• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4602587)   Today's Articles (2338)   Subscriber (49368)
For: Wang S, Yong W, Liu J, Zhang L, Chen Q, Dong Y. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens Bioelectron 2014;57:192-8. [PMID: 24583691 DOI: 10.1016/j.bios.2014.02.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Number Cited by Other Article(s)
1
Basak M, Das G. Fluorescent Sensors for Tetracycline Detection in Aqueous Medium: A Mini-Review. Chem Asian J 2024:e202400406. [PMID: 38757796 DOI: 10.1002/asia.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
2
Qi J, Li J, Wan Y, Li Y, Pi F. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH2-MIL-101(Al) nanoprobe. Food Chem 2024;435:137586. [PMID: 37774622 DOI: 10.1016/j.foodchem.2023.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
3
Yang L, Wang X, Zhang F, Yu L, Bai B, Zhang J, Zhang B, Tian Y, Qin S, Yang Y. Two birds with one stone: A universal design and application of signal-on labeled fluorescent/electrochemical dual-signal mode biosensor for the detection of tetracycline residues in tap water, milk and chicken. Food Chem 2024;430:136904. [PMID: 37523822 DOI: 10.1016/j.foodchem.2023.136904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
4
Li W, Wang X, Chen L, Luo F, Guo L, Lin C, Wang J, Qiu B, Lin Z. A photoelectrochemical aptasensor for tetracycline based on the self-assembly of 2D MoS2 on a 3D ZnO/Au/ITO electrode. Analyst 2023;148:4995-5001. [PMID: 37728304 DOI: 10.1039/d3an01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
5
Wang L, Hu M, Liu R, Xi S, Cheng M, Bao Y, Wang N, Dong Y. Development and analysis of a universal label-free micro/nano component for three-channel detection of silver ions, mercury ions, and tetracycline. Anal Chim Acta 2023;1276:341606. [PMID: 37573104 DOI: 10.1016/j.aca.2023.341606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
6
Sheng T, Chen H, Lei Y, Zhang B, Zhu H. An indirect competitive assay-based method for the sensitive determination of tetracycline residue using a real-time fluorescence-based quantitative polymerase chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023;15:4892-4899. [PMID: 37718682 DOI: 10.1039/d3ay01072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
7
Li T, Chen Z, Zhao Z, Liu Z. A portable test strip fabricated of luminescent lanthanide-functionalized metal-organic frameworks for rapid and visual detection of tetracycline antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023;15:4459-4466. [PMID: 37642116 DOI: 10.1039/d3ay01169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
8
A label-free PEC aptasensor platform based on g-C3N4/BiVO4 heterojunction for tetracycline detection in food analysis. Food Chem 2023;402:134258. [DOI: 10.1016/j.foodchem.2022.134258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
9
A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline. J Nanobiotechnology 2023;21:22. [PMID: 36670418 PMCID: PMC9854182 DOI: 10.1186/s12951-023-01785-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]  Open
10
Ben Halima H, Baraket A, Vinas C, Zine N, Bausells J, Jaffrezic-Renault N, Teixidor F, Errachid A. Selective Antibody-Free Sensing Membranes for Picogram Tetracycline Detection. BIOSENSORS 2022;13:bios13010071. [PMID: 36671906 PMCID: PMC9855611 DOI: 10.3390/bios13010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 06/12/2023]
11
Shi H, Wen M, Lin X, Zhou L, Shan L, Zhang C, Feng S. Designing and preparing metal mediated magnetic imprinted polymer for recognition of tetracycline. J Pharm Biomed Anal 2022;220:115023. [DOI: 10.1016/j.jpba.2022.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
12
Lu M, Chen Y, Lu Z, Xu C, Qiu Z, Wang Y. A Novel Biosensor Based on AAO Nanochannels Modified with ZnS Nanostructure for Sensitive Detection of Tetracycline. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
13
Zhang J, Bao Z, Qian J, Zhou H, Zhang K. Copper doped zinc sulfide quantum dots as ratiometric fluorescent probes for rapid and specific detection of tetracycline residues in milk. Anal Chim Acta 2022;1216:339991. [DOI: 10.1016/j.aca.2022.339991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/01/2022]
14
Zhang H, Yao S, Sheng R, Wang J, Li H, Fu Y, Li J, Zhang X, Zhao C. A cascade amplification strategy for ultrasensitive Salmonella typhimurium detection based on DNA walker coupling with CRISPR-Cas12a. J Colloid Interface Sci 2022;625:257-263. [PMID: 35717841 DOI: 10.1016/j.jcis.2022.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
15
Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines. Anal Bioanal Chem 2022;414:4935-4951. [PMID: 35579676 DOI: 10.1007/s00216-022-04119-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
16
Li Y, Huangfu C, Ni L, Feng L. Using ratiometric indicator-displacement-assay in semi-quantitative colorimetric determination of tetracyclines. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
17
Wang L, Zhou H, Wu X, Song Y, Huang Y, Yang X, Chen X. A novel colorimetric aptasensor for sensitive tetracycline detection based on the peroxidase-like activity of Fe3O4@Cu nanoparticles and “sandwich” oligonucleotide hybridization. Mikrochim Acta 2022;189:86. [DOI: 10.1007/s00604-022-05195-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
18
Pistonesi DB, Centurión ME, Springer V. Green-tea-synthesized silver nanoparticles as a sensing platform for determination of tetracycline in honey samples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021;101:5182-5189. [PMID: 33608881 DOI: 10.1002/jsfa.11164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
19
Li J, Wang Y, Yu X. Magnetic Molecularly Imprinted Polymers: Synthesis and Applications in the Selective Extraction of Antibiotics. Front Chem 2021;9:706311. [PMID: 34422765 PMCID: PMC8371043 DOI: 10.3389/fchem.2021.706311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]  Open
20
Wang S, Yan X, Yang Y, Qi X, Zhao Y, Li L, Ma R, Wang L, Dong Y, Sun J, Mao X. Advances and perspectives of aptasensors for the detection of tetracyclines: A class of model compounds of food analysis. Food Chem 2021;364:130361. [PMID: 34153597 DOI: 10.1016/j.foodchem.2021.130361] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
21
Liu X, Li X, Jia L, Cheng G, Leong DT, Xue Q. 3-D DNA nanodevices for on-site sensitive detection of antibiotic residues in food. Chem Commun (Camb) 2021;56:12628-12631. [PMID: 32959832 DOI: 10.1039/d0cc05411a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
22
Raja Lakshmi P, Nanjan P, Kannan S, Shanmugaraju S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
23
Poungmalai P, Buakeaw A, Puthong S, Khongchareonporn N. A specific monoclonal antibody for chlortetracycline detection in milk and honey samples based on ELISA. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1897531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]  Open
24
Liu Y, Liu B, Huang P, Wu FY, Ma L. Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines. Anal Bioanal Chem 2021;413:2565-2575. [PMID: 33651120 DOI: 10.1007/s00216-021-03221-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
25
Luo Y, Jin Z, Wang J, Ding P, Pei R. The isolation of a DNA aptamer to develop a fluorescent aptasensor for the thiamethoxam pesticide. Analyst 2021;146:1986-1995. [PMID: 33502393 DOI: 10.1039/d0an01967d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
26
Nawaz T, Ahmad M, Yu J, Wang S, Wei T. A recyclable tetracycline imprinted polymeric SPR sensor: in synergy with itaconic acid and methacrylic acid. NEW J CHEM 2021. [DOI: 10.1039/d0nj05364c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide. Anal Bioanal Chem 2020;413:901-909. [PMID: 33184760 DOI: 10.1007/s00216-020-03044-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
28
Zhang W, Li X, Liu Q, Liu G, Yue G, Yang Z, Wang Y, Rao H, Chen Y, Lu C, Wang X. Nitrogen-doped carbon dots from rhizobium as fluorescence probes for chlortetracycline hydrochloride. NANOTECHNOLOGY 2020;31:445501. [PMID: 32688347 DOI: 10.1088/1361-6528/aba787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
29
Shi H, Kou Q, Wu P, Sun Q, Wu J, Le T. Selection and Application of DNA Aptamers Against Sulfaquinoxaline Assisted by Graphene Oxide–Based SELEX. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01869-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
30
Liu Z, Hou J, He Q, Luo X, Huo D, Hou C. New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid screening of chloramphenicol and tetracycline residues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:3513-3522. [PMID: 32672268 DOI: 10.1039/d0ay00961j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
31
Qian J, Xing C, Ge Y, Li R, Li A, Yan W. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020;232:118146. [PMID: 32086043 DOI: 10.1016/j.saa.2020.118146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 05/25/2023]
32
Sheng YM, Liang J, Xie J. Indirect Competitive Determination of Tetracycline Residue in Honey Using an Ultrasensitive Gold-Nanoparticle-Linked Aptamer Assay. Molecules 2020;25:molecules25092144. [PMID: 32375304 PMCID: PMC7249119 DOI: 10.3390/molecules25092144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]  Open
33
The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products. BIOSENSORS-BASEL 2020;10:bios10030021. [PMID: 32138274 PMCID: PMC7146278 DOI: 10.3390/bios10030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
34
Zhang L, Wang J, Fang G, Deng J, Wang S. A Molecularly Imprinted Polymer Capped Nitrogen‐Doped Graphene Quantum Dots System for Sensitive Determination of Tetracycline in Animal‐Derived Food. ChemistrySelect 2020. [DOI: 10.1002/slct.201903868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
35
Huang L, Yu W, Guo X, Huang Y, Zhou Q, Zhai H. Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
36
An aptamer cocktail-based electrochemical aptasensor for direct capture and rapid detection of tetracycline in honey. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
37
Wang Y, Yao L, Ning G, Wu Y, Wu S, Mao S, Liu GQ. An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens Bioelectron 2019;143:111613. [PMID: 31450095 DOI: 10.1016/j.bios.2019.111613] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022]
38
Gong X, Li X, Qing T, Zhang P, Feng B. Amplified colorimetric detection of tetracycline based on an enzyme-linked aptamer assay with multivalent HRP-mimicking DNAzyme. Analyst 2019;144:1948-1954. [PMID: 30694262 DOI: 10.1039/c8an02284d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
39
Lin B, Zhang T, Xin X, Wu D, Huang Y, Liu Y, Cao Y, Guo M, Yu Y. Europium(III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Mikrochim Acta 2019;186:442. [DOI: 10.1007/s00604-019-3557-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
40
LIU D, PAN X, MU W, LI C, HAN X. Detection of Tetracycline in Water Using Glutathione-protected Fluorescent Gold Nanoclusters. ANAL SCI 2019;35:367-370. [DOI: 10.2116/analsci.18p392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
41
El Alami El Hassani N, Baraket A, Boudjaoui S, Taveira Tenório Neto E, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N. Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS. Biosens Bioelectron 2019;130:330-337. [DOI: 10.1016/j.bios.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023]
42
Li Y, Mohammed A, Li D, Wang L. Test strips based on iron(iii)-impregnated alginate/polyacrylonitrile nanofibers for naked eye screening of tetracycline. Analyst 2019;143:3029-3039. [PMID: 29721556 DOI: 10.1039/c7an02038d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Tu C, Dai Y, Xu K, Qi M, Wang W, Wu L, Wang A. Determination of Tetracycline in Water and Honey by Iron(II, III)/Aptamer-Based Magnetic Solid-Phase Extraction with High-Performance Liquid Chromatography Analysis. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1560458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
44
Antibiotic residues in honey: A review on analytical methods by liquid chromatography tandem mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
45
Wei YH, Li XY, Gao J, Liu JJ, Yuan D, Yin BC, Wang J. Size-dependent modulation of CoOOH nanoflakes light scattering for rapid and selective detection of tetracycline in milk. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0080-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
46
Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
47
Cao J, Yao Y, Fan K, Tan G, Xiang W, Xia X, Li S, Wang W, Zhang L. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. SCIENCE ADVANCES 2018;4:eaau4602. [PMID: 30498782 PMCID: PMC6261655 DOI: 10.1126/sciadv.aau4602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/30/2018] [Indexed: 05/15/2023]
48
Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins (Basel) 2018;10:E427. [PMID: 30366456 PMCID: PMC6265707 DOI: 10.3390/toxins10110427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]  Open
49
Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 2018;126:389-404. [PMID: 30469077 DOI: 10.1016/j.bios.2018.10.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
50
Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z. Advances in aptasensors for the detection of food contaminants. Analyst 2018;141:3942-61. [PMID: 27265444 DOI: 10.1039/c6an00952b] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA