1
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
2
|
Mehrban M, Madrakian T, Afkhami A, Jalal NR. Fabrication of impedimetric sensor based on metallic nanoparticle for the determination of mesna anticancer drug. Sci Rep 2023; 13:11381. [PMID: 37452101 PMCID: PMC10349103 DOI: 10.1038/s41598-023-38643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a highly effective technique for studying the surface of electrodes in great detail. EIS-based electrochemical sensors have been widely reported, which measure the charge transfer resistance (Rct) of redox probes on electrode surfaces to monitor the binding of target molecules. One of the protective drugs against hemorrhagic cystitis caused by oxazaphosphorine chemotherapy drugs such as ifosfamide, cyclophosphamide and trophosphamide is Mesna (sodium salt of 2-mercaptoethanesulfonate). The increase in the use of Mesna due to the high consumption of anti-cancer drugs, the determination of this drug in biological samples is of particular importance. So far, no electrochemical method has been reported to measure Mesna. In this research, a novel impedimetric sensor based on a glassy carbon electrode (GCE) modified with oxidized multiwalled carbon nanotubes (MWCNTs)/gold nanoparticle (AuNPs) (denoted as Au NPs/MWCNTs/GCE) for impedimetric determination of Mesna anticancer drug was developed. The modified electrode materials were characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and EIS. The electrochemical behavior of Mesna at the surface of Au NPs/MWCNTs/GCE was studied by an impedimetric method. The detection mechanism of Mesna using the proposed impedimetric sensor relied on the increase in the Rct value of [Fe (CN)6]3-/4- as an electrochemical probe in the presence of Mesna compared to the absence of Mesna as the analyte. Under the optimum condition, which covered two linear dynamic ranges from 0.06 nmol L-1 to 1.0 nmol L-1 and 1.0 nmol L-1 to 130.0 µmol L-1, respectively. The detection limit was 0.02 nmol L-1. Finally, the performance of the proposed sensor was investigated for Mesna electrochemical detection in biological samples.
Collapse
Affiliation(s)
- Maryam Mehrban
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | | |
Collapse
|
3
|
Wang WJ, Chou MC, Lee YJ, Hsu WL, Wang GJ. A simple electrochemical immunosensor based on a gold nanoparticle monolayer electrode for neutrophil gelatinase-associated lipocalin detection. Talanta 2022; 246:123530. [DOI: 10.1016/j.talanta.2022.123530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 01/23/2023]
|
4
|
Chou CC, Lin YT, Kuznetsova I, Wang GJ. Genetically Modified Soybean Detection Using a Biosensor Electrode with a Self-Assembled Monolayer of Gold Nanoparticles. BIOSENSORS 2022; 12:207. [PMID: 35448267 PMCID: PMC9025051 DOI: 10.3390/bios12040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, we proposed a genosensor that can qualitatively and quantitatively detect genetically modified soybeans using a simple electrode with evenly distributed single layer gold nanoparticles. The DNA sensing electrode is made by sputtering a gold film on the substrate, and then sequentially depositing 1,6-hexanedithiol and gold nanoparticles with sulfur groups on the substrate. Then, the complementary to the CaMV 35S promoter (P35S) was used as the capture probe. The target DNA directly extracted from the genetically modified soybeans rather than the synthesized DNA segments was used to construct the detection standard curve. The experimental results showed that our genosensor could directly detect genetically modified genes extracted from soybeans. We obtained two percentage calibration curves. The calibration curve corresponding to the lower percentage range (1-6%) exhibits a sensitivity of 2.36 Ω/% with R2 = 0.9983, while the calibration curve corresponding to the higher percentage range (6-40%) possesses a sensitivity of 0.1 Ω/% with R2 = 0.9928. The limit of detection would be 1%. The recovery rates for the 4% and 5.7% GMS DNA were measured to be 104.1% and 102.49% with RSD at 6.24% and 2.54%. The gold nanoparticle sensing electrode developed in this research is suitable for qualitative and quantitative detection of genetically modified soybeans and can be further applied to the detection of other genetically modified crops in the future.
Collapse
Affiliation(s)
- Cheng-Chi Chou
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Ying-Ting Lin
- Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 125009 Moscow, Russia;
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Espinosa JR, Galván M, Quiñones AS, Ayala JL, Ávila V, Durón SM. Electrochemical Resistive DNA Biosensor for the Detection of HPV Type 16. Molecules 2021; 26:molecules26113436. [PMID: 34198893 PMCID: PMC8200989 DOI: 10.3390/molecules26113436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a low-cost and rapid electrochemical resistive DNA biosensor based on the current relaxation method is described. A DNA probe, complementary to the specific human papillomavirus type 16 (HPV-16) sequence, was immobilized onto a screen-printed gold electrode. DNA hybridization was detected by applying a potential step of 30 mV to the system, composed of an external capacitor and the modified electrode DNA/gold, for 750 µs and then relaxed back to the OCP, at which point the voltage and current discharging curves are registered for 25 ms. From the discharging curves, the potential and current relaxation were evaluated, and by using Ohm's law, the charge transfer resistance through the DNA-modified electrode was calculated. The presence of a complementary sequence was detected by the change in resistance when the ssDNA is transformed in dsDNA due to the hybridization event. The target DNA concentration was detected in the range of 5 to 20 nM. The results showed a good fit to the regression equation ΔRtotal(Ω)=2.99 × [DNA]+81.55, and a detection limit of 2.39 nM was obtained. As the sensing approach uses a direct current, the electronic architecture of the biosensor is simple and allows for the separation of faradic and nonfaradaic contributions. The simple electrochemical resistive biosensor reported here is a good candidate for the point-of-care diagnosis of HPV at a low cost and in a short detection time.
Collapse
Affiliation(s)
- José R. Espinosa
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Col. Centro, Av. Ramón López Velarde 801. Zacatecas, Zacatecas C.P. 98000, Mexico
- Unidad Académica de Ingeniería I, Ingeniería Mecánica, Universidad Autónoma de Zacatecas, Col. Centro, Av. Ramón López Velarde 801. Zacatecas, Zacatecas C.P. 98000, Mexico
- Correspondence: (J.R.E.); (S.M.D.); Tel.:+52−4929256690 (ext. 4655) (S.M.D.)
| | - Marisol Galván
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Arturo S. Quiñones
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Jorge L. Ayala
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Verónica Ávila
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Ingeniería Ambiental, Zacatecas C.P. 98160, Mexico;
| | - Sergio M. Durón
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
- Correspondence: (J.R.E.); (S.M.D.); Tel.:+52−4929256690 (ext. 4655) (S.M.D.)
| |
Collapse
|
6
|
Okazaki T, Watanabe T, Kuramitz H. Evanescent-Wave Fiber Optic Sensing of the Anionic Dye Uranine Based on Ion Association Extraction. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2796. [PMID: 32423008 PMCID: PMC7287843 DOI: 10.3390/s20102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
Herein, we propose an evanescent-wave fiber optic sensing technique for the anionic dye uranine based on ion association extraction. The sensor was prepared by removing a section of the cladding from a multimode fiber and hydrophobization of the exposed core surface. Uranine was extracted in association along with hexadecyltrimethylammonium (CTA) ion onto the fiber surface and detected via absorption of the evanescent wave generated on the surface of the exposed fiber core. The effect of CTA+ concentration added for ion association was investigated, revealing that the absorbance of uranine increased with increasing CTA+ concentration. A change in the sensor response as a function of the added uranine concentration was clearly observed. The extraction data were analyzed using a distribution equilibrium model and a Freundlich isotherm. The uranine concentration in the evanescent field of the fiber optic was up to 54 times higher than that in the bulk solution, and the limit of detection (3σ) for uranine was found to be 1.3 nM.
Collapse
Affiliation(s)
- Takuya Okazaki
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan;
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan;
| | - Tomoaki Watanabe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan;
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan;
| |
Collapse
|
7
|
An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Mikrochim Acta 2019; 186:169. [DOI: 10.1007/s00604-019-3282-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
8
|
Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens Bioelectron 2019; 123:223-229. [DOI: 10.1016/j.bios.2018.08.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
9
|
Wu ZY, Chen JY, Zhu X, Fu FH, Lan RL, Liu MM, Lian X, Ye CL, Zhong GX, Lin JH, Liu AL. Sensitive electrochemical cytosensor for highly specific detection of osteosarcoma 143B cells based on graphene-3D gold nanocomposites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Oliveira N, Costa-Rama E, Viswanathan S, Delerue-Matos C, Pereira L, Morais S. Label-free Voltammetric Immunosensor for Prostate Specific Antigen Detection. ELECTROANAL 2018. [DOI: 10.1002/elan.201800417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nélia Oliveira
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almedia 431 4200-072 Porto Portugal
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almedia 431 4200-072 Porto Portugal
| | - Subramanian Viswanathan
- Department of Industrial Chemistry; Alagappa University; Karaikudi- 630003, Tamilnadu, India
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almedia 431 4200-072 Porto Portugal
| | - Lourdes Pereira
- Department of Medical Sciences; CICECO-Aveiro Institute of Materials; University of Aveiro, Campus Santiago; 3810-193 Aveiro Portugal
| | - Simone Morais
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almedia 431 4200-072 Porto Portugal
| |
Collapse
|
11
|
Wang X, Sun D, Tong Y, Zhong Y, Chen Z. A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2160-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J. PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 2016; 80:601-606. [PMID: 26897262 DOI: 10.1016/j.bios.2016.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2) as an important reactive oxygen species (ROS) is reactive and potentially harmful to cells, causing oxidation of lipids, proteins and DNA. Herein, we report a PtW/MoS2 hybrid nanocomposite with ultrasensitive and highly specific response for the detection of H2O2 released from breast cancer 4T1 cells. Upon exposure to 5 nM of H2O2, the electrochemical response is still visible. This PtW/MoS2 hybrid nanocomposite could be facilely synthesized through in-situ growth of PtW nanocrystals on the surface of MoS2 nanosheets. The incorporation of PtW nanocrystals and MoS2 nanosheets in conjunction with each other to form hybrid nanocomposite improves the selective interaction of H2O2 with sensing material surface, and further increases the sensitivity and selectivity of sensor.
Collapse
Affiliation(s)
- Lilian Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiaqiang Xu
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Sun D, Lu J, Zhong Y, Yu Y, Wang Y, Zhang B, Chen Z. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens Bioelectron 2015; 75:301-7. [PMID: 26332382 DOI: 10.1016/j.bios.2015.08.056] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/19/2015] [Accepted: 08/23/2015] [Indexed: 11/15/2022]
Abstract
Human cancer is becoming a leading cause of death in the world and the development of a straightforward strategy for early detection of cancer is urgently required. Herein, a sandwich-type electrochemical aptamer cytosensor was developed for detection of human liver hepatocellular carcinoma cells (HepG2) based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. The thiolated TLS11a aptamers were used as a selective bio-recognition element, attached to the gold nanoparticles (AuNPs) modified the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the G-quadruplex/hemin/aptamer complexes and horseradish peroxidase (HRP) immobilized on the surfaces of Au@Pd core-shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). After the target cells were captured, the hybrid nanoprobes were further assembled to form an aptamer-cell-nanoprobes sandwich-like system on the electrode surface. Then, hybrid Fe3O4/MnO2/Au@Pd nanoelectrocatalysts, G-quadruplex/hemin HRP-mimicking DNAzymes and the natural HRP enzyme efficiently catalyzed the oxidation of hydroquinone (HQ) with H2O2, amplifying the electrochemical signals and improving the detection sensitivity. This electrochemical cytosensor delivered a wide detection range of 1×10(2)-1×10(7)cellsmL(-1), high sensitivity with a low detection limit of 15cellsmL(-1), good selectivity and repeatability. Finally, an electrochemical reductive desorption method was performed to break gold-thiol bond and desorb the components on the AuNPs/GCE for regenerating the cytosensor. These results have demonstrated that the electrochemical cytosensor has the potential to be a feasible tool for cost-effective cancer cell detection in early cancer diagnosis.
Collapse
Affiliation(s)
- Duanping Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuwen Zhong
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511130, China.
| | - Yanyan Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Beibei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Sun D, Lu J, Chen Z, Yu Y, Mo M. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Anal Chim Acta 2015; 885:166-73. [PMID: 26231902 DOI: 10.1016/j.aca.2015.05.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/17/2022]
Abstract
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.
Collapse
Affiliation(s)
- Duanping Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Yanyan Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Manni Mo
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosens Bioelectron 2015; 68:129-134. [DOI: 10.1016/j.bios.2014.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
|
16
|
Zhao C, Gao X, Lu H, Yan R, Wang C, Ma H. Spontaneous formation of mono-n-butyl phosphate and mono-n-hexyl phosphate thin films on the iron surface in aqueous solution and their corrosion protection property. RSC Adv 2015. [DOI: 10.1039/c5ra03899e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mono-n-butyl phosphate (BP) and mono-n-hexyl phosphate (HP) thin films were directly formed on an iron surface by immersing pure iron samples in aqueous solutions containing BP or HP.
Collapse
Affiliation(s)
- Caicai Zhao
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Xiang Gao
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Haifeng Lu
- Key Laboratory for Special Functional Aggregate Materials of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Ru Yan
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Chuntao Wang
- Department of Chemistry
- Taiyuan Normal University
- Taiyuan 030031
- China
| | - Houyi Ma
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
17
|
Direct application of gold nanoparticles to one-pot electrochemical biosensors. Anal Chim Acta 2014; 849:1-6. [DOI: 10.1016/j.aca.2014.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
|