATP, FITC, and GONs have been corroborated using molecular dynamics and quantum mechanical calculations.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street, 02776 Warsaw, Poland
| |
Collapse
|
28
|
Rao H, Gao Y, Ge H, Zhang Z, Liu X, Yang Y, Liu Y, Liu W, Zou P, Wang Y, Wang X, He H, Zeng X. An “on-off-on” fluorescent probe for ascorbic acid based on Cu-ZnCdS quantum dots and α-MnO2 nanorods. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0389-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosens Bioelectron 2017; 92:266-272. [DOI: 10.1016/j.bios.2017.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
|
30
|
Abnous K, Danesh NM, Alibolandi M, Ramezani M, Sarreshtehdar Emrani A, Zolfaghari R, Taghdisi SM. A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B 1. Biosens Bioelectron 2017; 94:374-379. [PMID: 28319905 DOI: 10.1016/j.bios.2017.03.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
Abstract
There is a prompt need for determination of aflatoxin B1 (AFB1) in food products to avoid distribution and consumption of contaminated food products. In this study, an accurate electrochemical sensing strategy was presented for detection of AFB1 based on aptamer (Apt)-complementary strands of aptamer (CSs) complex which forms a π-shape structure on the surface of electrode and exonuclease I (Exo I). The presence of π-shape structure as a double-layer physical barrier allowed detection of AFB1 with high sensitivity. In the absence of AFB1, the π-shape structure remained intact, so only a weak peak current was recorded. Upon the addition of AFB1, the π-shape structure was disassembled and a strong current was recorded following the addition of Exo I. Under optimal conditions, the electrochemical signals enhanced as AFB1 concentrations increased with a dynamic range of 7-500pg/mL and a limit of detection (LOD) of 2pg/mL. The developed aptasensor was also used to analyze AFB1 spiked human serum and grape juice samples and the recoveries were 95.4-108.1%.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reza Zolfaghari
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Chinnakkannu Vijayakumar S, Venkatakrishnan K, Tan B. SERS Active Nanobiosensor Functionalized by Self-Assembled 3D Nickel Nanonetworks for Glutathione Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5077-5091. [PMID: 28117567 DOI: 10.1021/acsami.6b13576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a "non-noble metal" based SERS active nanobiosensor using a self-assembled 3D hybrid nickel nanonetwork. A tunable biomolecule detector fabricated by a bottom-up approach was functionalized using a multiphoton ionization energy mechanism to create a self-assembled 3D hybrid nickel nanonetwork. The nanonetwork was tested for SERS detection of crystal violet (CV) and glutathione (GSH) at two excitation wavelengths, 532 and 785 nm. The results reveal indiscernible peaks with a limit of detection (LOD) of 1 picomolar (pM) concentration. An enhancement factor (EF) of 9.3 × 108 was achieved for the chemical molecule CV and 1.8 × 109 for the biomolecule GSH, which are the highest reported values so far. The two results, one being the CV molecule proved that nickel nanonetwork is indeed SERS active and the second being the GSH biomolecule detection at both 532 and 785 nm, confirm that the nanonetwork is a biosensor which has potential for both in vivo and in vitro sensing. In addition, the selectivity and versatility of this biosensor is examined with biomolecules such as l-Cysteine, l-Methionine, and sensing GSH in cell culture medium which mimics the complex biological environment. The functionalized self-assembled 3D hybrid nickel nanonetwork exhibits electromagnetic and charge transfer based SERS activation mechanisms.
Collapse
Affiliation(s)
- Sivaprasad Chinnakkannu Vijayakumar
- Micro/Nanofabrication facility, Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Micro/Nanofabrication facility, Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria street, Toronto, Ontario M5B 2K3, Canada
- Affiliate Scientist, Keenan Research Center, St. Michael's Hospital , 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada
| | - Bo Tan
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
32
|
Kurzątkowska K, Santiago T, Hepel M. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery. Biosens Bioelectron 2017; 91:780-787. [PMID: 28142123 DOI: 10.1016/j.bios.2017.01.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol.
Collapse
Affiliation(s)
- Katarzyna Kurzątkowska
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Ty Santiago
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA.
| |
Collapse
|
33
|
Liu J, Zhang Y, Jiang M, Tian L, Sun S, Zhao N, Zhao F, Li Y. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens Bioelectron 2017; 91:714-720. [PMID: 28126661 DOI: 10.1016/j.bios.2017.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/04/2023]
Abstract
In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10-6-4×10-4M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10-11-4×10-9M with remarkably low detection limit of 8×10-12M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently.
Collapse
Affiliation(s)
- Jiang Liu
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yu Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Min Jiang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Liping Tian
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Na Zhao
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Feilang Zhao
- Jiangsu Devote Instrumental Science & Technology Co., Ltd., Huai'an, China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| |
Collapse
|
34
|
Higgins LJ, Marocico CA, Karanikolas VD, Bell AP, Gough JJ, Murphy GP, Parbrook PJ, Bradley AL. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer. NANOSCALE 2016; 8:18170-18179. [PMID: 27740658 DOI: 10.1039/c6nr05990b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a ∼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ∼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of ∼1.7 the competing quenching by the array, with an array emission factor of ∼0.7, results in only an overall gain of ∼14% in the QD emission. The QD emission was enhanced by ∼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of ∼1.4.
Collapse
Affiliation(s)
- Luke J Higgins
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Cristian A Marocico
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | | | - Alan P Bell
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - John J Gough
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Graham P Murphy
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Peter J Parbrook
- Tyndall National Institute and School of Engineering, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland
| | - A Louise Bradley
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
35
|
Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins. Anal Chim Acta 2016; 941:35-40. [DOI: 10.1016/j.aca.2016.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022]
|
36
|
Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Liu Y, Wang Y, Liu L, He Y, He Q, Ji Y. The detection method for small molecules coupled with a molecularly imprinted polymer/quantum dot chip using a home-built optical system. Anal Bioanal Chem 2016; 408:5261-8. [DOI: 10.1007/s00216-016-9620-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022]
|
38
|
Stobiecka M, Chalupa A. DNA Strand Replacement Mechanism in Molecular Beacons Encoded for the Detection of Cancer Biomarkers. J Phys Chem B 2016; 120:4782-90. [PMID: 27187043 DOI: 10.1021/acs.jpcb.6b03475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling properties of a fluorescent hairpin oligonucleotide molecular beacon (MB) encoded to recognize protein survivin (Sur) mRNA have been investigated. The process of complementary target binding to SurMB with 20-mer loop sequence is spontaneous, as expected, and characterized by a high affinity constant (K = 2.51 × 10(16) M(-1)). However, the slow kinetics at room temperature makes it highly irreversible. To understand the intricacies of target binding to MB, a detailed kinetic study has been performed to determine the rate constants and activation energy Ea for the reaction at physiological temperature (37 °C). Special attention has been paid to assess the value of Ea in view of reports of negative activation enthalpy for some nucleic acid reactions that would make the target binding even slower at increasing temperatures in a non-Arrhenius process. The target-binding rate constant determined is k = 3.99 × 10(3) M(-1) s(-1) at 37 °C with Ea = 28.7 ± 2.3 kcal/mol (120.2 ± 9.6 kJ/mol) for the temperature range of 23 to 55 °C. The positive high value of Ea is consistent with a kinetically controlled classical Arrhenius process. We hypothesize that the likely contribution to the activation energy barrier comes from the SurMB stem melting (tm = 53.7 ± 0.2 °C), which is a necessary step in the completion of target strand hybridization with the SurMB loop. A low limit of detection (LOD = 2 nM) for target tDNA has been achieved. Small effects of conformational polymorphs of SurMB have been observed on melting curves. Although these polymorphs could potentially cause a negative Ea, their effect on kinetic transients for target binding is negligible. No toehold preceding steps in the mechanism of target binding were identified.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW) , 02776 Warsaw, Poland
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers , 11010 Barczewo, Poland
| |
Collapse
|
39
|
Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches. Anal Bioanal Chem 2016; 408:4287-95. [DOI: 10.1007/s00216-016-9520-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
|
40
|
Signal Improvement Strategies for Fluorescence Detection of Biomacromolecules. J Fluoresc 2016; 26:1131-9. [DOI: 10.1007/s10895-016-1806-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
41
|
Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Biosens Bioelectron 2016; 82:26-31. [PMID: 27031188 DOI: 10.1016/j.bios.2016.03.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/13/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
Abstract
Here we designed a near-infrared electrochemiluminescence (NECL) aptasensor for turn-on ultrasensitive determination of thrombin. It was based on the ECL resonance energy transfer (ECL-RET) of CdTe/CdS coresmall/shellthick quantum dots (QDs) to gold nanorods (AuNRs). AuNRs which functioned as ECL acceptors were assembled onto CdTe/CdS film by DNA hybridization between aptamers and their complementary oligonucleotides. In the absence of thrombin, the NECL of QDs was quenched as a result of the ECL-RET of QDs to AuNRs. In the presence of thrombin, the NECL of the system was "turned on" because thrombin can replace the AuNRs onto the QDs film, owing to the specific aptamer-protein affinity interactions. In this way, the increment of ECL intensity and the concentration of thrombin showed a logarithmic linear correlation in the range of 100 aM to 10 fM with a detection limit of 31 aM (S/N=3). Importantly, the developed aptasensor was successfully applied to thrombin sensing in real serum samples.
Collapse
|
42
|
Spherical silver nanoparticles in the detection of thermally denatured collagens. Anal Bioanal Chem 2016; 408:1993-6. [PMID: 26847191 DOI: 10.1007/s00216-016-9330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
We have developed a rapid colorimetric method to determine the concentration of denatured collagen in solution, which is based on the collagen-silver nanoparticle corona formation. Using the proposed method, the lowest detectable concentration of denatured collagen protein in a solution of pure collagen was 14.7, 8.5, and 8.6 μg mL(-1) for porcine (PCOL), rat tail (RCOL), and type I human recombinant (HCOL) collagen, respectively.
Collapse
|
43
|
Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme. Anal Bioanal Chem 2016; 408:2083-93. [DOI: 10.1007/s00216-015-9298-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
|
44
|
Yuan PX, Deng SY, Xin P, Ji XB, Shan D, Cosnier S. Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis. Biosens Bioelectron 2015; 74:183-9. [DOI: 10.1016/j.bios.2015.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 01/03/2023]
|
45
|
Tintoré M, Mazzini S, Polito L, Marelli M, Latorre A, Somoza Á, Aviñó A, Fàbrega C, Eritja R. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers. Int J Mol Sci 2015; 16:27625-39. [PMID: 26593913 PMCID: PMC4661904 DOI: 10.3390/ijms161126046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection.
Collapse
Affiliation(s)
- Maria Tintoré
- Department of Chemical and Biomolecular Nanotechnology, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| | - Laura Polito
- Department Institute of Molecular Science and Technologies, ISTM-CNR, Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Marcello Marelli
- Department Institute of Molecular Science and Technologies, ISTM-CNR, Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Alfonso Latorre
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia), Asociada al Centro Nacional de Biotecnología (CSIC), C/Faraday 9, 28049 Madrid, Spain.
| | - Álvaro Somoza
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia), Asociada al Centro Nacional de Biotecnología (CSIC), C/Faraday 9, 28049 Madrid, Spain.
| | - Anna Aviñó
- Department of Chemical and Biomolecular Nanotechnology, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Carme Fàbrega
- Department of Chemical and Biomolecular Nanotechnology, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ramon Eritja
- Department of Chemical and Biomolecular Nanotechnology, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
46
|
Stobiecka M, Chalupa A, Dworakowska B. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies. Biosens Bioelectron 2015; 84:37-43. [PMID: 26507667 DOI: 10.1016/j.bios.2015.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Abstract
The anti-apoptotic protein survivin (Sur) plays an important role in the regulation of cell division and inducing the chemotherapeutic drug resistance. The Sur protein and its mRNA have recently been studied as cancer biomarkers and potential targets for cancer therapy. In this work, we have focused on the design of immunosensors for the detection of Sur based on buried positive-potential barrier layer structure and anti-survivin antibody. The modification of solid AuQC piezoelectrodes was monitored by recording the resonance frequency shift and electrochemical measurements during each step of the sensor preparation. Our results indicate that the immunosensor with covalently bound monoclonal anti-survivin antibody can detect Sur with the limit of detection, LOD=1.7nM (S/N=3σ). The immunosensor applicability for the analysis of real samples was assessed by testing samples of cell lysate solutions obtained from human astrocytoma (glioblastoma) U-87MG cell line, with the experiments performed using the standard addition method. The good linearity of the calibration curves for PBS and lysate solutions at low Sur concentrations confirm the high specificity of the proposed biosensor and good discrimination against nonspecific interactions with lysate components. The calculations indicate that there is still room to increase the Sur capture capacity for Sur while miniaturizing the sensor. The important advantage of the sensor is that it can be reused by a simple regeneration procedure.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences, SGGW, 02-776 Warsaw, Poland.
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers, 11010 Barczewo, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences, SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
47
|
Stobiecka M, Chalupa A. Modulation of Plasmon-Enhanced Resonance Energy Transfer to Gold Nanoparticles by Protein Survivin Channeled-Shell Gating. J Phys Chem B 2015; 119:13227-35. [DOI: 10.1021/acs.jpcb.5b07778] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Stobiecka
- Department
of Biophysics, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers, 11010 Barczewo, Poland
| |
Collapse
|
48
|
Zheng C, Zheng AX, Liu B, Zhang XL, He Y, Li J, Yang HH, Chen G. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun (Camb) 2015; 50:13103-6. [PMID: 25223346 DOI: 10.1039/c4cc05339g] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed a facile one-step approach to synthesize DNA-templated Ag/Pt bimetallic nanoclusters (DNA-Ag/Pt NCs), which possess highly-efficient peroxidase-like catalytic activity. With this finding, an aptamer based sandwich-type strategy is employed to design a label-free colorimetric aptasensor for the protein detection with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Cheng Zheng
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
You J, Jang K, Lee S, Bang D, Haam S, Choi CH, Park J, Na S. Label-free detection of zinc oxide nanowire using a graphene wrapping method. Biosens Bioelectron 2015; 68:481-486. [DOI: 10.1016/j.bios.2015.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
|
50
|
Approach for determination of ATP:ADP molar ratio in mixed solution by surface-enhanced Raman scattering. Biosens Bioelectron 2015; 69:71-6. [PMID: 25703730 DOI: 10.1016/j.bios.2015.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
The ATP:ADP molar ratio is an important physiological factor. However, in previous literatures, ATP and ADP could not be distinguished by Raman spectroscopy due to the high similarity of molecular structure. To challenge this problem, also considering that the γ phosphate group may interact with adenine group and cause a different variation of the Raman spectrum than that of ADP, a highly sensitive, low-cost, environment protecting, flexible and super-hydrophobic Au nanoparticles/cicada wing (Au/CW) substrate with three-dimension structure was fabricated and employed as an active surface-enhanced Raman scattering (SERS) substrate to detect the ATP:ADP molar ratios. The concentration as low as 10(-8)M for ATP and ADP was analyzed to determine the limit of detection. This SERS study on various ATP:ADP molar ratios demonstrates that ATP:ADP could be distinguished and the quantitative determination of ATP content was achieved. Moreover, a principle was speculated based on the molecular structures of ATP and ADP of the Raman peaks centered at ~685 and ~731cm(-1) to explain the linear relationship between the area ratio and the molar ratio. A new method has been developed for quantitative determination of ATP:ADP molar ratio based on Au/CW substrate by the SERS method.
Collapse
|