1
|
Li H, Wang X, Wu H, Wang W, Zheng A, Zhu J, Liang L, Sun H, Lu L, Lv J, Yu Q, Wang H, Yu B. Simultaneous noninvasive ultrasensitive detection of prostate specific antigen and lncRNA PCA3 using multiplexed dual optical microfibers with strong plasmonic nanointerfaces. Biosens Bioelectron 2024; 264:116672. [PMID: 39151263 DOI: 10.1016/j.bios.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Low accuracy of diagnosing prostate cancer (PCa) was easily caused by only assaying single prostate specific antigen (PSA) biomarker. Although conventional reported methods for simultaneous detection of two specific PCa biomarkers could improve the diagnostic efficiency and accuracy, low detection sensitivity restrained their use in extreme early-stage PCa clinical assay applications. In order to overcome above drawbacks, this paper herein proposed a multiplexed dual optical microfibers separately functionalized with gold nanorods (GNRs) and Au nanobipyramids (Au NBPs) nanointerfaces with strong localized surface plasmon resonance (LSPR) effects. The sensors could simultaneously detect PSA protein biomarker and long noncoding RNA prostate cancer antigen 3 (lncRNA PCA3) with ultrahigh sensitivity and remarkable specificity. Consequently, the proposed dual optical microfibers multiplexed biosensors could detect the PSA protein and lncRNA PCA3 with ultra-low limit-of-detections (LODs) of 3.97 × 10-15 mol/L and 1.56 × 10-14 mol/L in pure phosphorus buffer solution (PBS), respectively, in which the obtained LODs were three orders of magnitude lower than existed state-of-the-art PCa assay technologies. Additionally, the sensors could discriminate target components from complicated physiological environment, that showing noticeable biosensing specificity of the sensors. With good performances of the sensors, they could successfully assay PSA and lncRNA PCA3 in undiluted human serum and urine simultaneously, respectively. Consequently, our proposed multiplexed sensors could real-time high-sensitivity simultaneously detect complicated human samples, that providing a novel valuable approach for the high-accurate diagnosis of early-stage PCa individuals.
Collapse
Affiliation(s)
- Hongtao Li
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Xu Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hao Wu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Weisheng Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Aiyun Zheng
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jun Zhu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lili Liang
- Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices, Institute of Information Technology, Handan University, Handan, 056005, China
| | - Huojiao Sun
- School of Electrical and Optoelectronic Engineering, West Anhui University, Luan, 237012, China
| | - Liang Lu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jialiang Lv
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qi Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; Institute of Urology, Anhui Medical University, Hefei, 230031, China.
| | - Benli Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
2
|
Fang C, Li J, Lin B, Wang Y, Yao Y, Chen L, Zeng Y, Li L, Guo L. SERS-Temperature Dual-Mode T-type Lateral Flow Strip for Accurate Detection of Free and Total Prostate-Specific Antigens in Blood. Anal Chem 2024; 96:721-729. [PMID: 38176009 DOI: 10.1021/acs.analchem.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Accurate point-of-care (POC) analysis of cancer markers is the essence in the comprehensive early screening and treatment of cancer. Dual-mode synchronous detection is one of the effective approaches to reduce the probability of false negatives or false positives. As a result, this can greatly improve the accuracy of diagnosis. In this work, a surface-enhanced Raman scattering (SERS)-temperature dual-mode T-type lateral flow strip was fabricated to direct and simultaneous POC detection of total and free prostate-specific antigens (t-PSA and f-PSA) in blood. With the advantage of high stability of T-type lateral flow strip and simultaneous acquirement of assay results for t-PSA and f:t PSA ratio, the proposed method has high accuracy in the diagnosis of prostate cancer, especially in the diagnostic gray zone between 4.0 and 10.0 ng/mL. The SERS-temperature dual-signal has a good linear correlation with either f-PSA or t-PSA. To evaluate the clinical diagnostic performance of the proposed method, spiked human serum samples and the whole blood sample were analyzed. The assay results showed good recovery, and compared with traditional electrochemiluminescence immunoassay (ECLIA) method (t-PSA: 43.151; f/t ratio: 0.08), the results obtained by the proposed method were similar (t-PSA: 40.15 (SERS), 36.21 (temperature); f/t ratio: 0.08 (SERS), 0.08 (temperature), but the detection time (15 min) and cost ($0.05) had been greatly reduced. Therefore, the proposed SERS-temperature synchronous dual-mode T-type lateral flow strip has a strong application potential in the field of accurate large-scale diagnostics of prostate cancer on-site by simultaneous POC detection of t-PSA and f-PSA in blood.
Collapse
Affiliation(s)
- Cuicui Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Jing Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
3
|
Lee SH, Back JH, Joo HJ, Lim DS, Lee JE, Lee HJ. Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance. Talanta 2024; 267:125232. [PMID: 37806108 DOI: 10.1016/j.talanta.2023.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
A simultaneous detection method for two cardiac disease protein biomarkers present in serum samples on a single planar gold chip using surface plasmon resonance (SPR) is described. The detection of N-terminal pro-brain natriuretic peptide (NT-proBNP) and tumor necrosis factor α (TNF-α), which are known as acute myocardial infarction (AMI) biomarkers, with predetermined clinically relevant concentrations was performed using mixed aptamers specific to each protein tethered on a single gold surface. After the binding of NT-proBNP and/or TNF-α to the mixed aptamers, an antibody specific to each target protein was injected to form a surface sandwich complex to improve selectivity. In order to adjust the dynamic ranges in the known clinically relevant concentration significantly different for NT-proBNP (0.13-0.24 nM) and TNF-α (0.5-3 pM), the surface density ratios of the corresponding pair of aptamer and antibody were first systematically determined, which were the 1:1 mixed aptamer chip with 40 nM anti-NT-proBNP and 100 nM anti-TNF-α. This allowed to establish the distinct dynamic ranges of 0.05-0.5 nM for NT-proBNP and 0.1-5 pM for TNF-α in a buffer, along with detection and quantification limits of 0.03 and 0.19 nM for NT-proBNP and 0.06 and 0.21 pM for TNF-α, respectively. The changes in refractive unit (RU) values observed when exposing both proteins at different concentrations alongside the corresponding fixed concentration of antibodies onto the 1:1 mixed aptamer chip were then correlated to the sum of RU values measured when using the injection of individual protein for evaluating each protein concentration. With a complete characterization of the simultaneous quantification of two protein concentrations in the buffer, the mixed aptamer chip was finally employed for direct measurements of NT-proBNP and TNF-α concentrations in undiluted serum samples from healthy controls and AMI patients. The results of simultaneous SPR measurements for the two proteins in the serum samples were further compared to the individual protein concentration results using an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Hyun Back
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Majd Shokorlou Y, Heidarzadeh H. Multispectral plasmonic biosensors based on a Penta-supercell metamaterial for detection of prostate-specific antigen: Ultrasensitive in LC resonance mode. Biosens Bioelectron 2022; 217:114722. [PMID: 36152395 DOI: 10.1016/j.bios.2022.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Here, the detection of prostate-specific antigen (PSA) was done using a refractive index sensor based on a plasmonic Penta-supercells metamaterial array. The proposed Penta-supercells metamaterial array consists of four split ring-shaped supercells and a multiplication-shaped supercell in the middle. The results were validated using the three-dimensional Finite-difference time-domain (FDTD) numerical method. The detection of low-concentration biomolecules is a typical drawback of conventional plasmonic biosensors. Our designed Penta-supercells shape biosensor benefits from an ultra-sensitivity. In our designed biosensor, simultaneous excitations of three main plasmon (inductance-capacitance (LC), quadrupole, and dipole) modes can occur, and the LC mode shows a superior sensitivity. The structure was designed optimally, and three different types of metals (Au, Ag, and Al) were examined. LC mode appeiers in Ag and Au and this mode is not seen in Al. Also, the results of this study show the superiority of Ag to Au and Al. Based on the results of this study, the proposed structure achieves a record high sensitivity of 2256 nm/RIU in LC mode and high sensitivity of 1022 nm/RIU in quadrupole mode, and 494 nm/RIU in dipole mode. As another result, the proposed structure is insensitive to orthogonal polarization. The full utilization of these three resonance plasmon modes shows bright prospects for multi-spectral application. In the case of biosensor application, the designed Penta-supercells-based biosensor and its ultra-high sensitivity of 2256 nm/RIU (4.5 times larger than the sensitivity of conventional plasmonic structures) can help the medical to detect low concentrations.
Collapse
Affiliation(s)
- Younes Majd Shokorlou
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Heidarzadeh
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
5
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
6
|
D’Agata R, Bellassai N, Jungbluth V, Spoto G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers (Basel) 2021; 13:1929. [PMID: 34200632 PMCID: PMC8229487 DOI: 10.3390/polym13121929] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Strategies to develop antifouling surface coatings are crucial for surface plasmon resonance (SPR) sensing in many analytical application fields, such as detecting human disease biomarkers for clinical diagnostics and monitoring foodborne pathogens and toxins involved in food quality control. In this review, firstly, we provide a brief discussion with considerations about the importance of adopting appropriate antifouling materials for achieving excellent performances in biosensing for food safety and clinical diagnosis. Secondly, a non-exhaustive landscape of polymeric layers is given in the context of surface modification and the mechanism of fouling resistance. Finally, we present an overview of some selected developments in SPR sensing, emphasizing applications of antifouling materials and progress to overcome the challenges related to the detection of targets in complex matrices relevant for diagnosis and food biosensing.
Collapse
Affiliation(s)
- Roberta D’Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
7
|
Park S, Shin J, Kwon J, Lee W, Kim J, Kim G, Joo JM, Yang H. Interference-Free Duplex Detection of Total and Active Enzyme Concentrations at a Single Working Electrode. ACS Sens 2021; 6:1305-1311. [PMID: 33491444 DOI: 10.1021/acssensors.0c02597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The duplex detection of both total and active enzyme concentrations without interferences at a single working electrode is challenging, especially when two different assays are combined. It is also challenging to obtain two different redox-cycling reactions without interference. Here, we present a simple but sensitive combined assay that is based on two redox-cycling reactions using two incubation periods and applied potentials at a single electrode. The assay combines an immunoassay for the determination of the total enzyme (total prostate-specific antigen, tPSA) concentration with a protease assay for the determination of the active enzyme (free PSA, fPSA) concentration. The immunoassay label and fPSA that are affinity-bound to the electrode are used for high sensitivity and specificity in the protease assay as well as the immunoassay. In the immunoassay, electrochemical-enzymatic (EN) redox cycling involving ferrocenemethanol is obtained at 0.1 V versus Ag/AgCl without incubation before the proteolytically released 4-amino-1-naphthol is generated. In the protease assay, EN redox cycling involving 4-amino-1-naphthol is obtained at 0.0 V after 30 min of incubation without ferrocenemethanol electro-oxidation. The detection procedure is almost the same as common electrochemical sandwich-type immunoassays, although the two different assays are combined. The duplex detection in buffer and serum is highly interference-free, specific, and sensitive. The detection limits for tPSA and fPSA are approximately 10 and 1 pg/mL, respectively.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Jeonghwa Shin
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Jungwook Kwon
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Woohyeong Lee
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Jihyeon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Gyeongho Kim
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Jung Min Joo
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| |
Collapse
|
8
|
LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Falkowski P, Lukaszewski Z, Gorodkiewicz E. Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 2020; 194:113802. [PMID: 33303267 DOI: 10.1016/j.jpba.2020.113802] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
A review is made of 71 papers on surface plasmon resonance biosensors, published between 2005 and 2020, mostly in the last decade. The reviewed papers are divided into two groups, depending on the validation of the developed biosensor. Validated biosensors are briefly characterized, while those that are not validated are listed in a table. Focus is placed on applications of SPR biosensors in testing the effectiveness of cancer markers and in the discovery of new cancer markers. Seven new markers are proposed, two of them having high sensitivity and diagnostic selectivity as determined by ROC curves. Papers concerning the determination of micro RNA and large particles such as vesicles, exosomes and cancer cells are also reviewed.
Collapse
Affiliation(s)
- Pawel Falkowski
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
10
|
Usman A. Nanoparticle enhanced optical biosensing technologies for Prostate Specific Antigen biomarker detection. IEEE Rev Biomed Eng 2020; 15:122-137. [PMID: 33136544 DOI: 10.1109/rbme.2020.3035273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate Cancer (PCa) is one of the deadliest forms of Cancer among men. Early screening process for PCa is primarily conducted with the help of a FDA approved biomarker known as Prostate Specific Antigen (PSA). The PSA-based screening is challenged with the inability to differentiate between the cancerous PSA and Benign Prostatic Hyperplasia (BPH), resulting in high rates of false-positives. Optical techniques such as optical absorbance, scattering, surface plasmon resonance (SPR), and fluorescence have been extensively employed for Cancer diagnostic applications. One of the most important diagnostic applications involves utilization of nanoparticles (NPs) for highly specific, sensitive, rapid, multiplexed, and high performance Cancer detection and quantification. The incorporation of NPs with these optical biosensing techniques allow realization of low cost, point-of-care, highly sensitive, and specific early cancer detection technologies, especially for PCa. In this work, the current state-of-the-art, challenges, and efforts made by the researchers for realization of low cost, point-of-care (POC), highly sensitive, and specific NP enhanced optical biosensing technologies for PCa detection using PSA biomarker are discussed and analyzed.
Collapse
|
11
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Xu Q, Jia H, Duan X, Lu L, Tian Q, Chen S, Xu J, Jiang F. Label-free electrochemical immunosensor for the detection of prostate specific antigen based three-dimensional Au nanoparticles/MoS2-graphene aerogels composite. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors. Mikrochim Acta 2020; 187:473. [PMID: 32728802 DOI: 10.1007/s00604-020-04461-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
A strategy for amplifying the signal of surface plasmon resonance (SPR) biosensors is reported. Biotinylated phenylalanine (Biotin-Phe) monomers were rapidly self-assembled into nanoparticles in a mild environment. The self-assembled nanoparticles were then used as the carriers of streptavidin-antibody complexes by the streptavidin-biotin interaction. The signal was amplified because of the high molecular weight of the nanoparticle-streptavidin-antibody conjugate. With prostate-specific antigen as a model analyte, the target concentration as low as 1 pg mL-1 was readily measured. The results of the nanoparticle-enhanced SPR biosensor for analysis of serum samples are well consistent with those achieved by the enzyme-linked immunosorbent assays. This work is valuable for designing of various optical and electronic biosensors through the streptavidin-biotin interaction. Graphical abstract.
Collapse
|
14
|
Rong Z, Bai Z, Li J, Tang H, Shen T, Wang Q, Wang C, Xiao R, Wang S. Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen. Biosens Bioelectron 2019; 145:111719. [PMID: 31563066 DOI: 10.1016/j.bios.2019.111719] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
Simultaneous detection of free and complexed prostate-specific antigen (f-PSA and c-PSA) is critical to the prostate cancer (PCa) diagnostic accuracy for clinical samples with PSA values in the diagnostic gray zone between 4 and 10 ng mL-1. Herein, red and green magnetic-quantum dot nanobeads (MQBs) with superior magnetic property and high luminescence were fabricated via polyethyleneimine-mediated electrostatic adsorption of numerous quantum dots onto superparamagnetic Fe3O4 magnetic cores, and were conjugated with f-PSA antibody and c-PSA antibody, respectively, as versatile fluorescent probes in test strip for immune recognition, magnetic enrichment, and simultaneous detection of f-PSA and c-PSA analytes in complex biological matrix with t-PSA antibody on the test line. A low-cost and portable smartphone readout device with an application was also developed for the imaging of dual-color test strips and data processing. This assay can simultaneously detect f-PSA and c-PSA with the limits of detection of 0.009 ng mL-1 and 0.087 ng mL-1, respectively. Clinical serum samples of PCa and benign prostatic hyperplasia patients were evaluated to confirm the clinical feasibility. The results suggest that the proposed dual-color MQBs-based fluorescent lateral flow immunoassay is a promising point-of-care diagnostics technique for the accurate diagnosis of PCa even in resource-limited settings.
Collapse
Affiliation(s)
- Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Zikun Bai
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Jianing Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Hao Tang
- Department of Urology, Nanjing Jinling Hospital, Nanjing, 210002, PR China
| | - Tianyi Shen
- Department of Urology, Nanjing Jinling Hospital, Nanjing, 210002, PR China
| | - Qiong Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|
15
|
Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1846-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Riberi WI, Zon MA, Fernández H, Arévalo FJ. Optimization of a nanostructured surface for the development of electrochemical immunosensors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Mauriz E, Dey P, Lechuga LM. Advances in nanoplasmonic biosensors for clinical applications. Analyst 2019; 144:7105-7129. [DOI: 10.1039/c9an00701f] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. Nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy
- Universidad de León
- 24071 León
- Spain
| | - Priyanka Dey
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| |
Collapse
|
18
|
Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens Bioelectron 2018; 117:637-643. [DOI: 10.1016/j.bios.2018.06.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/21/2022]
|
19
|
Zhang F, He Y, Fu K, Fu L, Zhang B, Wang H, Zou G. Dual-wavebands-resolved electrochemiluminescence multiplexing immunoassay with dichroic mirror assistant photomultiplier-tubes as detectors. Biosens Bioelectron 2018; 115:77-82. [DOI: 10.1016/j.bios.2018.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
|
20
|
Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS 2 quantum dots and g-C 3N 4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal Chim Acta 2018; 1036:121-132. [PMID: 30253822 DOI: 10.1016/j.aca.2018.06.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
A novel nanostructured biosensing platform was designed based on two-dimensional (2D) nanocomposite of graphitic carbon nitride (g-C3N4) nanosheets and MoS2 quantum dots (MoS2 QDs), followed by decoration with chitosan-stabilized Au nanoparticles (CS-AuNPs) (denoted as MoS2QDs@g-C3N4@CS-AuNPs), of which CS-AuNPs were prepared by plasma enhanced-chemical vapor deposition. Owning to the good surface plasmon performance of the CS-AuNPs and excellent electrochemical activity of MoS2QDs@g-C3N4 nanosheets, the as-obtained 2D MoS2QDs@g-C3N4@CS-AuNPs nanocomposite was simultaneously explored to construct both surface plasmon resonance spectroscopy (SPR) sensor and electrochemical aptasensor. The MoS2QDs@g-C3N4@CS-AuNPs-based aptasensor shows strong bio-binding affinity toward the prostate specific antigen (PSA) targeted aptamer strands as compared to the individual component, including MoS2 QDs, g-C3N4, and CS-AuNPs. When detecting PSA, the low limit of detection (LOD) of 0.71 pg mL-1 deduced by electrochemical aptasensor is three orders of magnitude lower than that deduced by SPR sensor (0.77 ng mL-1). As expected, both SPR sensor and electrochemical aptasensor demonstrate good selectivity, highly stability, acceptable reproducibility, and well consistent applicability in human serum. The satisfactory results suggest potential application of the MoS2QDs@g-C3N4@CS-AuNPs in bifunctional biosensing fields and clinical monitoring of cancer markers.
Collapse
Affiliation(s)
- Fenghe Duan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Shuai Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| |
Collapse
|
21
|
Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosens Bioelectron 2017; 94:657-662. [DOI: 10.1016/j.bios.2017.03.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
|
22
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens Bioelectron 2017; 99:92-98. [PMID: 28743084 DOI: 10.1016/j.bios.2017.07.050] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
Abstract
A novel and competitive electrochemiluminescence (ECL) aptasensor for prostate specific antigen (PSA) assay was constructed using gold nanorods functionalized graphene oxide (GO@AuNRs) multilabeled with glucose oxidase (GOD) and streptavidin (SA) toward luminol-based ECL system. A strong initial ECL signal was achieved by electrodeposited gold (DpAu) on the electrode because of gold nanoparticles (AuNPs) motivating the luminol ECL signal. The signal probes prepared by loading GOD and SA-biotin-DNA on GO@AuNRs were used for achieving multiple signal amplification. In the absence of PSA, the signal probes can be attached on the electrode by hybridization reaction between PSA aptamer and biotin-DNA. In this state, the GOD loaded on the probe could catalyze glucose to in situ produce H2O2 and then AuNRs catalyze H2O2 to generate abundant reactive oxygen species (ROSs) in luminol ECL reaction. Both the high-content GOD and AuNRs in the signal probe amplified the ECL signal in the ECL system. Moreover, the combination of SA with biotin-DNA further expands ECL intensity. The integration of such amplifying effects in this protocol endows the aptasensor with high sensitivity and good selectivity for PSA detection. This aptasensor exhibits a linear relation in the range of 0.5pgmL-1 to 5.0ngmL-1 with the detection limit of 0.17pgmL-1 (S/N = 3). Besides, the strategy was successfully applied in determination of human serum samples with recovery of 81.4-116.0%.
Collapse
|
24
|
Vagias A, Sergelen K, Koynov K, Košovan P, Dostalek J, Jonas U, Knoll W, Fytas G. Diffusion and Permeation of Labeled IgG in Grafted Hydrogels. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A. Vagias
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - K. Sergelen
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
- International
Graduate School on Bionanotechnology, University of Natural Resources
and Life Sciences, Nanyang Technological University, Singapore 639798
| | - K. Koynov
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - P. Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - J. Dostalek
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
| | - U. Jonas
- Macromolecular
Chemistry, Department Chemistry - Biology, University of Siegen, 57076 Siegen, Germany
| | - W. Knoll
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
| | - G. Fytas
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
25
|
Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J. Simultaneous Detection of Dual Prostate Specific Antigens Using Surface-Enhanced Raman Scattering-Based Immunoassay for Accurate Diagnosis of Prostate Cancer. ACS NANO 2017; 11:4926-4933. [PMID: 28441008 DOI: 10.1021/acsnano.7b01536] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Accurate analysis of specific biomarkers in clinical serum is essential for early diagnosis and treatment of cancer. Here, a surface-enhanced Raman scattering (SERS)-based immunoassay, using magnetic beads and SERS nano tags, was developed for the determination of free to total (f/t) prostate specific antigen (PSA) ratio to improve the diagnostic performance of prostate cancer. To assess the clinical applicability of the proposed method, SERS-based assays for the simultaneous detection of dual PSA markers, free PSA (f-PSA) and complexed PSA (c-PSA), were performed for clinical samples in the gray zone between 4.0 and 10.0 ng/mL. Our assay results for f/t PSA ratio showed a good linear correlation with those measured using the electrochemiluminescence (ECL) system installed in the clinical laboratory of the University Hospital. In addition, the simultaneous assay provided better precision than parallel assays for the detection of f-PSA and c-PSA in 13 clinical serum samples. Therefore, our SERS-based assay for simultaneous detection of dual PSA markers in clinical fluids has strong potential for application in the accurate diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Ziyi Cheng
- Department of Bionano Technology, Hanyang University , Ansan 426-791, South Korea
| | - Namhyun Choi
- Department of Bionano Technology, Hanyang University , Ansan 426-791, South Korea
| | - Rui Wang
- Department of Bionano Technology, Hanyang University , Ansan 426-791, South Korea
| | - Sangyeop Lee
- Department of Bionano Technology, Hanyang University , Ansan 426-791, South Korea
| | - Kyung Chul Moon
- Department of Laboratory Medicine, Korea University College of Medicine , Seoul 152-854, South Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine , Seoul 152-854, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, Shandong 264003, China
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University , Ansan 426-791, South Korea
| |
Collapse
|
26
|
Hasanzadeh M, Shadjou N. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1313-1326. [DOI: 10.1016/j.msec.2016.11.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022]
|
27
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
28
|
Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 2017; 87:630-637. [DOI: 10.1016/j.bios.2016.09.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
|
29
|
Deng C, Pi X, Qian P, Chen X, Wu W, Xiang J. High-Performance Ratiometric Electrochemical Method Based on the Combination of Signal Probe and Inner Reference Probe in One Hairpin-Structured DNA. Anal Chem 2016; 89:966-973. [PMID: 27983797 DOI: 10.1021/acs.analchem.6b04209] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, the dual signal-tagged hairpin structured DNA (dhDNA)-based ratiometric probe was developed by the combination of ferrocene-labeled signal probe (Fc-sP) and methylene blue-modified inner reference probe (MB-rP) in one hairpin-structured DNA. On the basis of this, a high-performance ratiometric electrochemical method was proposed for biomarker detection. In contrast to the conventional ratiometric electrochemical probe, this dhDNA ratiometric probe integrated sP and rP into one structure, which ensured the completely same modification condition and the interdependence of sP and rP on one sensing interface. As a result, the dhDNA ratiometric probe possesses a stronger ability to eliminate the disturbance of environmental change, which was proven by the fact that the changes of the surface roughness and pH value had no significant effects on the reproducibility and stability of the sensor. Moreover, in the proposed strategy, the initial ratio responses of Fc-sP to MB-rP ((IFc-sP/IMB-rP)0) are controllable and can be kept constant at 1:1, which is favorable for the increase in signal-to-noise ratio and sensitivity. When the sequence of Fc-sP is designed as the aptamer of mucin 1 (MUC1), the dhDNA ratiometric sensor with signal amplification of Au nanoparticles becomes feasible for the sensitive detection of MUC1 by one-step incubation procedure. Compared with the conventional ratiometric sensor, the proposed dhDNA sensor has higher reproducibility, accuracy, stability, sensitivity, and simplicity, which are significant for the development of the sensor in various fields for practical applications.
Collapse
Affiliation(s)
- Chunyan Deng
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, People's Republic of China
| | - Xiaomei Pi
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, People's Republic of China
| | - Pin Qian
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, People's Republic of China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, People's Republic of China
| | - Wuming Wu
- College of Optoelectriconic Science and Engineering, National University of Defense Technology , Changsha 410073, China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, People's Republic of China
| |
Collapse
|
30
|
Shi HW, Zhao W, Liu Z, Liu XC, Wu MS, Xu JJ, Chen HY. Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta 2016; 154:169-74. [DOI: 10.1016/j.talanta.2016.03.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 01/05/2023]
|
31
|
Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance. Anal Bioanal Chem 2016; 408:4935-41. [DOI: 10.1007/s00216-016-9586-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 11/26/2022]
|
32
|
Tahmasebi F, Noorbakhsh A. Sensitive Electrochemical Prostate Specific Antigen Aptasensor: Effect of Carboxylic Acid Functionalized Carbon Nanotube and Glutaraldehyde Linker. ELECTROANAL 2016. [DOI: 10.1002/elan.201501014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Liu C, Liu X, Qin Y, Deng C, Xiang J. A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv 2016. [DOI: 10.1039/c6ra09284e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this present work, a simple regenerable electrochemical aptasensor for the parallel and continuous detection of protein biomarkers is reported.
Collapse
Affiliation(s)
- Chunyan Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Xi Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Yun Qin
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Chunyan Deng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
34
|
Biscay J, González García MB, García AC. Determination of Total PSA Using Magnetic Beads and a Re-usable Screen Printed Carbon Electrode Array. ELECTROANAL 2015. [DOI: 10.1002/elan.201500351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Wu BY, Yan XP. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem Commun (Camb) 2015; 51:3903-6. [DOI: 10.1039/c5cc00286a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Föster resonance energy transfer (FRET) immunoassay based on persistent luminescence nanoparticles (PLNP) for PSA detection in serum and cell extracts in the absence of in situ excitation.
Collapse
Affiliation(s)
- Bo-Yue Wu
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology (Nankai University)
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xiu-Ping Yan
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology (Nankai University)
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|