1
|
Yasir M, Peinetti F, Savi P. Correlation of Transmission Properties with Glucose Concentration in a Graphene-Based Microwave Resonator. MICROMACHINES 2023; 14:2163. [PMID: 38138332 PMCID: PMC10745533 DOI: 10.3390/mi14122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.
Collapse
Affiliation(s)
- Muhammad Yasir
- Division of Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Fabio Peinetti
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| | - Patrizia Savi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| |
Collapse
|
2
|
Dautta M, Hajiaghajani A, Ye F, Escobar AR, Jimenez A, Dia KKH, Tseng P. Programmable Multiwavelength Radio Frequency Spectrometry of Chemophysical Environments through an Adaptable Network of Flexible and Environmentally Responsive, Passive Wireless Elements. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Manik Dautta
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Fan Ye
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
- Department of Biomedical Engineering University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| |
Collapse
|
3
|
Ma Y, Qiang T, Gao M, Liang J, Jiang Y. Quantitative, Temperature-Calibrated and Real-Time Glucose Biosensor Based on Symmetrical-Meandering-Type Resistor and Intertwined Capacitor Structure. BIOSENSORS 2021; 11:484. [PMID: 34940241 PMCID: PMC8699495 DOI: 10.3390/bios11120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Here, we propose a glucose biosensor with the advantages of quantification, excellent linearity, temperature-calibration function, and real-time detection based on a resistor and capacitor, in which the resistor works as a temperature sensor and the capacitor works as a biosensor. The resistor has a symmetrical meandering type structure that increases the contact area, leading to variations in resistance and effective temperature monitoring of a glucose solution. The capacitor is designed with an intertwined structure that fully contacts the glucose solution, so that capacitance is sensitively varied, and high sensitivity monitoring can be realized. Moreover, a polydimethylsiloxane microfluidic channel is applied to achieve a fixed shape, a fixed point, and quantitative measurements, which can eliminate influences caused by fluidity, shape, and thickness of the glucose sample. The glucose solution in a temperature range of 25-100 °C is measured with variations of 0.2716 Ω/°C and a linearity response of 0.9993, ensuring that the capacitor sensor can have reference temperature information before detecting the glucose concentration, achieving the purpose of temperature calibration. The proposed capacitor-based biosensor demonstrates sensitivities of 0.413 nF/mg·dL-1, 0.048 nF/mg·dL-1, and 0.011 pF/mg·dL-1; linearity responses of 0.96039, 0.91547, and 0.97835; and response times less than 1 second, respectively, at DC, 1 kHz, and 1 MHz for a glucose solution with a concentration range of 25-1000 mg/dL.
Collapse
Affiliation(s)
| | - Tian Qiang
- Department of Electronic Engineering, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China; (Y.M.); (M.G.); (J.L.); (Y.J.)
| | | | | | | |
Collapse
|
4
|
Microfluidic Modules Integrated with Microwave Components-Overview of Applications from the Perspective of Different Manufacturing Technologies. SENSORS 2021; 21:s21051710. [PMID: 33801309 PMCID: PMC7958350 DOI: 10.3390/s21051710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
The constant increase in the number of microfluidic-microwave devices can be explained by various advantages, such as relatively easy integration of various microwave circuits in the device, which contains microfluidic components. To achieve the aforementioned solutions, four trends of manufacturing appear—manufacturing based on epoxy-glass laminates, polymer materials (mostly common in use are polydimethylsiloxane (PDMS) and polymethyl 2-methylpropenoate (PMMA)), glass/silicon substrates, and Low-Temperature Cofired Ceramics (LTCCs). Additionally, the domains of applications the microwave-microfluidic devices can be divided into three main fields—dielectric heating, microwave-based detection in microfluidic devices, and the reactors for microwave-enhanced chemistry. Such an approach allows heating or delivering the microwave power to the liquid in the microchannels, as well as the detection of its dielectric parameters. This article consists of a literature review of exemplary solutions that are based on the above-mentioned technologies with the possibilities, comparison, and exemplary applications based on each aforementioned technology.
Collapse
|
5
|
Kalimuthu P, Gonzalez-Martinez JF, Ruzgas T, Sotres J. Highly Stable Passive Wireless Sensor for Protease Activity Based on Fatty Acid-Coupled Gelatin Composite Films. Anal Chem 2020; 92:13110-13117. [PMID: 32864958 PMCID: PMC7547858 DOI: 10.1021/acs.analchem.0c02153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
Proteases are often used as biomarkers of many pathologies as well as of microbial contamination and infection. Therefore, extensive efforts are devoted to the development of protease sensors. Some applications would benefit from wireless monitoring of proteolytic activity at minimal cost, e.g., sensors embedded in care products like wound dressings and diapers to track wound and urinary infections. Passive (batteryless) and chipless transponders stand out among wireless sensing technologies when low cost is a requirement. Here, we developed and extensively characterized a composite material that is biodegradable but still highly stable in aqueous media, whose proteolytic degradation could be used in these wireless transponders as a transduction mechanism of proteolytic activity. This composite material consisted of a cross-linked gelatin network with incorporated caprylic acid. The digestion of the composite when exposed to proteases results in a change of its resistivity, a quantity that can be wirelessly monitored by coupling the composite to an inductor-capacitor resonator, i.e., an antenna. We experimentally proved this wireless sensor concept by monitoring the presence of a variety of proteases in aqueous media. Moreover, we also showed that detection time follows a relationship with protease concentration, which enables quantification possibilities for practical applications.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research
Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Juan F. Gonzalez-Martinez
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research
Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Tautgirdas Ruzgas
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research
Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research
Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| |
Collapse
|
6
|
Zhang X, Jing Q, Ao S, Schneider GF, Kireev D, Zhang Z, Fu W. Ultrasensitive Field-Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902820. [PMID: 31592577 DOI: 10.1002/smll.201902820] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/08/2019] [Indexed: 05/20/2023]
Abstract
This review provides a critical overview of current developments on nanoelectronic biochemical sensors based on graphene. Composed of a single layer of conjugated carbon atoms, graphene has outstanding high carrier mobility and low intrinsic electrical noise, but a chemically inert surface. Surface functionalization is therefore crucial to unravel graphene sensitivity and selectivity for the detection of targeted analytes. To achieve optimal performance of graphene transistors for biochemical sensing, the tuning of the graphene surface properties via surface functionalization and passivation is highlighted, as well as the tuning of its electrical operation by utilizing multifrequency ambipolar configuration and a high frequency measurement scheme to overcome the Debye screening to achieve low noise and highly sensitive detection. Potential applications and prospectives of ultrasensitive graphene electronic biochemical sensors ranging from environmental monitoring and food safety, healthcare and medical diagnosis, to life science research, are presented as well.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Qiushi Jing
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Shen Ao
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Grégory F Schneider
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78757, USA
| | - Zhengjun Zhang
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Wangyang Fu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
8
|
Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. NANOMATERIALS 2019; 9:nano9101361. [PMID: 31547500 PMCID: PMC6836269 DOI: 10.3390/nano9101361] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
This work reviews the field of DNA biosensors based on electrochemical determination of nanoparticle labels. These labeling platforms contain the attachment of metal nanoparticles (NPs) or quantum dots (QDs) on the target DNA or on a biorecognition reporting probe. Following the development of DNA bioassay, the nanotags are oxidized to ions, which are determined by voltammetric methods, such as pulse voltammetry (PV) and stripping voltammetry (SV). The synergistic effects of NPs amplification (as each nanoprobe releases a large number of detectable ions) and the inherent sensitivity of voltammetric techniques (e.g., thanks to the preconcentration step of SV) leads to the construction of ultrasensitive, low cost, miniaturized, and integrated biodevices. This review focuses on accomplishments in DNA sensing using voltammetric determination of nanotags (such as gold and silver NPs, and Cd- and Pb-based QDs), includes published works on integrated three electrode biodevices and paper-based biosystems, and discusses strategies for multiplex DNA assays and signal enhancement procedures. Besides, this review mentions the electroactive NP synthesis procedures and their conjugation protocols with biomolecules that enable their function as labels in DNA electrochemical biosensors.
Collapse
|
9
|
A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnology 2019; 17:43. [PMID: 30914053 PMCID: PMC6434641 DOI: 10.1186/s12951-019-0476-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Campylobacteriosis is a zoonotic infectious disease that can be mostly undiagnosed or unreported due to fastidious Campylobacter species. The aim of this study was to develop a simple, sensitive, and quick assay for the detection of Campylobacter spp. and taking advantage of the great sensitivity of gold nanorods (GNRs) to trace changes in the local environment and interparticle distance. METHODS Characterized GNRs were modified by specific ssDNA probes of cadF gene. First, the biosensor was evaluated using recombinant plasmid (pTG19-T/cadF) and synthetic single-stranded 95 bp gene, followed by a collection of the extracted DNAs of the stool samples. The sensing strategy was compared by culture, PCR, and real-time PCR. RESULTS AND DISCUSSION Analysis of 283 specimens showed successful detection of Campylobacter spp. in 44 cases (16%), which was comparable to culture (7%), PCR (15%), and real-time PCR (18%). In comparison with real-time PCR, the sensitivity of the biosensor was reported 88%, while the specificity test for all assays was the same (100%). However, it was not able to detect Campylobacter in 6 positive clinical samples, as compared to real-time PCR. The limit of detection was calculated to be the same for the biosensor and real-time PCR (102 copy number/mL). CONCLUSIONS Taking high speed and simplicity of this assay into consideration, the plasmonic nanobiosensor could pave the way in designing a new generation of diagnostic kits for detection of C. jejuni and C. coli species in clinical laboratories.
Collapse
|
10
|
Graphene Nanomaterials-Based Radio-Frequency/Microwave Biosensors for Biomaterials Detection. MATERIALS 2019; 12:ma12060952. [PMID: 30901965 PMCID: PMC6470802 DOI: 10.3390/ma12060952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
In this paper, the advances in radio-frequency (RF)/microwave biosensors based on graphene nanomaterials including graphene, graphene oxide (GO), and reduced graphene oxide (rGO) are reviewed. From a few frontier studies, recently developed graphene nanomaterials-based RF/microwave biosensors are examined in-depth and discussed. Finally, the prospects and challenges of the next-generation RF/microwave biosensors for wireless biomedical applications are proposed.
Collapse
|
11
|
Narang R, Mohammadi S, Ashani MM, Sadabadi H, Hejazi H, Zarifi MH, Sanati-Nezhad A. Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor. Sci Rep 2018; 8:15807. [PMID: 30361480 PMCID: PMC6202403 DOI: 10.1038/s41598-018-34001-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Infection diagnosis and antibiotic susceptibility testing (AST) are time-consuming and often laborious clinical practices. This paper presents a microwave-microfluidic biosensor for rapid, contactless and non-invasive device for testing the concentration and growth of Escherichia Coli (E. Coli) in medium solutions of different pH to increase the efficacy of clinical microbiology practices. The thin layer interface between the microfluidic channel and the microwave resonator significantly enhanced the detection sensitivity. The microfluidic chip, fabricated using standard soft lithography, was injected with bacterial samples and incorporated with a microwave microstrip ring resonator sensor with an operation frequency of 2.5 GHz and initial quality factor of 83 for detecting the concentration and growth of bacteria. The resonator had a coupling gap area on of 1.5 × 1.5 mm2 as of its sensitive region. The presence of different concentrations of bacteria in different pH solutions were detected via screening the changes in resonant amplitude and frequency responses of the microwave system. The sensor device demonstrated near immediate response to changes in the concentration of bacteria and maximum sensitivity of 3.4 MHz compared to a logarithm value of bacteria concentration. The minimum prepared optical transparency of bacteria was tested at an OD600 value of 0.003. The sensor’s resonant frequency and amplitude parameters were utilized to monitor bacteria growth during a 500-minute time frame, which demonstrated a stable response with respect to detecting the bacterial proliferation. A highly linear response was demonstrated for detecting bacteria concentration at various pH values. The growth of bacteria analyzed over the resonator showed an exponential growth curve with respect to time and concurred with the lag-log-stationary-death model of cell growth. This biosensor is one step forward to automate the complex AST workflow of clinical microbiology laboratories for rapid and automated detection of bacteria as well as screening the bacteria proliferation in response to antibiotics.
Collapse
Affiliation(s)
- Rakesh Narang
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Sevda Mohammadi
- Microelectronics and Advanced Sensors Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mehdi Mohammadi Ashani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Wireless Fluidics Inc, Edmonton, AB, Canada
| | - Hossein Hejazi
- Subsurface Fluidics and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Hossein Zarifi
- Microelectronics and Advanced Sensors Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
12
|
Shen W, Das S, Vitale F, Richardson A, Ananthakrishnan A, Struzyna LA, Brown DP, Song N, Ramkumar M, Lucas T, Cullen DK, Litt B, Allen MG. Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces. MICROSYSTEMS & NANOENGINEERING 2018; 4:30. [PMID: 31057918 PMCID: PMC6220172 DOI: 10.1038/s41378-018-0030-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 08/05/2018] [Indexed: 05/30/2023]
Abstract
Intracortical neural microelectrodes, which can directly interface with local neural microcircuits with high spatial and temporal resolution, are critical for neuroscience research, emerging clinical applications, and brain computer interfaces (BCI). However, clinical applications of these devices remain limited mostly by their inability to mitigate inflammatory reactions and support dense neuronal survival at their interfaces. Herein we report the development of microelectrodes primarily composed of extracellular matrix (ECM) proteins, which act as a bio-compatible and an electrochemical interface between the microelectrodes and physiological solution. These ECM-microelectrodes are batch fabricated using a novel combination of micro-transfer-molding and excimer laser micromachining to exhibit final dimensions comparable to those of commercial silicon-based microelectrodes. These are further integrated with a removable insertion stent which aids in intracortical implantation. Results from electrochemical models and in vivo recordings from the rat's cortex indicate that ECM encapsulations have no significant effect on the electrochemical impedance characteristics of ECM-microelectrodes at neurologically relevant frequencies. ECM-microelectrodes are found to support a dense layer of neuronal somata and neurites on the electrode surface with high neuronal viability and exhibited markedly diminished neuroinflammation and glial scarring in early chronic experiments in rats.
Collapse
Affiliation(s)
- Wen Shen
- Krishna P. Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019 USA
| | - Suradip Das
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Flavia Vitale
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrew Richardson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Akshay Ananthakrishnan
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Laura A. Struzyna
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel P. Brown
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Naixin Song
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Murari Ramkumar
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Timothy Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brian Litt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mark G. Allen
- Krishna P. Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Salim A, Lim S. Review of Recent Metamaterial Microfluidic Sensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E232. [PMID: 29342953 PMCID: PMC5795505 DOI: 10.3390/s18010232] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
Abstract
Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.
Collapse
Affiliation(s)
- Ahmed Salim
- School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea.
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea.
| |
Collapse
|
14
|
Koirala GR, Kim ES, Dhakal R, Chuluunbaatar Z, Jo YH, Kim SS, Kim NY. Microfabricated passive resonator biochip for sensitive radiofrequency detection and characterization of glucose. RSC Adv 2018; 8:33072-33079. [PMID: 35548156 PMCID: PMC9086445 DOI: 10.1039/c8ra04243h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 11/21/2022] Open
Abstract
Passive sensors provide a new route for the characterization of concentration-dependent radiofrequency parameters with high reproducibility in real time. We propose a microfabricated resonator realized using integrated passive device technology for the sensitive detection and characterization of glucose. Experimental results verify the high performance of the proposed biosensor, because radiofrequency parameters such as resonance frequency (from 0.541 to 1.05 GHz) and reflection coefficient (from −34.04 to −24.11 dB) linearly vary in response to deionized water and subsequent iterative measurements of different glucose concentrations (from 50 to 250 mg dL−1). The biosensor has a very low limit of detection of 8.46 mg dL−1, a limit of quantitation of 25.63 mg dL−1, a minimum frequency sensitivity of 29 MHz, and a minimum magnitude sensitivity of 0.22 dB. Moreover, the coupling coefficient consistently decreases with the increasing glucose concentration. We also used the measured radiofrequency parameters to determine the unknown permittivity of glucose samples through mathematical modeling. A decreasing trend in the loss tangent and an increasing trend in the characteristic wave impedance were observed with the increase of glucose concentration. The reproducibility of the sensor was verified through iterative measurements on the same sensor surface and subsequent study of surface morphology. Passive sensors provide a new route for the characterization of concentration-dependent radiofrequency parameters with high reproducibility in real time.![]()
Collapse
Affiliation(s)
- Gyan Raj Koirala
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Eun-Seong Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Rajendra Dhakal
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Zorigt Chuluunbaatar
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Yong Hwa Jo
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Sung-Soo Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Nam-Young Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| |
Collapse
|
15
|
Wang L. Early Diagnosis of Breast Cancer. SENSORS 2017; 17:s17071572. [PMID: 28678153 PMCID: PMC5539491 DOI: 10.3390/s17071572] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/24/2022]
Abstract
Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.
Collapse
Affiliation(s)
- Lulu Wang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Li Z, Wang Q, Yang X, Wang K, Du S, Zhang H, Gao L, Zheng Y, Nie W. Evaluating the Effect of Lidocaine on the Interactions of C-reactive Protein with Its Aptamer and Antibody by Dynamic Force Spectroscopy. Anal Chem 2017; 89:3370-3377. [PMID: 28231708 DOI: 10.1021/acs.analchem.6b03960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Effects of medicine on the biomolecular interaction have been given extensive attention in biochemistry and biomedicine because of the complexity of the environment in vivo and the increasing opportunity of exposure to medicine. Herein, the effect of lidocaine on the interactions of C-reactive protein (CRP) with its aptamer and antibody under different temperature was investigated through dynamic force spectroscopy (DFS). The results revealed that lidocaine could reduce the binding probabilities and binding affinities of the CRP-aptamer and the CRP-antibody. An interesting discovery was that lidocaine had differential influences on the dynamic force spectra of the CRP-aptamer and the CRP-antibody. The energy landscape of the CRP-aptamer turned from two activation barriers to one after the treatment of lidocaine, while the one activation barrier in energy landscape of the CRP-antibody almost remained unchanged. In addition, similar results were obtained for 25 and 37 °C. In accordance with the result of molecular docking, the reduction of binding probabilities might be due to the binding of lidocaine on CRP. Additionally, the alteration of the dissociation pathway of the CRP-aptamer and the change of binding affinities might be caused by the conformational change of CRP, which was verified through synchronous fluorescence spectroscopy. Furthermore, differential effects of lidocaine on the interactions of CRP-aptamer and CRP-antibody might be attributed to the different dissociation processes and binding sites of the CRP-aptamer and the CRP-antibody and different structures of the aptamer and the antibody. This work indicated that DFS provided information for further research and comprehensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Shasha Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
17
|
Dhakal R, Kim ES, Jo YH, Kim SS, Kim NY. Characterization of micro-resonator based on enhanced metal insulator semiconductor capacitor for glucose recognition. Med Eng Phys 2017; 41:55-62. [PMID: 28159448 DOI: 10.1016/j.medengphy.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
We present a concept for the characterization of micro-fabricated based resonator incorporating air-bridge metal-insulator-semiconductor (MIS) capacitor to continuously monitor an individual's state of glucose levels based on frequency variation. The investigation revealed that, the micro-resonator based on MIS capacitor holds considerable promise for implementation and recognition as a glucose sensor for human serum. The discrepancy in complex permittivity as a result of enhanced capacitor was achieved for the detection and determination of random glucose concentration levels using a unique variation of capacitor that indeed results in an adequate variation of the resonance frequency. Moreover, the design and development of micro-resonator with enhanced MIS capacitor generate a resolution of 112.38 × 10-3pF/mg/dl, minimum detectable glucose level of 7.45mg/dl, and a limit of quantification of 22.58mg/dl. Additionally, this unique approach offers long-term reliability for mediator-free glucose sensing with a relative standard deviation of less than 0.5%.
Collapse
Affiliation(s)
- Rajendra Dhakal
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
| | - E S Kim
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yong-Hwa Jo
- Department of Biochemistry and Molecular Biology, Kyung-Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung-Soo Kim
- Department of Biochemistry and Molecular Biology, Kyung-Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Young Kim
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
18
|
Fu W, Jiang L, van Geest EP, Lima LMC, Schneider GF. Sensing at the Surface of Graphene Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603610. [PMID: 27896865 DOI: 10.1002/adma.201603610] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Recent research trends now offer new opportunities for developing the next generations of label-free biochemical sensors using graphene and other two-dimensional materials. While the physics of graphene transistors operated in electrolyte is well grounded, important chemical challenges still remain to be addressed, namely the impact of the chemical functionalizations of graphene on the key electrical parameters and the sensing performances. In fact, graphene - at least ideal graphene - is highly chemically inert. The functionalizations and chemical alterations of the graphene surface - both covalently and non-covalently - are crucial steps that define the sensitivity of graphene. The presence, reactivity, adsorption of gas and ions, proteins, DNA, cells and tissues on graphene have been successfully monitored with graphene. This review aims to unify most of the work done so far on biochemical sensing at the surface of a (chemically functionalized) graphene field-effect transistor and the challenges that lie ahead. The authors are convinced that graphene biochemical sensors hold great promise to meet the ever-increasing demand for sensitivity, especially looking at the recent progresses suggesting that the obstacle of Debye screening can be overcome.
Collapse
Affiliation(s)
- Wangyang Fu
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lin Jiang
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Erik P van Geest
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lia M C Lima
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Ji JH, Shin KS, Kang S, Lee SH, Kang JY, Kim S, Jun SC. Fundamental monomeric biomaterial diagnostics by radio frequency signal analysis. Biosens Bioelectron 2016; 82:255-61. [PMID: 27111728 DOI: 10.1016/j.bios.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
We present a new diagnostic technique of fundamental monomeric biomaterials that do not rely on any enzyme or chemical reaction. Instead, it only uses radio frequency (RF) signal analysis. The detection and classification of basic biomaterials, such as glucose and albumin, were demonstrated. The device was designed to generate a strong resonance response with glucose solution and fabricated by simple photolithography with PDMS (Polydimethylsiloxane) well. It even was used to detect the level of glucose in mixtures of glucose and albumin and in human serum, and it operated properly and identified the glucose concentration precisely. It has a detection limit about 100μM (1.8mg/dl), and a sensitivity about 58MHz per 1mM of glucose and exhibited a good linearity in human blood glucose level. In addition, the intrinsic electrical properties of biomaterials can be investigated by a de-embedding technique and an equivalent circuit analysis. The capacitance of glucose containing samples exhibited bell-shaped Gaussian dispersion spectra around 2.4GHz. The Albumin solution did not represent a clear dispersion spectra compared to glucose, and the magnitude of resistance and inductance of albumin was higher than that of other samples. Other parameters also represented distinguishable patterns to classify those biomaterials. It leads us to expect future usage of our technique as a pattern-recognizing biosensor.
Collapse
Affiliation(s)
- Jae-Hoon Ji
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea; Nano-Bioresearch Center, Korea Institute of Science and Technology, 39-1 Hawolgok Dong, Songbuk Gu, Seoul 136-791, Republic of Korea
| | - Kyeong-Sik Shin
- Nano-Bioresearch Center, Korea Institute of Science and Technology, 39-1 Hawolgok Dong, Songbuk Gu, Seoul 136-791, Republic of Korea
| | - Shinill Kang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soo Hyun Lee
- Nano-Bioresearch Center, Korea Institute of Science and Technology, 39-1 Hawolgok Dong, Songbuk Gu, Seoul 136-791, Republic of Korea
| | - Ji Yoon Kang
- Nano-Bioresearch Center, Korea Institute of Science and Technology, 39-1 Hawolgok Dong, Songbuk Gu, Seoul 136-791, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
| |
Collapse
|
20
|
Brown E, Zhang WD, Viveros L, Neff D, Green N, Norton M, Pham P, Burke P. Sensing of DNA by graphene-on-silicon FET structures at DC and 101 GHz. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Song C, Wang GY, Kong DM. A facile fluorescence method for versatile biomolecular detection based on pristine α-Fe 2 O 3 nanoparticle-induced fluorescence quenching. Biosens Bioelectron 2015; 68:239-244. [DOI: 10.1016/j.bios.2015.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 01/02/2023]
|
22
|
Hong Y, Lee HJ, Kim SG, Kim BH, Yun GH, Yook JG. A Label-Free Biosensing Platform Using a PLL Circuit and Biotin-Streptavidin Binding System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:345-352. [PMID: 25314705 DOI: 10.1109/tbcas.2014.2349074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper proposes a novel RF biosensor that utilizes a frequency synthesizer associated with a microstrip open-loop resonator for label-free biomolecular detection. The RF biosensor consists mainly of a resonance-assisted transducer and a phase locked loop (PLL) circuit. In this work, the performance of the RF biosensor is validated using the well-known biotin-streptavidin binding system. When biotin is bound to streptavidin, the input impedance of the resonator is varied, resulting in a change in the oscillation frequency. The concentration of the streptavidin is ultimately detected by a voltage signal of the PLL's loop filter with simple measurement equipment. According to the experimental results, the RF biosensor has revealed excellent sensitivity ( ~ 61 kHz/ngml(-1)) and a low detection limit ( ~ 1 ng/ml), as well as a rapid response. These results demonstrate that the RF biosensor can be an effective sensing platform for label-free detection in a biomolecular binding system.
Collapse
|
23
|
Wang Q, Liu L, Yang X, Wang K, Chen N, Zhou C, Luo B, Du S. Evaluation of medicine effects on the interaction of myoglobin and its aptamer or antibody using atomic force microscopy. Anal Chem 2015; 87:2242-8. [PMID: 25615803 DOI: 10.1021/ac503885e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of medicine on the biomolecular interaction have been given increasing attention in biochemistry and affinity-based analytics since the environment in vivo is complex especially for the patients. Herein, myoglobin, a biomarker of acute myocardial infarction, was used as a model, and the medicine effects on the interactions of myoglobin/aptamer and myoglobin/antibody were systematically investigated using atomic force microscopy (AFM) for the first time. The results showed that the average binding force and the binding probability of myoglobin/aptamer almost remained unchanged after myoglobin-modified gold substrate was incubated with promazine, amoxicillin, aspirin, and sodium penicillin, respectively. These parameters were changed for myoglobin/antibody after the myoglobin-modified gold substrate was treated with these medicines. For promazine and amoxicillin, they resulted in the change of binding force distribution of myoglobin/antibody (i.e., from unimodal distribution to bimodal distribution) and the increase of binding probability; for aspirin, it only resulted in the change of the binding force distribution, and for sodium penicillin, it resulted in the increase of the average binding force and the binding probability. These results may be attributed to the different interaction modes and binding sites between myoglobin/aptamer and myoglobin/antibody, the different structures between aptamer and antibody, and the effects of medicines on the conformations of myoglobin. These findings could enrich our understanding of medicine effects on the interactions of aptamer and antibody to their target proteins. Moreover, this work will lay a good foundation for better research and extensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kokkinos C, Economou A, Speliotis T, Petrou P, Kakabakos S. Flexible microfabricated film sensors for the in situ quantum dot-based voltammetric detection of DNA hybridization in microwells. Anal Chem 2014; 87:853-7. [PMID: 25514352 DOI: 10.1021/ac503791j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new flexible miniaturized integrated device was microfabricated for the in situ ultrasensitive voltammetric determination of DNA mutation in a microwell format, using quantum dots (QDs) labels. The integrated device consisted of thin Bi, Ag, and Pt films (serving as the working, reference, and counter electrode, respectively) deposited by sputtering on a flexible polyimide substrate. A DNA assay was employed in microwell format, where an immobilized complementary oligonucleotide probe hybridized with the biotinylated target oligonucleotide followed by reaction with streptavidin-conjugated PbS QDs. After the acidic dissolution of the QDs, the flexible sensor was rolled and inserted into the microwell and the Pb(II) released was determined in situ by anodic stripping voltammetry. Since the analysis took place directly in the microwell, the volume of the working solution was only 100 μL and the target DNA could be detected at a concentration down to 1.1 fmol L(-1). The proposed flexible microdevice addresses the restrictions of conventional rigid electrodes while it provides a low cost integrated transducer for the ultrasensitive detection of important biomolecules.
Collapse
Affiliation(s)
- Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina , Ioannina, 45110, Greece
| | | | | | | | | |
Collapse
|